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Abstract

Academic documents are packed with texts,
equations, tables, and figures, requiring com-
prehensive understanding for accurate Opti-
cal Character Recognition (OCR). While end-
to-end OCR methods offer improved accu-
racy over layout-based approaches, they often
grapple with significant repetition issues, espe-
cially with complex layouts in Out-Of-Domain
(OOD) documents. To tackle this issue, we
propose LOCR1, a model that integrates loca-
tion guiding into the transformer architecture
during autoregression. We train the model on
an original large-scale dataset comprising over
53M text-location pairs from 89K academic
document pages, including bounding boxes
for words, tables and mathematical symbols.
LOCR adeptly handles various formatting ele-
ments and generates content in Markdown lan-
guage. It outperforms all existing methods in
our test set constructed from arXiv. LOCR
also eliminates repetition in the arXiv dataset,
and reduces repetition frequency in OOD docu-
ments, from 13.19% to 0.04% for natural sci-
ence documents. Additionally, LOCR features
an interactive OCR mode, facilitating the gen-
eration of complex documents through a few
location prompts from human.

1 Introduction

Academic literature comprises a wealth of high-
quality content, yet much of it is provided in for-
mats like PDF that are not readily for machine read-
ing. Particularly, most academic documents of the
previous centuries are scanned version. Digitizing
academic documents are important for scientific
research, literature retrieval, and large-language
model training. However, academic document lay-
out tends to be highly intricate, including text, equa-
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tions, images, tables, and annotations, posing chal-
lenges for obtaining accurate OCR results.

One approach to document OCR is to first analyze
the layout of the document and then extract the text
content (Zhu et al., 2022,mindee, 2023). While
progress has been made in any of the two stages or
handling specific types of elements, such as table
detection and recognition (Yang et al., 2022), hand-
written formula recognition (Sakshi and Kukreja,
2023) and structured information extraction (Lu
et al., 2022; Liao et al., 2023), it is very difficult for
models to understand all the elements and connect
the different chunks into a coherent sequence.

Recently, an end-to-end transformer structure,
Donut (Kim et al., 2022), was proposed for doc-
ument understanding. It effectively addresses the
complexity of combining multiple models and the
issue of error propagation. Without too many
changes in the model, Nougat (Blecher et al., 2023)
processes academic PDFs into markup language.
However, these methods are prone to hallucination
and repetitive loops.

In fact, getting trapped in a repetitive loop is a com-
mon problem with Transformer-based models sam-
pling with greedy search decoding (Holtzman et al.,
2019). It is challenging for a language model to
accurately capture all the content of text-intensive
documents without position perception. By visu-
alizing the cross-attention during the prediction
process of Nougat (see Appendix D), we found
that the cross-attention cannot be focused on the
correct position when the layout is complex. This
indicates that the positional information influence
the text decoding to a great extent. Inspired by this,
we introduce LOCR, which incorporates positional
guidance for the model to focus on the correct word
to address the issue of repetitive loop.

The most significant feature that distinguishes our
model from previous works is the incorporation of
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Location-based Scientific Document Dataset：
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• 89K academic document pages
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Figure 1: An overview of three components of our work: a large-scale dataset with positional annotation and a data
engine, a location-guided OCR model for various layouts, and an interactive mode for humans to prompt the model
and modify data collection.

positional autoregression alongside text autoregres-
sion. LOCR simultaneously predicts the current
token and the position of the next token, which
is used to prompt the decoding of the next token.
Through this method, we not only combine posi-
tional information with text information but also
avoid the tedious process and error accumulation
in the two-stage OCR method. Taking document
images as input, our model outputs document con-
tent in Markdown format, including special formats
such as superscripts and subscripts.

Furthermore, we propose an importance decay
strategy to intuitively penalize locations that have
already been visited to avoid repetition. With the
record of visited locations, we decrease the impor-
tance of these positions. The repetition behavior
is eliminated in the arXiv test set, and decreases
for out-of-domain documents. For documents with
complex layouts, we also introduce an interactive
OCR mode, allowing the model to continue to de-
code the text where the user has dragged a box.
With these enhancement strategies, the generation
ability of the model is significantly improved.

Additionally, we propose a data engine for con-
structing academic document OCR dataset with
positional annotations. We collect a large-scale
dataset of 89K academic document pages with 53M
text-location pairs. To the best of our knowledge, it
is the first dataset that includes a bounding box of
each mathematical symbol in academic documents.

In summary, the contributions of this paper are:

• We introduce LOCR, a transformer-structured
OCR model with positional supervision. Our
model achieves the state-of-the-art score in aca-
demic document understanding task in the arXiv
test set (see Section 5.2) and alleviates the repeti-

tive degradation to a great extent (Section 5.3).

• We innovatively introduce an interactive OCR
mode, enabling the model to handle any out-of-
domain documents. Humans only need to pro-
vide the position box for the next word without
any cumbersome operations (see Section 5.5).

• We will release a large-scale dataset composed of
89K pages of academic documents. Each piece of
data contains a document page image, the texts in
Markdown format, and the bounding boxes of all
words and mathematical symbols (see Section 3).

