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Abstract

Contrastive learning has been successfully
adopted in VRL (visual representation learning)
by constructing effective contrastive pairs. A
promising baseline SimCSE has made notable
breakthroughs in unsupervised SRL (sentence
representation learning) following the success
of contrastive learning. However, considering
the difference between VRL and SRL, there
is still room for designing a novel contrastive
framework specially targeted for SRL. We pro-
pose a novel angle-based similarity function
for contrastive objective. By examining the gra-
dient of our contrastive objective, we show that
an angle-based similarity function incites better
training dynamics on SRL than the off-the-shelf
cosine similarity: (1) effectively pulling a posi-
tive instance toward an anchor instance in the
early stage of training and (2) not excessively
repelling a false negative instance during the
middle of training. Our experimental results on
widely-utilized benchmarks demonstrate the ef-
fectiveness and extensibility of our novel angle-
based approach. Subsequent analyses establish
its improved sentence representation power.

1 Introduction

Contrastive learning has achieved promising re-
sults in VRL (visual representation learning) (Had-
sell et al., 2006; Dosovitskiy et al., 2014; Oord
et al., 2018; Bachman et al., 2019; He et al., 2020;
Chen et al., 2020). However, the adoption of con-
trastive learning in SRL (sentence representation
learning) has suffered from several limitations such
as inherently difficult data augmentations due to
a discrete nature of NLP (natural language pro-
cessing) (Li et al., 2022) and a limited property
of PLMs’ (pre-trained language models) represen-
tation spaces (Gao et al., 2018; Ethayarajh, 2019;
Wang et al., 2019; Li et al., 2020a). Unlike earlier
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Figure 1: Difference between contrastive learning for
unsupervised SRL using different similarity functions.
Compared to the widely-utilized cosine similarity func-
tion (SimCSE), our novel angle-based similarity func-
tion shows different training dynamics, which lead to
a better alignment and mitigate a sampling bias by not
repelling the negative instance strongly. We infer that
this phenomenon is due to the gradient property of the
angle-based similarity function as seen in (b).

attempts to construct positive pairs (Zhang et al.,
2017; Wei and Zou, 2019; Xie et al., 2020; Sun
et al., 2020; Zhang et al., 2020b, 2021b; Giorgi
et al., 2021; Kim et al., 2021; Yan et al., 2021),
which are similar to the works in VRL, SimCSE
(Gao et al., 2021) found using the independently
sampled dropout (Srivastava et al., 2014) mask
is simple but effective for augmentations for un-
supervised contrastive learning and can alleviate
the problem of anisotropy − a narrow cone-like
representation space leads to a lack of expressive-
ness (Ethayarajh, 2019; Li et al., 2020a; Gao et al.,
2021). A number of studies based on SimCSE re-
ported a successful utilization of contrastive learn-
ing in SRL (Zhou et al., 2022; Zhang et al., 2022a;
Chuang et al., 2022; Zhang et al., 2022b; Wu et al.,
2022; Liu et al., 2023).

However, indeed there are differences between
SRL and VRL (Nie et al., 2022; Jeong et al.,
2024a,b), which suggests that consideration of the
nature of SRL should precede a blind adoption of
VRL’s success. Among several points that differ-
entiate SRL, we focus on two important points:
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(1) the number of in-batch negative instances; (2)
the property of training dynamics as SRL usually
uses pre-trained models. More specifically, sev-
eral works utilize a smaller number of negative
instances (e.g., 64 ∼ 512 (Gao et al., 2021; Zhou
et al., 2022; Zhang et al., 2022a; Chuang et al.,
2022; Wu et al., 2022; Liu et al., 2023)), while the
larger number of negative instances (e.g., 4096 ∼
65536 (He et al., 2020; Chen et al., 2020)) is used
in VRL. Also, the number of training epochs is rel-
atively smaller (e.g., 1 ∼ 4 (Gao et al., 2021; Zhou
et al., 2022; Zhang et al., 2022a; Wu et al., 2022;
Liu et al., 2023)) to train pre-trained language mod-
els (PLMs). Considering the differences, we aim
to design a novel contrastive objective with better
properties for SRL.

Towards this end, we first investigate which com-
ponent of the contrastive objective is effective for
SRL. By analyzing a gradient of the contrastive ob-
jective, we find that a temperature value of normal-
ized temperature-scaled cross entropy (NT-Xent)
loss (Chen et al., 2020) and a derivative of the sim-
ilarity function has a correlation with a magnitude
of gradient. This indicates that both of them affect
training dynamics. Conforming to previous works
that have reported the role of temperature (Wang
and Liu, 2021; Zhang et al., 2021a), and motivated
by the difference between contrastive learning of
SRL and VRL, we focus more on exploring bet-
ter similarity functions that take into account the
nature of PLMs and SRL, which have not been
well-explored in previous SimCSE-based studies.

