@inproceedings{kwon-etal-2024-llms,
title = "Are {LLM}s Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of {LLM}s in Negotiation Dialogues",
author = "Kwon, Deuksin and
Weiss, Emily and
Kulshrestha, Tara and
Chawla, Kushal and
Lucas, Gale and
Gratch, Jonathan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.310",
pages = "5391--5413",
abstract = "A successful negotiation requires a range of capabilities, including comprehension of the conversation context, Theory-of-Mind (ToM) skills to infer the partner{'}s motives, strategic reasoning, and effective communication, making it challenging for automated systems. Despite the remarkable performance of LLMs in various NLP tasks, there is no systematic evaluation of their capabilities in negotiation. Such an evaluation is critical for advancing AI negotiation agents and negotiation research, ranging from designing dialogue systems to providing pedagogical feedback and scaling up data collection practices. This work aims to systematically analyze the multifaceted capabilities of LLMs across diverse dialogue scenarios throughout the stages of a typical negotiation interaction. Our analysis highlights GPT-4{'}s superior performance in many tasks while identifying specific challenges, such as making subjective assessments and generating contextually appropriate, strategically advantageous responses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kwon-etal-2024-llms">
<titleInfo>
<title>Are LLMs Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of LLMs in Negotiation Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deuksin</namePart>
<namePart type="family">Kwon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Weiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tara</namePart>
<namePart type="family">Kulshrestha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kushal</namePart>
<namePart type="family">Chawla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gale</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Gratch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A successful negotiation requires a range of capabilities, including comprehension of the conversation context, Theory-of-Mind (ToM) skills to infer the partner’s motives, strategic reasoning, and effective communication, making it challenging for automated systems. Despite the remarkable performance of LLMs in various NLP tasks, there is no systematic evaluation of their capabilities in negotiation. Such an evaluation is critical for advancing AI negotiation agents and negotiation research, ranging from designing dialogue systems to providing pedagogical feedback and scaling up data collection practices. This work aims to systematically analyze the multifaceted capabilities of LLMs across diverse dialogue scenarios throughout the stages of a typical negotiation interaction. Our analysis highlights GPT-4’s superior performance in many tasks while identifying specific challenges, such as making subjective assessments and generating contextually appropriate, strategically advantageous responses.</abstract>
<identifier type="citekey">kwon-etal-2024-llms</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.310</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>5391</start>
<end>5413</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Are LLMs Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of LLMs in Negotiation Dialogues
%A Kwon, Deuksin
%A Weiss, Emily
%A Kulshrestha, Tara
%A Chawla, Kushal
%A Lucas, Gale
%A Gratch, Jonathan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F kwon-etal-2024-llms
%X A successful negotiation requires a range of capabilities, including comprehension of the conversation context, Theory-of-Mind (ToM) skills to infer the partner’s motives, strategic reasoning, and effective communication, making it challenging for automated systems. Despite the remarkable performance of LLMs in various NLP tasks, there is no systematic evaluation of their capabilities in negotiation. Such an evaluation is critical for advancing AI negotiation agents and negotiation research, ranging from designing dialogue systems to providing pedagogical feedback and scaling up data collection practices. This work aims to systematically analyze the multifaceted capabilities of LLMs across diverse dialogue scenarios throughout the stages of a typical negotiation interaction. Our analysis highlights GPT-4’s superior performance in many tasks while identifying specific challenges, such as making subjective assessments and generating contextually appropriate, strategically advantageous responses.
%U https://aclanthology.org/2024.findings-emnlp.310
%P 5391-5413
Markdown (Informal)
[Are LLMs Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of LLMs in Negotiation Dialogues](https://aclanthology.org/2024.findings-emnlp.310) (Kwon et al., Findings 2024)
ACL