2 Related Work

2.1 General-purpose OCR

Optical Character Recognition (OCR) caters to a
diverse array of applications, including document
digitization (Smith, 2007; Moysset et al., 2017),
handwriting recognition, and scene text recogni-
tion (Li et al., 2021; Bautista and Atienza, 2022).
The classic OCR methods consist of two stages:
text detection and text recognition. The text detec-
tion algorithm obtains the position of text boxes
from the image, and then the recognition algorithm
recognizes the content within the text boxes. Re-
searches in these sub-fields have achieved satis-
factory results, such as EAST (Zhou et al., 2017)
for text detection, CRNN (Shi et al., 2015) for text
recognition, and LayoutLM family (Xu et al., 2020;
Xu et al., 2021; Huang et al., 2022) for document
element identification. There also has been vari-
ous integrated toolbox to connect the above func-
tions, such as DocXChain (Yao, 2023) and EffOCR
(Bryan et al., 2023).
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2.2 Academic document OCR

For academic document understanding, additional
tasks like table and mathematical equation parsing
are also involved. Marker (Paruchuri and Lampa,
2023) is a pipeline of text extracting, layout detec-
tion, and block combination, which converts PDF,
EPUB, and MOBI to Markdown with a series of
deep learning models. PaddleOCR develops a docu-
ment analysis system PP-Structure (Li et al., 2022),
which first analyses the layout information and
then extracts key information. Such OCR-based
approaches have shown promising performance but
suffer from complexity and error propagation to the
subsequent process. To address this issue, docu-
ment understanding models based on transformer
structure were proposed. Donut (Kim et al., 2022)
is an encoder-decoder model that directly decodes
the expected sequences from visual inputs. Nougat
(Blecher et al., 2023) is a specific model trained
on academic documents to process academic PDFs
into markup language, with the ability to parse im-
ages of math equations and tables.

With the emergence of general large models, some
Large Vision-Language Models (LVLMs) mark a
significant milestone across OCR tasks. Vary (Wei
et al., 2023) is a document parsing method, equip-
ping the large model with the fine-grained percep-
tion and understanding by scaling up the vision vo-
cabulary of LVLMs. As the state-of-the-art LVLM,
GPT-4v (Yang et al., 2023) performs well in rec-
ognizing and understanding Latin contents. But
it shows limitations when dealing with complex
tasks such as table structure recognition and seman-
tic entity recognition (Shi et al., 2023). When it
comes to unstructured layouts or inconsistent text
distribution, GPT-4v tends to omit lengthy tables
and only reconstruct the short beginning of that.

Without the box detection of two-stage OCR, the
methods above are prone to hallucination and repe-
titions. This phenomenon indicates that it is crucial
for the model to find the correct position in order
to generate the correct sequences, especially for
ambiguous layouts and out-of-domain documents.

2.3 Promptable model

Interactive models play a significant role in align-
ing behavior of artifical intelligence with human
intentions, which have shown promising perfor-
mance within a variety of domains. SAM(Kirillov
et al., 2023) presents an interactive segmentation

model capable of accommodating point, box, and
text-based input. DINOv (Li et al., 2023) achieves
visual in-context prompting in both referring and
general segmentation. T-Rex (Jiang et al., 2023) ex-
plores object detection and counting, which can in-
teractively refine the counting results by prompting
on missing or falsely-detected objects. In contrast,
the field of OCR revolves less interactive explo-
rations, despite the dealing with complex layout
has an urge for human prompts and interactions.

3 Dataset

3.1 Data collection

To the best of our knowledge, there is no paired
dataset containing markup-formatted document
contents along with corresponding bounding boxes
(bbox) for each word and mathematical symbol.
We proposed a data engine to collect such paired
data. The process is shown in Figure 2.

We get the Tex source files of academic papers
from arXiv. In the first step, we assign a unique
RGB color identifier to each word and mathemati-
cal symbol automatically by using xcolor package
in LaTeX (see Step1). In the second step, follow-
ing the same pipeline as Nougat (Blecher et al.,
2023), we compile LaTeX files into PDF and Mark-
down files respectively. Since PDF is a rich text
format that supports color changes, we obtain col-
orful PDF files. While Markdown is a plain text
format, the RGB identifiers are compiled into text
forms (see Step2). In the third step, we use the
PyMuPDF package of python to parse the colorful
PDF files and extract the pair of (color, bbox). At
the same time, we parse the Markdown file with
regular expressions to get the paired (color, text)
data. Finally, we merge the two pairs of data by the
key of RGB color to get paired (text, bbox) data
(see Step3).

We collected academic papers released on arXiv
from 2007 to 2023. During data processing, some
articles failed the conversion due to user-defined
macros or non-standardized formats. After all con-
version and data cleaning, our dataset is composed
of 88998 pages, which include, but are not limited
to, the bounding box of plain text, Greek letters,
arithmetic symbols, superscripts, subscripts, and
tabular symbols. Examples of our dataset is avail-
able in Appedix A1.
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LaTeX

\section{Criticality in deep learning nets}
\subsection{From feed-forward to…}

We will focus now on a a feed-forward network, 
with two layers, $a_i$ and $b_j$ connected…

LaTeX

\section{\textcolor[RGB]{180,000,000}{Criticality}…}
\subsection{\ textcolor[RGB]{180,000,050}{From}…}

\textcolor[RGB]{180,000,100}{We} 
\textcolor[RGB]{180,000,105}{will}… 
$\textcolor[RGB]{180,000,185}{a}_{i}$ 
\textcolor[RGB]{180,000,190}{and}…

PDF

3 Criticality in deep learning nets

3.1 From feed-forward to fully connected…

We will focus now on a feed-forward network, with

two layers, 𝑎𝑖 and 𝑏𝑗 connected…

Markdown

## 3 textcolor[RGB]180,000,010Criticality…
### textcolor[RGB]180,000,050From…

textcolor[RGB]180,000,100We
textcolor[RGB]180,000,105will
\(textcolor[RGB]{180,000,185}{a}_{i}\) 
textcolor[RGB]180,000,190and…

Step1 Add Color to Each Word

Step0        The Original LaTeX Step2        Compile Markdown and PDF Step3 Match Pairs

PyMuPDF    (color,bbox)

re    (color,text)

PyMuPD (color,bbox)

re         (color,text)

Data       (text, bbox)

+

=

Figure 2: Data Processing. Step1: Add a unique RGB identifier to each word by parsing the Tex file. Step2:
Convert source file into Markdown and PDF formats respectively. Step3: Extract color-bbox pairs from colored
PDF, color-text pairs from Markdown, and merge the two to get the text-bbox pairs.