In this regard, we design a novel angle-based
similarity function for contrastive learning of un-
supervised sentence representation. Comparing the
derivatives of the naive cosine similarity function
used in SimCSE and the proposed angle-based
function, we find an interesting property from the
derivative of our angle-based function − it expo-
nentially increases (absolute value) from 90 to 0
degrees. We expect that this property could lead
to following positive impacts: (1) the angle-based
approach improves the alignment during the early
stages of training due to the anisotropic space of
PLMs with smaller angles; (2) the angle-based
approach mitigates the problem of inappropriate
in-batch negative sampling (i.e., false negative
(Chuang et al., 2020; Robinson et al., 2020; Zhou
et al., 2022)) during the middle of training as it
does not strongly repel the negative instances with
higher angle differences (see Figure 1).

Under the assumption that the angle-based ap-

proach can solve some issues, we propose a simple
angle-based approach for contrastive sentence
embedding framework (SimACE), which equips
with the aforementioned angle-based function. We
change the vanilla cosine similarity function to
the angle-based function by applying an inverse
function of cosine (arccosine) and adjusting its
range suitable for softmax logits of contrative ob-
jective. SimACE outperforms the baseline Sim-
CSE on several off-the-shelves benchmarks, with
relatively small in-batch negative instances. Also,
SimACE shows more robust performance and even
outperforms the baseline in a multi-task benchmark
for sentence representation. In addition, we apply
our novel design to recent state-of-the-art meth-
ods based on SimCSE and show that simply re-
placing the original cosine similarity function with
our angle-based similarity function can improve
the performance. These results demonstrate the ex-
tensibility of our work. To verify the difference
between SimCSE and SimACE, and the reason
for improved performance, we conduct several ex-
perimental analyses including semantic space vi-
sualization, reporting uniformity and alignment,
and training dynamics in terms of angle. We found
that the reason for SimACE’s success is that the
angle-based approach is appropriate especially for
unsupervised SRL, though it shows unprecedented
results and tendencies that are not in line with prior
works in VRL (Wang and Isola, 2020; Wang and
Liu, 2021; Zhang et al., 2021a).

2 Related Works and Preliminary

Unsupervised SRL In SRL, high-quality repre-
sentation greatly correlated with human evaluations
on similarities and has been proven to be effec-
tive when transferred to downstream tasks. Despite
the success of transformer-based PLMs on transfer
tasks (Devlin et al., 2018; Liu et al., 2019), PLMs-
based representations underperformed conven-
tional static word embeddings, such as Word2Vec
(Mikolov et al., 2013) and its augmented ver-
sion (Pennington et al., 2014), particularly in sen-
tence representation benchmark (STS tasks (Cer
et al., 2017)). As PLMs turned out to have high-
dimensional conical space (Ethayarajh, 2019), post-
processing methods (Li et al., 2020b; Su et al.,
2021) instantly tried to mitigate the problem in
PLMs, but were limited to improving the perfor-
mance.

Contrastive learning-based methods aim at
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smoothing the bottleneck of its anisotropic prop-
erty, by constructing finely tailored contrastive
pairs (Yan et al., 2021; Gao et al., 2021; Zhou et al.,
2022; Zhang et al., 2022a; Wu et al., 2022; Chuang
et al., 2022; Zhang et al., 2022b; Liu et al., 2023) or
designing an apt contrastive objective (Gao et al.,
2021; Zhang et al., 2022b). In unsupervised con-
trastive learning, it mainly falls into two compo-
nents in terms of achieving these goals: 1) con-
structing the well-crafted pairs; 2) designing an
appropriate contrastive objective. Most efforts have
focused on constructing the former (Zhang et al.,
2022a; Zhou et al., 2022) or adding auxiliary objec-
tive on contrastive loss (Chuang et al., 2022; Zhang
et al., 2022b; Wu et al., 2022; Liu et al., 2023).
To the best of our knowledge, we are the first to
use the angle itself as a logit in contrastive loss;
traditional contrastive loss has been applied in Eu-
clidean space, but we are the first to use it in angular
space, and to provide the associated mathematical
reasoning and analysis.

Several previous works (Li and Li, 2024; Cer
et al., 2018) scrutinized with the angle-based esti-
mation of similarity in the SRL. While these pa-
pers seem similar in the way they try to solve the
problem, there are important differences. First, the
purpose of using arccosine in Cer et al., 2018 is to
assess transfer learning tasks. Secondly, the moti-
vation behind Li and Li, 2024 attempts to solve for
the angle itself in a supervised setting in complex
space as a means of avoiding the saturation zone
of the cosine function. Our work aims to mitigate
several problems that can arise in unsupervised con-
trastive SRL by utilizing the derivative nature of the
arccosine function. As discussed in Nie et al., 2022,
there is a notable phenomenon of gradient dissipa-
tion in unsupervised contrastive learning for SRL
at certain angles, especially at large angles around
135 degrees. While the results of our paper may be
consistent with Nie et al., 2022, the assumptions of
Li and Li, 2024 are out of our intention.