3.2 Data augmentation

Image augmentation To simulate the imperfec-
tions and variability of scanned documents, we
follow (Simard et al., 2003) to apply data augmen-
tation to document images, including of erosion,
dilation, gaussian noise, gaussian blur, bitmap con-
version, image compression, grid distortion and
elastic transform. Each of the transformations is
applied with a certain probability.

Text augmentation To address the issue of the
model getting stuck in repetitive loops, we ran-
domly skip 0 to 5 tokens and their corresponding
positions in the ground truth labels. Compared
with the perturbation method in Nougat, which ran-
domly replaces tokens, our method shows a more
pronounced effect (see Section 5.3).

Position augmentation Since bounding boxes are
involved in the autoregressive process, there may
be some imprecise output. In some cases, a user
may also draw a loose box in the interactive mode.
Therefore, it is reasonable to add noise to the bound-
ing boxes during the training phase. We add Gaus-
sian noise with a mean of 0 and a standard deviation
of 0.5 times the side length to each box.

4 Methodology

4.1 Model structure

The over view of our model is shown in Figure 3,
with a transformer-based backbone and an addi-
tional prompt module to process positional informa-

tion. Given an image as input, the image encoder
transforms it as image embedding. Semantic infor-
mation and visual information are integrated within
the decoder, enabling simultaneous prediction of
the current token and its next position.

Backbone Theoretically, our prompt module can
be applied to any multimodal models with an image
encoder and a text decoder. When no positional
information is provided, the backbone model would
autonomously generate sequences. In this paper,
we choose Nougat (Blecher et al., 2023) as the
backbone, which uses the implementation of Swin
Transformer (Liu et al., 2021) as image encoder
and mBART (Lewis et al., 2019) as decoder. Given
an image of x ∈ R3,H0,W0 , the image encoder
transfers it into dense embedding himg ∈ RH,W,d,
which is then decoded into a sequence of token
embeddings ht ∈ Rd. Finally, the sequence of
token embeddings is projected into a logit matrix
with the size of the vocabulary v.

Prompt Module Without location guiding, the
backbone model may get confused about where to
find the next token. The prompt module is designed
to perceive spatial information prompted by previ-
ous steps or human, consisting of two-dimensional
positional encoding and position detection heads.

We opt for positional encodings with Fourier Fea-
tures (Tancik et al., 2020) to represent the positions
of bounding boxes for both tokens and the image.
The token bounding box, defined by its top-left and
bottom-right corners, is transformed into a dense
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Figure 3: Model Architecture. Left: Image encoder and decoder of transformer structure. Right: Position detection
head and token projection. Purple: Prompt module consisting of positional encodings and position detection head.
Red: Interactive mode with human-reviewed input.

position embedding hbox ∈ Rd. For the image em-
bedding himg ∈ RH,W,d, we divide it into grids
of size (H, W) (shown in Figure 3), and apply po-
sitional encodings to each grid box to get the its
position embedding hgrid ∈ RH,W,d.

The position detection heads are used to predict the
position of the next token. Given that the weights
of the cross-attention layers indicate the similarity
between image grids and the current token, we uti-
lize them as input for position detection. Inspired
by CenterNet (Duan et al., 2019), an effective ob-
ject detection algorithm, we use three convolutional
heads to predict the position of the next token. The
first convolution head predicts the grid containing
the next token by conducting a classification task
on all grids in an image. The second and third con-
volution heads regress the size and center offset of
the next bounding box respectively. Finally, the co-
ordinates of the bounding box are calculated based
on the center point and the width and height. To im-
prove prediction accuracy, we upsample the image
grid output by decoder from (H,W) to (2H,2W),
allowing finer-grained positition prediction.

Information fusion The token information and
spatial information is fused in cross-attention lay-
ers of decoder. In backbone models without prompt
module, the cross-attention layers take solely im-
age embedding as encoder hidden states and token
embedding as hidden states input. Instead, we use
the sum of the image embedding himg ∈ RH,W,d

and its position embedding hgrid ∈ RH,W,d as the
encoder hidden states, and the sum of token embed-
ding ht ∈ Rd and position embedding hbox ∈ Rd

as the hidden states input. As a consequence, in
cross-attention layers where token information in-
teracts with the image contents, the positional in-
formation of tokens and image are also fused.

4.2 Decay strategy for anti-repetition

During the inference stage, we introduce position
decay strategies based on prior knowledge to guide
the prediction of positions.

Accumulation Decay The accumulation decay
strategy is implemented by recording the count
of tokens that have appeared in each grid. The
heatmap for predicting the next grid is adjusted by
penalizing grids where many tokens have already
been located as follows:

hm = hm+ log(σ) · cnt (1)

Where hm ∈ R2H,2W denotes the upsampled
heatmap predicted by the first position detection
head and cnt ∈ R2H,2W denotes the count of to-
kens that have appeared in each grid. The σ ∈
(0, 1] denotes decay rate. Smaller σ value means
stronger decay effect. When σ is set to 1, the decay
function is deactivated. We recommend using a
decay rate between 0.75 and 0.95, depending on
the density of text in the target documents.