Preliminary In unsupervised SRL, SimCSE sys-
tematically proposed the major components for
learning sentence representations, and many re-
cent works (Zhou et al., 2022; Zhang et al., 2022a;
Chuang et al., 2022; Zhang et al., 2022b; Wu et al.,
2022; Liu et al., 2023) are originated from the fol-
lowing framework. First, given a collection of sen-
tences D = {xi}mi=1, positive views are derived
from independently passing xi to encoder twice
(i.e., dropout augmentation), while negative pairs

through in-batch negative sampling (Chen et al.,
2017). Secondly, they use NT-Xent loss, which is
based on similarity function sim(zi, zj):

li = −log
e
sim(zi,z

′
i)/τ

∑N
j=1 e

sim(zi,z′j)/τ , (1)

where zi, z′i, and z′j(i ≠ j) denotes the hidden rep-
resentation of the anchor, positive instance, and
negative instance. The hidden representation with ′

means the augmented view of instance, which is a
dropout-based one in SimCSE, and τ dictates tem-
perature. Although there have been several works
dealing with understanding the contrastive learning
(Wang and Liu, 2021; Zhang et al., 2021a) in the
field of VRL, little is known about the unique prop-
erty of contrastive learning for SRL. Regardless of
the progress in the area of SRL, the major problem
of grounding based on deeper analysis, such as the
role of temperature or the possibility of different
similarity functions, persists.

3 Angle-based Contrastive Learning

3.1 Motivation
In this section, we first investigate the gradient of
contrastive loss to find which factors affect the train-
ing dynamics in SRL. For simplicity, we consider
z as input hidden representation like Equation 1,
which then can be reformulated using the softmax
probability. Treating the sim(zi, z′i)/τ in Equa-
tion 1 as the logit of a vanilla Cross-Entropy loss,
we can define the probability (λi) of each negative
sample as below:

ki,j = sim(zi, z′j)/τ, ∀i = 1, ...,N, ∀j = 1, ...,N,

λi =
e
ki,i

∑N

j=1 e
ki,j

, ∀i = 1, ...,N, ∋
N

∑
j=1

e
λj = 1.

(2)

We can simply calculate the gradient according
to the derivative of the softmax function as follows:

li = −log(λi),
∂li
∂ki,j

= −
1

λi

∂λi

∂ki,j
,

where
∂λi

∂ki,j
= λi

∂log(λi)
∂ki,j

= λi(1{i = j} − λj).
(3)

Using the chain rule, we can compute the gradient
for zi as follows:

∂ki,j
∂zi

= 1
τ
∂sim(zi, z′j)

∂zi
,

∂li
∂zi

= ∂li
∂ki,j

⋅
∂ki,j
∂zi

= 1
τ (λj − 1{i = j})∂sim(zi, z′j)

∂zi
.

(4)
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In Equation 4, we can find that both the derivative
of the similarity function and the value of tempera-
ture influence the gradient of loss. The role of the
temperature has been covered in the asymptotic
analysis of several previous studies (Wang and Liu,
2021; Zhang et al., 2021a), most notably finding
that it is strongly related to entropy, determining
the gradient weight for negative instances.

In contrast, we focus on the influence of the
similarity function and assume that a change in the
similarity function will also lead to a significant
change in the training dynamics.

3.2 Angle-based Similarity Function
Most of the works, including SimCSE, use a naive
cosine similarity (cossim) for similarity function
(sim). Nevertheless, there have been several at-
tempts to deal with other candidates of the sim-
ilarity function; e.g., RBF (radial basis function)
(Zhang et al., 2020a), angular distance (Zhang et al.,
2022b), or hyperbolic distance (Ge et al., 2023).
Among them, we focus on an angular relation be-
tween different sentence representations, where
the previous work has raised the issue of gradi-
ent dissipation with regard to angle in SRL (Nie
et al., 2022). To model the angular similarity be-
tween hidden representations, we apply arccosine
(cos−1) to the dot product of two normalized repre-
sentations1. Given a mini-batch {si}ni=1, we denote
cossim(zi, zj) as the cosine similarity function of
two hidden representations for two samples si, sj .
Then the straightforward angle similarity (θ) can
be described as:

θi,j = cos
−1(cossim(zi, zj)), (5)

where θi,j represents the angular distance between
hi and hj . Note that this vanilla form of angle
relation is not appropriate for contrastive learning,
since it is not an increasing function. The modified
version of the angle-based similarity function will
be introduced in Section 3.3.

We now compare the derivative of the cosine
similarity (cossim) and the newly designed angle-
based one (θ). The derivative of each similarity
function can be derived as follows:
∂cossim(zi, z′j)

∂zi
=

z′j∥zi∥∥zi∥ − cossim(zi, z′j) zi∥zi∥2
,

θi,j
∂zi

= −
1√

1 − cossim(zi, z′j)2 ⋅
∂cossim(zi, z′j)

∂zi
.

(6)

1A ℓ2 normalized dot product is analogous of cosine simi-
larity function.

The derivative of arccosine (cos−1(x)) is − 1√
1−x2

for −1 < x < 1. The range of values for this
function is negative infinity and −1 for 0 and 90
degrees respectively, and the function is concave
(see Figure 1(b)). So, if we use the angle-based
similarity function for InfoNCE loss, we can infer
that the strength of both pulling positive instance
and repelling negative instance is stronger for small
angles, while the strength of pulling and repelling
becomes weaker as the angle gets larger since the
magnitude of the gradient decreases accordingly.
Based on this intuition, we expect that the gradient
property of the angle-based function can be effec-
tive especially for contrastive learning in SRL for
the following two reasons. First, since the embed-
ding spaces of several PLMs are anisotropic such
that sentence representations are converged into
narrow cone (Gao et al., 2018; Ethayarajh, 2019;
Wang et al., 2019; Li et al., 2020a), we believe
that strongly repelling negative instances while
pulling positive instances will be effective in im-
proving the alignment of the semantic space during
the early stages of training. Secondly, since the re-
pelling power of negative instance is exponentially
decreased as the angle gets larger in the middle
of training, angle-based contrastive learning can
mitigate the problem of false negative instance2

(Chuang et al., 2020; Robinson et al., 2020; Zhou
et al., 2022). In this regard, we believe that differ-
ent instances will not be separated by more than
a certain threshold angle, and assume that the em-
bedding space of the model after angle-based con-
trastive learning is narrower than that of the model
trained by cosine similarity-based contrastive loss.

Our methodology may appear similar to method
used in Zhang et al., 2022b due to the use of angular
space. However, the motivation behind the previ-
ous work is entirely derived from VRL method,
named ArcFace Loss (Deng et al., 2019). In con-
trast, the foundation for our proposed SimACE is
a comprehensive understanding and consideration
of SRL characteristics, coupled with mathemati-
cal reasoning and subsequent analyses to validate
it. Detailed analyses of the angle-based function’s
characteristics which can back up our assumptions
are covered in Section 5.

2An in-batch negative sampling of unsupervised con-
trastive learning may lead to repelling the semantically-closed
instance, unintentionally.

5556



PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase first-last ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

SimCSE ♣ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
ArcCon∗ 71.76 82.77 76.81 83.56 78.87 79.36 71.16 77.76
SimACE∗ 71.63 83.44 76.65 83.85 79.95 79.99 71.86 78.20

BERTlarge SimCSE ♣ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
ArcCon∗ 73.38 84.94 76.74 84.28 80.19 80.02 72.96 78.93
SimACE∗ 73.89 85.07 77.67 84.87 79.18 79.96 74.61 79.32

RoBERTabase first-last ♣ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
SimCSE ♣ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ArcCon∗ 69.01 81.30 73.02 81.47 81.54 80.43 68.94 76.53
SimACE∗ 70.50 84.16 76.33 83.38 82.45 82.24 69.69 78.39

RoBERTalarge SimCSE ♣ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
ArcCon∗ 70.03 83.15 75.26 83.76 81.43 80.64 70.22 77.78
SimACE∗ 72.12 84.41 77.25 85.05 81.92 83.35 71.37 79.35

Table 1: Performance of several unsupervised contrastive learning methods using different similarity functions on
STS tasks (Spearman’s correlation). Each bold number and underlined number indicates the best and second-best
performance within the PLMs, respectively. We reproduce the results of ArcConLoss (proposed by ArcCSE (Zhang
et al., 2022b)), following configurations with a grid search for their hyper-parameters. ♣: Results from Gao et al.,
2021. ∗: Results of our experiments.