Blank Decay Another intuitive idea is to apply
positional decay to blank grids. We calculate the
standard deviation std for pixels within each grid,
where grids with smaller standard deviations (in
extreme cases, containing no characters at all) are
considered less likely to contain the next token.
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Together with blank decay strategy, the heatmap is
adjusted as follows:

hm = hm+ log(σ) · cnt+ log(η · std) (2)

4.3 Loss function
Our loss function consists of two parts: token loss
and position loss.

Token loss We use the cross-entropy loss of tokens
Lt to train the language decoder.

Position loss For the three convolutional heads
in the position detection module, we apply cross-
entropy loss to the first classification head and the
Intersection over Union (IOU) metric to the sub-
sequent two heads. Additionally, we integrate the
normalized Euclidean distance between the center
of the predicted box and that of the target box to
mitigate the shortcomings of slow convergence and
inaccurate regression inherent in IOU (Zheng et al.,
2019). The position loss function is as follows:

Lp = αLce
p + β(1− iou+ γd2) (3)

Where Lce
p denotes the cross-entropy loss of the

classification. d represents the normalized Eu-
clidean distance to adjust the IOU loss. Addition-
ally, α, β, and γ are hyperparameters, correspond-
ing to 1, 0.3, and 10 respectively in our settings.

As the prediction of the text at the beginning of a
page is much more challenging and important, we
assigned a higher weight θ for the initial text than
the subsequent text.

The final loss function is as follows:

l = θ(Linit
p + Linit

t ) + Lsub
p + Lsub

t (4)

4.4 Human interaction
As a complement to our method, we provide an
interactive mode, which serves both for improving
the model’s performance and as a part of our data
construction engine.

Model Assistant To deal with extremely hard
cases, we provide a browser-based tool to enable
users to give real-time position prompts by simply
dragging a box. When the autoregressive process
encounters a state of confusion, characterized by a

predicted token or position confidence lower than
a predetermined threshold, users can opt to pro-
vide a positional prompt. With the correct position
provided, the autoregressive process would go on
more smoothly (see Section 5.5 for results).

Data construction With the model automatically
predicting positions, minimal human intervention
is required to acquire additional out-of-domain
data, particularly the positional bounding box la-
bels. As a result, LOCR is able to parse a broader
range of layouts and document domains beyond
academic papers. For instance, when tested on
patent documents, LOCR’s recognition of the ma-
jority of content is satisfactory (see Figure B4),
showing the model’s flexibility. This paves the way
for broader applications of location-based OCR
method.

5 Result and Evaluation

5.1 Implementation details

Baseline We use both the state-of-the-art integrated
toolbox Marker, PaddleOCR and end-to-end gen-
eration model Nougat as our baselines. For Pad-
dleOCR, which outputs each bounding box by text
detection and corresponding text by text recogni-
tion, we concatenate the sequences in the order of
its model output.

Dataset Since our main baseline model, Nougat,
does not provide an open resource dataset, we eval-
uate our method with the dataset introduced in Sec-
tion 3, which shares the same data source and pro-
cessing pipeline as Nougat. The test set contains
1000 pages of academic documents. In the testing
phase, only images are used as inputs, which en-
sures the fairness and rationality of our evaluation.

Setup We resize the input dimensions of the images
to (H0, W0) = (896, 672), an aspect ratio that ac-
commodates the majority of academic paper sizes.
The maximal sequence length of transformer de-
coder is set to 4096 to allow the output of intensive
text in academic research papers. During inference
the text is generated using greedy decoding.

Training details We initialize the backbone pa-
rameters using the pretrained Nougat small model,
while the prompt module is initialized randomly.
LOCR was trained for 50 epochs using 64 A100
80GB GPUs, with a total batch size of 128. The
maximum learning rate is set to 5 × 10−4, with
exponential decay until reaching 1× 10−5.
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Figure 4: Examples of our model output. Left: Origin image of document page. Right: Model output converted to
Markdown and rendered back into a PDF. More detailed examples are available in Appendix B

Method Edit dist↓ BLEU↑ METEOR↑ Precision↑ Recall↑ F1↑
PaddleOCR 0.475 0.500 0.589 0.713 0.690 0.696

Marker 0.221 0.696 0.783 0.838 0.804 0.814
Nougat small (247M*) 0.166 0.825 0.882 0.900 0.898 0.899
Nougat base (348M*) 0.159 0.829 0.889 0.900 0.905 0.902
LOCR (248M*,σ = 1) 0.106 0.854 0.913 0.915 0.916 0.915

LOCR (248M*,σ = 0.85) 0.104 0.854 0.912 0.915 0.915 0.915
LOCR (248M*,σ = 0.75) 0.109 0.850 0.910 0.914 0.911 0.912

Table 1: Comparative performance results on the arXiv test set. Our LOCR method demonstrates superior
performance across multiple metrics, significantly outperforming the baseline methods. *Number of parameters.

5.2 Metrics

Text generation Following Nougat (Blecher et al.,
2023), we use Edit distance, BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), Pre-
cision, Recall and F1 to measure the quality of
output text.

As shown in Table 1, while the number of LOCR’s
parameters is only slightly more than the small ver-
sion of Nougat, our model outperforms the base
version of Nougat in all evaluation metrics. In con-
trast, the multi-stage pipelines do not convert all
equations to LaTeX and not all lines are joined
properly. For the autogressive method without po-
sition supervision, Nougat prones to hallucination
and repetition. These results confirm the effective-
ness of LOCR and the positional decay strategy.

Position prediction Besides, we use IOU metrics
to measure the performance of our prompt module.
LOCR achieves a IOU score of 0.702. As shown in
Figure 5, our method successfully handles various
layouts, including pages with multiple subfigures,
tables, mathematical formulas, and references.

5.3 Repetition

Data source We evaluate the generation ability of
our model and present the frequency of repetition in
Table 2. Due to the majority of arXiv manuscripts
being formatted in single or double columns and
lacking complex layout such as footnotes and cov-
ers, we selected out-of-domain (OOD) datasets
from diverse fields to ensure varied layouts. Specif-
ically, we select 1000 papers each from natural
sciences (quantum physics) and social sciences
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(a) Origin page with references (b) Result

Figure 5: Example of position prediction. Green box: Rough result of grid classification. Yellow: Final result of
box regression. More examples are available in Appendix B.

(marketing), as OOD test documents, which con-
tain more complex layouts like journal covers and
multi-column sub-tables. The detailed statistics of
the OOD datasets can be found in Appendix C. We
calculate both the proportion of failed pages and
that of failed documents. As the first page of an aca-
demic document typically shows a more complex
layout than the subsequent pages, we additionally
calculate the proportion of documents with failures
in the cover.

Metrics Following Nougat (Blecher et al., 2023),
we detect the repetition behavior during inference
by computing the variances of the largest logit val-
ues of each step. If the signal drops below a thresh-
old, we regard the sequence to have repetitions.

Results The model exhibits an impressive decrease
in repetition failures. Specifically, in arXiv dataset,
LOCR with σ = 0.75 eliminates repetition for all
pages from 4.42%. For OOD documents where
the documents are more challenging to compre-
hend with more complex formulas, LOCR with
σ = 0.75 reduces the failure rate for all pages to

0.04% for quantum documents and LOCR with
σ = 0.85 reduces that to 0.11% for marketing
documents. On the other hand, among all failed
documents, the proportion of failures on the first
page is significantly decreased, demonstrating bet-
ter ability of LOCR to handle more complex lay-
outs. Some pages that failed with Nougat but were
successfully converted by LOCR are shown in Ap-
pendix B.

5.4 Ablation study

We conduct ablation study to illustrate the indi-
vidual contribution of the decay strategy and the
positional module.

Regarding the decay strategy, the bottom three rows
in Table 1 preliminarily demonstrate its efficacy,
where σ = 1 signifies no decay strategy applied.
Further, we conducted ablation experiments on the
repetition rate. As Table 2 shows, our decay strat-
egy proves further performance improvement com-
pared to scenarios without the decay strategy. Be-
sides, the model results show good robustness to
slight fluctuations of decay rate.
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Method ArXiv Quantum Marketing
Page Doc* Cover Page Doc* Cover Page Doc* Cover

Nougat small 4.39% 27.60% 6.40% 13.77% 63.90% 22.70% 8.30% 60.80% 14.50%
Nougat base 4.42% 27.80% 5.30% 13.19% 55.40% 15.40% 8.10% 60.20% 16.90%

LOCR (σ = 1) 0.88% 5.20% 0.30% 2.78% 17.10% 0.60% 1.36% 11.90% 0.70%
LOCR (σ = 0.85) 0.01% 0.10% 0.10% 0.08% 0.60% 0.00% 0.11% 1.40% 0.00%
LOCR (σ = 0.75) 0.00% 0.00% 0.00% 0.04% 0.30% 0.00% 0.14% 1.60% 0.10%

Table 2: Robustness of LOCR across diverse domains, showcasing the significant reduction in generation failures.
The three columns for each domain are calculated based on failed pages / total pages, failed doc / total doc, and doc
with failed cover / total doc. *Statistics on the number of pages in each document can be found in Appendix C.

(a) A case model predicting wrong position (b) Result

Figure 6: Visualization of interaction mode of LOCR. The orange bounding boxes denote the areas that have been
scanned by the model. The red box in 6(a) denotes the wrongly predicted position and the blue box in 6(b) denotes
the human given prompt. The model output the subsequent contents smoothly and correctly.

Regarding the positional module, comparing the
performance of LOCR with that of the Nougat
model serves as a valuable ablation experiment.
Since our training set constitutes a subset of
Nougat’s training set, in the absence of the decay
strategy (σ = 1) in Table 1, the performance im-
provement of our model serves as evidence of the
effectiveness of the positional module.

5.5 Interaction

Although the problem of repetitive degeneration
has been largely alleviated, we aim to complete the
remaining layouts in the interactive mode. When
the model encounters a layout that is difficult to
judge and the confidence of the predicted posi-
tion is lower than the threshold, simply dragging
a bounding box allows the model to automatically
return to the expected position and continue out-
putting correct results. Figure 6 shows the inter-

active process with human intervention. We will
continue our project’s trajectory to achieve a closed
loop akin to SAM(Kirillov et al., 2023), leverag-
ing human-machine interaction to handle data from
any layout and domain effectively.

6 Discussion

In our work, we introduce LOCR, which incor-
porates location guiding into the language model.
Our approach significantly mitigates the problem of
repetitive loops encountered by transformer-based
models. The interactive mode can be utilized to
construct datasets for fine-tuning OCR models to
specific domains and enhancing the generalization
capability. We believe that LOCR can be applied
to digitize documents from various fields with com-
plex layouts, thereby assisting academic research,
literature retrieval, and large language model train-
ing.
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7 Limitations

Although the frequency of repetition has been sig-
nificantly mitigated, it has not been entirely eradi-
cated in out-of-domain documents. Secondly, when
parsing other types of documents beyond academic
papers, some human interaction is needed. Addi-
tionally, our model encounters difficulties when the
initial word on a page is incomplete, leading to
imperfect handling. We will continue our work to
address these issues.
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A Dataset Examples

To the best of our knowledge, this is the first paired dataset containing markup-formatted document
contents along with corresponding bounding boxes. What makes our dataset distinguished from existing
ones is that our bounding boxes covers all visible mathematical symbols, such as

∑
, ⟨⟩ and θα.