3.3 SimACE
Now, we propose SimACE: simple angle-based ap-
proach for contrastive sentence embedding frame-
work. It adopts the angle-based similarity function
suitable for unsupervised contrastive learning. Be-
fore directly leveraging the angle-based function
(θ) defined in Equation 5, we modify the range of
θ by subtracting a value from π

2
. This is because

of the nature of contrastive learning with the cross-
entropy objective, which involves increasing the
similarity of a positive pair and decreasing that of a
negative pair. This adjustment shifts the similarity
range from [−1, 1] to [π

2
− π, π

2
− 0]=[−π

2
, π
2

]:

θi,j = π

2
− cos

−1(cossim(zi, z′j)), (7)

Then, the new loss function based on our angle-
based similarity function is defined as follows:

Lang = −log
e
θi,i′ /τ

∑N

j=1 e
θi,j′ /τ . (8)

In addition, to mitigate the issue of the relatively
narrower space (mentioned in Section 3.1), we ap-
ply a margin penalty to the angle between the an-
chor and the positive sample, leveraging its inher-
ent property of angle-based similarity. We simply
subtract the angular margin (m) between the anchor
(zi) and the positive pair (z′i). Subtracting the mar-
gin term to the hidden representation of the positive
instance is in line with the adversarial perturbation,
an effective scheme for semantic space interpola-
tion (Hadsell et al., 2006; Chen et al., 2021; Robin-
son et al., 2021). We expect this negative pertur-

PLMs SimCSE ArcCon SimACE
BERTbase 75.97±0.69 76.76±0.76 77.46±0.47
BERTlarge 77.62±0.58 78.66±0.21 79.02±0.26
RoBERTabase 76.77±0.18 76.27±0.75 77.87±0.44
RoBERTalarge 78.29±0.32 N/A 79.14±0.15

Table 2: Mean and standard deviation across 5 different
runs of different methods with random seeds. Unfor-
tunately, since RoBERTa-large models trained by Arc-
ConLoss with different random seeds show a gradient
explosion, we report these results as N/A (Not Appli-
cable or Not Available). We report p-values for each
baseline in the Appendix (Table 9), which are highly
statistically significant (p < 0.001).

bation can lead to a discrimination of the positive
pair’s feature space and enhance the alignment.

Consequently, the final form of our SimACE’s
training objective is:

Lang = −log
e
(θi,i′−m)/τ

e(θi,i′−m)/τ +∑N

j≠i e
θi,j′ /τ . (9)

4 Experiments

4.1 Unsupervised Corpus and Benchmark

Following the literature, we train SimACE
on datasets randomly sampled from English
Wikipedia (106) same with the baseline SimCSE
(Gao et al., 2021). Then, we evaluate SimACE on
7 STS tasks: STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (STS-B)
(Cer et al., 2017) and SICK Relatedness (SICK-R)
(Marelli et al., 2014). These datasets contain pairs
of two sentences along with a gold score ranging
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from 0 to 5 whose scores represent their seman-
tic similarity. We obtain these datasets from the
SentEval (Conneau and Kiela, 2018) toolkit.

4.2 Implementation Details

Training Setups We follow standard practices
and conduct a preliminary grid search using the
STS-B development dataset to determine the hyper-
parameter configuration. We carry out a grid search
of learning rate ∈ {1e-5, 3e-5}, temperature (τ )
∈ [0.06, 0.07], and batch size ∈ {32, 128}. Then,
we set the same training hyper-parameters for all
experiments with 10 (radians) for the margin. We
train our models for 1 epoch and evaluate the model
every 125 steps on the development set. Detailed
hyperparameter settings can be found in Table 7.

Evaluation Setups We evaluate SimACE on 7
STS tasks as introduced in Section 4.1. For the
need of reproducibility, we update the baselines’
scores which are different from those reported in
the original paper. In addition, we also report the
averaged results of different random seeds to en-
sure a fair comparison to the baseline, considering
a reported problem that the performance of unsu-
pervised SimCSE is unstable depending on random
seeds (Jiang et al., 2022).

Network Implementation We train SimACE
with the pre-trained checkpoints of BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019) down-
loaded from Huggingface’s Transformers (Wolf
et al., 2019). Each encoder consists of 12 and 24
Transformer layers for the base and large sizes, re-
spectively. The base model has a hidden size of 768
and 12 attention heads, while the large model has a
hidden size of 1024 and 16 attention heads. Follow-
ing the literature (Gao et al., 2021), we choose the
representation of the [CLS] token as the sentence
representation during training, and use the [CLS]
output without the pooler for evaluation.

4.3 Comparative Results

We aim to compare our angular similarity func-
tion with other candidates: we employed the origi-
nal cosine similarity function from SimCSE, and
ArcConLoss from Zhang et al., 2022b of which
loss functions are based on cosine similarity and
the modified cosine similarity inspired by ArcFace
(Deng et al., 2019), respectively. Experimental re-
sults on STS tasks are shown in Table 1. Despite
the fewer in-batch negative instances than SimCSE,

PLMs SimCSE SimACE
BERTbase 46.16±0.36 48.19±0.27
BERTlarge 50.35±0.22 51.62±0.13
RoBERTabase 47.33±0.09 49.46±0.24
RoBERTalarge 50.43±0.17 51.66±0.08

Table 3: Performance of averaged results on MTEB
benchmark (total 56 datasets). Results are highly statis-
tically significant (p < 0.001). Detailed results can be
found in Appendix (Table 12).