Figure A1: Dataset example. Bounding boxes of texts are highlighted in pink, mathematical expressions in blue,
and tables in green.

B Output Examples

In Figure B1, we compared the output of LOCR and that of Nougat in Markdown format, together with
the original PDF pages. Compared with Nougat, LOCR successfully handled the repetition problem. The
corresponding part in PDF is highlighted in blue.

As a more clear illustration, Figure B2 shows the output of LOCR recompiled into PDF format.

Figure B3 shows the visualization of bounding boxes predicted by position detection head. LOCR predicts
bounding boxes with high accuracy not only for plain texts, but also for figure captions, mathematical
symbols and tables.
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# Constraints on model atmospheres from complex asteroseismology of the\(\beta\) 

Cephei stars 

 

Szevczuk Wojciech, Walczak Przemysław and Daszyńskas-Daszkiewicz Jadwig 

 

###### Abstract 

 

Using the method termed complex asteroseismology, we derive constraints on model 

atmospheres, in particular, on the NLTE effects. We fit simultaneously pulsational 

frequencies and the corresponding values of the nonadiabatic complex parameter\(f\) 

for the four\(\beta\) Cephei stars:\(\theta\) Oph,\(\nu\) Eri,\(\gamma\) Peg and12 Lac. 

The LTE Kuruc models and the BSTAR2006 NLTE models are tested. 

 

## 1 Complex asteroseismology 

 

We compute seismic models which fit centroid frequencies for different values of 

mass, chemical composition and the core overshooting parameter. From this set of 

models we choose those which reproduce the nonadiabatic parameter\(f\) using the 

method of[3]. The\(f\)-parameter describes the ratio of the bolometric flux 

perturbation to the radial displacement at the photosphere level and its theoretical 

values are obtained from linear nonadiabatic theory of stellar pulsation. All 

computations were obtained with the OPAL opacities. Two chemical mixtures were 

adopted: A04([1]) for\(\nu\) Eri and\(\theta\) Oph, and AGSS09([2]) for12 Lac 

and\(\gamma\) Peg. The empirical values of\(f\) were determined with the LTE 

Kurucz([4]) models and the NLTE model atmospheres([5]). Two values of the 

microturbulent velocity,\(\xi_{s}\), were considered. 

 

## 2 Constraints on model atmospheres 

 

The empirical values of the nonadiabatic\(f-\)parameter of the\(\beta\) Cep stars are 

sensitive to the model atmospheres([3]). In the case of12 Lac and\(\gamma\) Peg, the 

values of\(f\) 
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The origin of the enhancement is clarified by looking at the pair transition density, 

which is shown in Fig. 2(a) and (b) for \(120\leq A\leq 132\) and \(132<A\leq 150\), 

respectively. It is seen that the profile of the transition density suddenly changes as the 

neutron number exceeds the \(N=82\) magic number and \(N=90\). The transition 

density for \(132<A\leq 150\) extends outside the surface, reaching \(r\sim 11\) fm for 

\(132<A<140\), and \(r\sim 14\) fm for \(140<A<150\). The amplitude in the exterior 

region \(r\,\lower 3.01pt\hbox{$\sim$}\hbox to 0.0pt{\raise 1.86pt\hbox{$<$}}\raise 

1.8 6pt\hbox{$<$}\raise 1.86pt\hbox{$<$}\raise 1.86pt\hbox{$<$}\raise 
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The origin of the enhancement is clarified by looking at the pair transition density, 

which is shown in Fig.2(a) and(b) for\(120\leq A\leq132\) and132\(<\)\(A\leq150\), 

respectively. It is seen that the profile of the transition density suddenly changes as the 

neutron number exceeds the\(N\)=82 magic number and\(N\)=90. The transition 

density for\(132\)\(<\)\(A\leq150\) extends outside the surface, reaching\(r\sim11\) fm 

for\(132\)\(<\)\(A\)\(<\)140, and\(r\sim14\) fm for\(140\)\(<\)\(A\)\(<\)150. The 

amplitude in the exterior region\(r\mathop{\vbox{\offinterlineskip\hbox{$>$}\hbox 

to for\(A\geq132\) is evidently larger than those for\(132\), where the amplitudes 

extend only up to\(r\sim9\) fm. Comparing the results for\(A\)=120 and for\(A\)=144, 

for instance, the maximum values of the amplitude around the nuclear 

surface\(r\sim6\) fm are approximately the same, but because of the large spatial 

extension of the transition density, the pair transfer strength in\({}^{144}\)Sn is larger 

by a factor of\(\sim2\)(cf. Fig.1). 

 

The reason for the spatial extension of the pair transition density to develop suddenly 

beyond\(N\)=82 and\(N\)=90 can be ascribed to the shell gap at\(N\)=82 and 

properties of the neutron single-particle states. We here note that the transition density 

of the pair rotational mode, i.e., the pair density\(\tilde{\rho}(r)\) is written as a 

coherent sum of contributions of quasiparticle states, and the quasiparticle states with 

lower excitation energy(i.e., those originating from orbits close to the Fermi energy) 

have larger contributions. The calculated Hartree-Fock single-particle energies for 

neutrons in\({}^{132}\)Sn are\(e_{\rm HF}\)=\(-\)1.99,\(-\)0.25,0.26 MeV for 

the\(2f_{7/2}\),\(3p_{3/2}\), and\(3p_{1/2}\) orbits located above the\(N\)=82 gap, 

respectively(\(3p_{1/2}\) is an unbound resonance), and the\(h_{11/2}\) orbit 

with\(e_{\rm=\(-7.68\) MeV is located below the shell gap. For 

the132\(<\)\(A\)\(<\)140 isotopes(where the neutron Fermi energy is located near the 

position of\(2f_{7/2}\)), the main component of the transition density originates from 

this orbit. Since the binding energy of\(2f_{7/2}\) is rather small, the tail of its wave 

function extends to outside, leading to the long tail in the pair transition density. When 

the neutron number exceeds\(N\)=90(\(A\)=140), the next single particle 

orbits\(3p_{3/2}\) and3\(p_{1/2}\) give large contribution to the pair density. Since 

these\(p\) orbits have very small binding or are unbound, the spatial extension further 

develops in isotopes with\(N\geq90\)(\(A\geq140\)). 

 

## IV Pairing vibration 

 

### Strength function 

 

We now discuss the two-neutron transfer modes pop excited\(0^{+}\) states. 

Figure3(a),(b),(c) and(d) show 
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An important study [5] showed that compressible thermal flows of the level of 

accuracy of the Navier-Stokes equation could be recovered by using the lattice 

Boltzmann equation with 37 discrete velocities in two-dimensional space comprised 

of a square lattice and this was confirmed again [6]. However, we can reduce the 

minimal number by altering discrete velocities. Here, we present a 33-velocities 

model having the same order of accuracy to the 37-velocities one. As described in Fig. 

1, the vectors of the 33-velocities model are sparsely and widely distributed than those 

of the 37-velocities one. The discrete velocities of the 33-velocities model 

\(v_{i}=(v_{i,x},v_{i,y})\) is comprised of \(v_{1}=(0,0)\), \(v_{2}=c(1,0)\), 

\(v_{3}=c(2,0)\), \(v_{4}=c(3,0)\), \(v_{5}=c(1,1)\), \(v_{6}=c(2,2)\), 

\(v_{7}=c(4,4)\), \(v_{8}=c(2,1)\) and the other velocities obtained by the symmetry 

with respect to the \(x\)-axis, \(y\)-axis, and \(y=x\) where \(c=0.819381\), so that the 

discrete velocities satisfy isotropy. Their corresponding weight coefficients are 

\(w_{1}\approx 0.161987\), \(w_{2}\approx 0.143204\), \(w_{3}\approx 

0.00556112\), \(w_{4}\approx 0.00113254\), \(w_{5}\approx 0.0338840\), 

\(w_{6}\approx 0.0000844799\), \(w_{7}\approx 3.45552 
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An important study[5] showed that compressible thermal flows of the level of 

accuracy of the Navier-Stokes equation could be recovered by using the lattice 

Boltzmann equation with37 discrete velocities in two-dimensional space comprised of 

a square lattice and this was confirmed again[6]. However, we can reduce the minimal 

number by altering discrete velocities. Here, we present a33-velocities model having 

the same order of accuracy to the37-velocities one. As described in Fig.1, the vectors 

of the33-velocities model are sparsely and widely distributed than those of the37-

velocities one. The discrete velocities of the33-velocities 

model\(v_{i}\)=\((v_{i,x_{i},v_{j,y})\) is comprised 

of\(v_{1}\)=\((0,0)\),\(v_{2}\)=\(c(1,0)\),\(v_{3}\)=\(c(2,0)\),\(v_{4}\)=\(c(3,0)\),\(v_

{5}\)=\(c(1,1)\),\(v_{5}\)=\(c(2,2)\),\(v_{7}\)=\(c(4,4)\),\(v_{8}\)=\(c(2,1)\) and the 

other velocities obtained by the symmetry with respect to the\(x\)-axis,\(y\)-axis, 

and\(y\)=\(x\) where\(c\)=0.819381, so that the discrete velocities satisfy isotropy. 

Their corresponding weight coefficients 

are\(w_{1}\approx0.161987\),\(w_{2}\approx0.143204\),\(w_{3}\approx0.00556112\

),\(w_{4}\approx0.00113254\),\(w_{5}\approx0.0338840\),\(w_{6}\approx0.0008447

99\),\(w_{7}\approx3.45552\times10^{-6}\),\(w_{8}\approx0.0128169\), and for the 

other velocities obtained by the symmetry,\(w_{i}\)=\(w_{j}\) 

if\(\|v_{i}\|\)=\(\|v_{j}\|\). For simplicity, we have presented the approximate values 

of\(c\) and\(w_{i}\) with six significant figures instead of the exact values. Note that 

this solution can be obtained by the system of equations 

 

\[\sum_{i=1}^{33}w_{i}v_{i,x}^{k}v_{i,y}^{k}=\Gamma\left(\frac{1+\frac{a}{2}\

right)\Gamma\left(\frac{1+\frac{b}{2}\right)/\pi\] 

 

for\((a,b)\)=\((0,0)\),\((0,2)\),\((2,2)\),\((0,4)\),\((2,4)\),\((0,6)\),\((4,4)\),\((2,6)\), 

and\((0,8)\) where\(\Gamma\) is the Gaussian Gamma function[7]. The discretized 

equilibrium distribution 

  

Figure B1: Examples of pages that Nougat failed to convert but LOCR succeeded. Left: Original PDF pages, with
failed parts highlighted in blue. Medium: Markdown output by Nougat. Right: Markdown output by LOCR.
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are imposed. Algebraic geometry codes over elliptic curves are natural gen-
eralizations of Reed-Solomon codes. Hence it is interesting to consider the
possible generalization of GM-MDS conjecture and then a beautiful theorem
to algebraic geometry codes over elliptic curves. Theorem 2.2 and Corollary
2.1 are natural extensions in this case, however the sufficient conditions in
Theorem 2.2 and Corollary 2.1 are clearly much stronger than the necessary.