SimACE improves the average score on STS from
76.95 to 78.20 for BERT-base and from 78.46 to
79.32 for BERT-large, respectively. Interestingly,
SimACE shows more powerful performance on
RoBERTa-base and RoBERTa-large, which further
pushes the results from 76.64 to 78.39 and 78.53 to
79.35, respectively. These results imply that train-
ing dynamics can be differentiated depending on
PLMs. We will do a deep dive into the grounding
of SimACE’s capability in Section 5.

4.4 Robustness of Angular-based Approach
To ensure the robustness with regard to different
random seeds, we conduct 5 runs of model training
with the configurations outlined in Appendix (Ta-
ble 7), each initialized with distinct random seeds.
Subsequently, we calculate the mean and standard
deviation values. The results provided in Table 2
show both the superior performance and the robust-
ness of our method compared to the baselines using
different similarity functions.

4.5 Results on MTEB benchmark
To validate a generalization ability of SimACE,
we evaluate our method in the additional sentence
embedding benchmark, named Massive Text Em-
bedding Benchmark (MTEB) (Muennighoff et al.,
2022). This benchmark consists of total 56 tasks:
10 semantic textual similarity (STS) tasks, 12 clas-
sification tasks, 11 clustering tasks, 3 pair classifi-
cation tasks, 4 reranking tasks, 15 retrieval tasks,
and 1 summarization tasks. As seen in Table 3,
SimACE shows better performance compared to
the baseline SimCSE within all PLMs.

4.6 Extension to SOTAs
In the previous section, we reported the compara-
tive results to confirm the superiority of our method.
From now on, we aim to confirm the effectiveness
of our angle-based similarity function from a differ-
ent perspective. We employ several recent state-of-
the-arts and replace their cosine similarity function
with our angle-based one. Specifically, we utilize
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase PCL 72.44 82.16 74.69 82.09 79.13 79.30 71.95 77.39

+ angle 73.29 82.39 74.48 82.22 78.77 79.24 72.24 77.52
RankCSElistNet 69.02 82.88 73.54 80.18 77.65 77.73 73.22 76.32

+ angle 71.06 84.46 75.49 82.60 78.91 79.53 74.06 78.02
RankCSElistMLE 74.47 85.77 78.09 84.71 81.48 81.76 74.40 80.06

+ angle 75.83 85.48 78.46 85.19 81.02 81.94 73.60 80.22
BERTlarge RankCSElistNet 72.78 85.38 77.15 83.89 79.46 80.46 74.31 79.06

+ angle 73.10 85.89 77.78 84.67 80.39 80.80 74.70 79.62
RankCSElistMLE 73.97 86.18 78.73 85.15 80.91 81.24 74.68 80.11

+ angle 74.35 85.97 78.41 85.18 80.77 81.38 74.83 80.13
RoBERTabase PCL 68.20 81.05 72.68 81.23 80.02 79.58 69.82 76.08

+ angle 70.30 81.48 72.78 81.18 80.07 79.37 68.41 76.23
RankCSElistNet 72.45 83.79 74.36 82.92 81.12 81.81 69.88 78.05

+ angle 73.26 83.81 75.38 84.27 81.78 82.33 70.53 78.77
RankCSElistMLE 73.52 84.35 75.76 83.91 82.65 82.88 70.88 79.14

+ angle 74.24 84.54 76.07 84.41 82.67 82.86 70.74 79.36
RoBERTalarge RankCSElistNet 71.80 82.09 73.76 81.96 79.03 80.41 70.57 77.09

+ angle 73.19 84.01 75.91 84.81 81.11 82.76 70.82 78.94
RankCSElistMLE 73.86 84.14 76.41 85.25 81.99 83.11 71.65 79.49

+ angle 74.60 84.86 77.15 85.42 81.67 82.99 71.81 79.79

Table 4: Performance of original PCL and RankCSE, and their angle-based version (denoted as ‘+angle’). We
conduct each experiment using 5 different random seeds and report the average of the results, whose mean and
standard deviation are reported in the Appendix (Table 10). We cannot run PCL based on the large models due to a
shortage of our GPU memory (40GB). We report p-values for each baseline in the Appendix (Table 9), most of
which are highly statistically significant (p < 0.001) except PCL and RankCSE-ListMLE on BERT-large.
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Figure 2: Visualization of 2D manifold representation
space of (a) BERT-base and (b) RoBERTa-base, with dif-
ferent methods (PLMs: ▪, SimCSE: •, SimACE: ⬩). We
use 1000 random samples from the train dataset (Wiki),
and apply PCA (Pearson, 1901) to approximate sentence
embeddings. (b): RoBERTa-base model shows relatively
narrower space, which may lead to high-performance
gain of our angle-based approach.

PCL (Wu et al., 2022) and RankCSE (Liu et al.,
2023). A detailed explanation of each method can
be found in Section D. Concretely, we use 3 ver-
sions of modified SimCSE objectives: group-wise
relations (P-Cf) loss (Eq. 12), and two different
ranking distillation losses (Eq. 14). As a result, we
replace sim(⋅, ⋅) of PCL and RankCSE with our
θ(⋅, ⋅) (Eq. 5). Furthermore, other loss terms and
training details including hyperparameter settings
are the same as in the original papers.
Comparative Results Table 4 reports the results.
We can observe that our angle-based versions of
PCL and RankCSE outperform their original co-
sine similarity version in terms of the average STS

score. Interestingly, we can observe that RankCSE-
listMLE with our angle-based similarity function
shows the best result on all PLMs. These results
show that our angle-based similarity function is
adaptable across different SRL methods on differ-
ent PLMs. As before, we report the robustness of
random seeds in the Appendix (Table 10).

5 Analysis

5.1 Difference of Semantic Space between
PLMs

From Table 1, we can see that our angle-based sim-
ilarity function (SimACE) encourages the PLMs
more suitable for computing correct similarities be-
tween two sentence representations, regardless of
their size. Interestingly, SimACE is more effective
in RoBERTa, which motivates us to explore the
geometrical difference of semantic space between
PLMs, as shown in Figure 2. From the visualization
of two base models (BERT-base and RoBERTa-
base), we suggest the following two intuitions.

Firstly, although the vanilla RoBERTa-base has
a more anisotropic space than the vanilla BERT-
base, the performance improvement for RoBERTa-
base with SimACE is much larger than the perfor-
mance improvement for BERT-base with SimACE.
It seems likely that SimACE may be more discrim-
inative in a narrow semantic space than SimCSE,
as it densely aligns positive pairs to a greater ex-
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Figure 3: ℓuniform − ℓalignment plot for contrastive
methods with different similarity functions measured
on the STS-B dev set. The colors of the points represent
the average Spearman score on 7 STS tasks.

tent. Secondly, we can observe that the semantic
space optimized by SimACE is narrower than that
of cosine similarity-based contrastive loss (Sim-
CSE), which supports our intuitions that different
instances will not be separated than a certain an-
gular threshold. This also implies that there are
meaningful factors rather than the wider size of the
semantic space (i.e., uniformity), and we will dis-
cuss these factors in the aspect of training dynamics
in Sections 5.2 and 5.3.

5.2 Uniformity and Alignment Analysis

Firstly introduced into SRL by SimCSE (Gao et al.,
2021), uniformity and alignment are the widely
utilized quantitative evaluation metrics that mea-
sure the quality of sentence representation after
contrastive learning. Optimizing these two losses
turned out to be equivalent to optimizing the con-
trastive loss under the assumption of infinite neg-
ative instances (Wang and Isola, 2020), where the
former indicates how well the representation vec-
tors are uniformly distributed, while the latter com-
putes the distance between the anchor and the posi-
tive instance given the distribution of positive pairs.
For both uniformity and alignment, the lower value
indicates well-trained by contrastive learning. Each
loss can be formulated as:

luniform ≜ log E
xi,xj∼Pdata

e
−t∥f(xi)−f(xj)∥2

2 . (10)

lalignment ≜ log E
xi,xj∼Ppos

∥f(xi) − f(xj)∥α
2 .

(11)
Figure 3 shows the uniformity-alignment plot for

the methods. Aligned with our intuitions, SimACE
enhances alignment in all PLMs by giving more

(a) SimCSE vs SimACE (b) SimCSE (c) SimACE
2k 6k 10k 14k 2k 6k 10k 14k 2k 6k 10k 14k

15
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Figure 4: Change of angle (y-axis) between anchors
and positive (a) and negative ((b)&(c)) instances during
training on BERT-base. We average the angle values of
all in-batch negative instances. We compare SimCSE
(•) and SimACE (•). (a): SimCSE shows larger angle
of positive instance (mean for SimCSE = 32.22 / mean
for SimACE = 25.43) than SimACE. (b)&(c): SimCSE
also shows a smaller change in the angle of negative in-
stances (standard deviation for SimCSE: 4.67 / standard
deviation for SimACE: 6.40).

attention to positive pairs. Notably, SimACE consis-
tently exhibits a higher uniformity loss compared to
the cosine similarity-based approaches. This occurs
because SimACE non-aggressively pushes away
negative instances with higher angle differences
during the middle of training. These findings di-
verge from the aforementioned research which sug-
gests that better uniformity leads to superior sen-
tence representations, based on cosine similarity
function (Gao et al., 2021; Chuang et al., 2022;
Zhou et al., 2022; Zhang et al., 2022b). As a re-
sult, this prompts us further to explore the training
dynamics of the gradient property.