A linear [n, k]q code over Fq is called r-MDS for some r in the range
1 ≤ r ≤ k, if dr = n− k + r. Then it is also s-MDS for any s ≥ r, see [23].
The linear MDS codes are then 1-MDS. Hence r-MDS codes for r ≥ 2 are
natural generalizations of linear MDS codes. A well-known result in weight
hierarchy or higher weights about algebraic-geometric codes due to Tsfas-
man and Vlǎdut is that these codes are g + 1-MDS if they are from genus
g curves, see [23] Corollary 4.2. As algebraic-geometric codes from genus
0 curves, the Reed-Solomon codes are MDS (1-MDS). The next interesting
cases are these algebraic-geometric 2-MDS codes from elliptic curves.

Since the GM-MDS conjecture are about 1-MDS linear codes, we can
consider the direct generalization of the GM-MDS conjecture for 2-MDS
linear codes. The generalized Hamming weights of 2-MDS linear (not MDS)
codes are as follows,

d1 = n− k,

d2 = n− k + 2,

· · · ,
dr = n− k + r,

· · · ,
dk = n.

Many algebraic-geometric [n, k]q codes from elliptic curves with code lenght
n > q + 2 have their generalized Hamming weights as above. However for
algebraic-geometric code from elliptic curve cases, not every subset of [n]
of the cardinality k can be the set of zero coordinate positions of nonzero
codeword, the condition |Si| ≤ k − 1 is a natural constraint.

Therefore the GHW -based support constrained conditions on the subset
systems for two or more subsets are the same as the MDS condition in the

9

are imposed. Algebraic geometry codes over elliptic curves are natural generalizations
of Reed-Solomon codes. Hence it is interesting to consider the possible generalization
of GM-MDSO conjecture and then a beautiful theorem to algebraic geometry codes over
elliptic curves. Theorem2.2 and Corollary2.1 are natural extensions in this case, however
the sufficient conditions in Theorem2.2 and Corollary2.1 are clearly much stronger than the
necessary.

A linear[n, k]q code overFq is calledr-MDS for somer in the range1 ≤ r ≤ k, ifdr=n− k + r.
Then it is alsos-MDS for anys ≥ r, see[23]. The linear MDS codes are then1-MDS. Hencer-
MDS codes forr ≥ 2 natural generalizations of linear MDS codes. A well-known result in
weight hierarchy or higher weights about algebraic-geometric codes due to Tsfassman and
Vialdtu is that these codes areg+1-MDS if they are from genusg curves, see[23] Corollary4.2.
As algebraic-geometric codes from genus0 curves, the Reed-Solomon codes are MDS(1-
MDS). The next interesting cases are these algebraic-geometric2-MDS codes from elliptic
curves.

Since the GM-MDS) are about1-MDS linear codes, we can consider the direct generalization
of the GM-MDS conjecture for2-MDS linear codes. The generalized Hamming weights
of2-MDS linear(not MDS) codes are as follows,

d1 = n− k,

d2 = n− k + 2,

. . .

,
dr = n− k + r,

. . .

dk = n.

Many algebraic-geometric[n, k]q codes from elliptic curves with code lenghtn>q+2 have
their generalized Hamming weights as above. However for algebraic-geometric code from
elliptic curve cases, not every subset of[n] of the cardinalityk can be the set of zero coordinate
positions of nonzero codeword, the condition|Si| ≤ is a constraint.

Therefore the GHW-based support constrained conditions on the subset systems for two or
more subsets are the same as MDS condition.

Figure B2: Examples of our model output. Left: Origin image of document page with tables and equations. Right:
Model output converted to Markdown and rendered back into a PDF.
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(a) Origin page with figures (b) Result

(c) Origin page with mathematical formulas (d) Result
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(e) Origin page with tables (f) Result

(g) Origin page with references (h) Result

Figure B3: Example of position prediction. Green box: Rough result of grid classification. Yellow: Final result of
box regression.
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(i) Origin patent page (j) Result

Figure B4: Example of our model output on patent documents. LOCR is able to parse a broader range of layouts
and document domains beyond academic papers, indicating the flexibility of location-based OCR method. Besides,
with the interactive mode and the model automatically predicting positions, minimal human intervention is required
to acquire additional out-of-domain data, particularly the positional bounding box labels. This paves the way for
broader applications of location-based OCR method.
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C Statistics of Test Documents

As a complementary illustration for Table 2, we show the histograms of the number of pages per document
in Figure C1. Consistent with the conclusion in Table 2, when counting in document number, domains
with more pages per document, such as marketing, have a higher generation failure rate.

Figure C1: Histograms of the number of pages per document in each repetition test set.

D A case when Nougat gets trapped into repetition

Figure D1 shows a case when nougat got trapped into repetition. After decoding the name of the first
author, Nougat tried to find the correlation between the footnote and the authors but failed. The heatmap
of cross-attenions ended with cycling through the three subfigures and the output ended with repeating the
name "Szewczuk Wojciech Szewczuk Wojciech Szewczuk Wojciech Wojci". The original PDF page, the
output of Nougat and that of LOCR is shown in Figure B1.

(a) Correct attentions for the authors. (b) Correct attentions for the footnote (c) Incorrect attentions when repetition.

Figure D1: The heatmap of cross-attention of Nougat, in which yellow denotes larger attention scores and purple
denotes smaller scores. Left: Cross-attention scores when Nougat decoded to the name of the first author. Medium:
Cross-attention scores when Nougat tried to decode the footnote. Right: Cross-attention scores when Nougat began
repetition and failed to find the correct position.
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