5.3 Effect of Our Angle-based Approach
Among the several components that determine the
training dynamics of contrastive learning, our study
aims at developing a simple but more effective sim-
ilarity function than the off-the-shelf cosine similar-
ity. Although both SimACE and SimCSE achieve
the goal of contrastive learning, there exists a vis-
ible difference in a gradient property during opti-
mizing the loss function, as mentioned in Eq. 6.
Figure 4 visualizes the difference by plotting the
change of angle between representations to explore
the difference in training dynamics.

In line with the contrastive objective, SimACE
is also well-optimized toward the right direction
(θi,j > θi,i′). Specifically, the results show that the
hidden representation zi derived from SimACE is
strongly pushed toward the area where θi,i′ is much
smaller (around 25 degrees) than that of SimCSE
(around 32 degrees). It confirms our intuition that
the angle-based similarity function has a strong
gradient signal at relatively small angles, which
tends to pull similar sentences more strongly, as
shown in Figure 1. Meanwhile, we can observe that
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SimACE has a more diverse similarity distribution
for negative instances, as shown in Figure 4 (b) and
(c). At the points where the angle gets larger, the
strength of pulling and repelling becomes weaker
since the magnitude of the gradient decreases. It
aligns with the findings of Nie et al., 2022 that
weak gradient signals at the area (θi,j > θi,i′) play
a key role in contrastive learning for SRL.

6 Conclusion

We have proposed a novel angle-based similarity
function for unsupervised contrastive learning of
sentence representation, whose property delivers a
more positive impact on training dynamics in SRL.
Through extensive experiments, we have demon-
strated that angle-based similarity can be a promis-
ing alternative to the traditional cosine similarity
function. After finding different aspects of unifor-
mity and alignment, we have also performed ad-
ditional experiments dealing with training dynam-
ics and visualization of semantic space to gain a
deeper understanding. Furthermore, we have found
that our idea can be effectively plugged into the
recent state-of-the-art in SRL, boosting their per-
formances. We hope that our work will be an im-
portant milestone for future research.

Limitation

While our proposal focuses on leveraging an angle-
based distance between instances as a function for
calculating a similarity between two different in-
stances, it is important to note that there exist other
alternatives that can be utilized to achieve the same
objective, as shown in Appendix F.

We argue our main contribution lies in the fact
that we introduce the framework of using an angle-
based similarity function for predicting similar-
ity between different sentences. In addition, we
show that the utilization of the angle-based simi-
larity function serves as a notable example of en-
hancing off-the-shelves methodologies. Therefore,
we expect that researchers within the community
can collaborate to improve the contrastive learning
framework shortly by exploring several similarity
functions in contrastive learning for unsupervised
sentence representation learning. Moreover, there
is abundant space for further progress in improv-
ing our angular-based contrastive learning. Further
studies of analyzing the property of contrastive
learning, such as gradient analysis, need to be un-
dertaken for a deeper understanding of the frame-

work.
On top of that, we believe it is feasible since

our method builds on the foundational literature
of the SimCSE baseline, which is extendable to
multilingual settings (Wang et al., 2022), although
we have not performed a multilingual scenario with
our method. There is also scope for further analy-
sis of contrastive learning and BERT-based models
from both mathematical and theoretical perspec-
tives.

Ethical Consideration

Considering intellectual property, we utilize sam-
pled data and pre-trained models in HuggingFace
for only scholar purpose. Like the previous study,
there can be reported negative biases from training
data (Wiki) of PLMs (Bender et al., 2021) used in
our works. Besides them, we do not see any other
ethical problems.
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intent detection with dual sentence encoders. arXiv
preprint arXiv:2003.04807.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing: system
demonstrations, pages 169–174.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Ting Chen, Calvin Luo, and Lala Li. 2021. Intriguing
properties of contrastive losses. Advances in Neural
Information Processing Systems, 34:11834–11845.

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong.
2017. On sampling strategies for neural network-
based collaborative filtering. In Proceedings of the
23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 767–
776.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin,
Antonio Torralba, and Stefanie Jegelka. 2020. Debi-
ased contrastive learning. Advances in neural infor-
mation processing systems, 33:8765–8775.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-
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A Detailed Explanation of Datasets

Dataset train valid test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 5: Detailed configuration of STS datasets.

Dataset train valid test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 6: Detailed configuration of 7 transfer datasets
from SentEval.

We report the statistics of train, validation, test
datasets of STS and 7 transfer tasks which are
utilized in Section J: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005). Each detailed
configuration can be found in Table 5 and Table 6,
respectively. Following the literature, we use test
sets for Table 1 results without using any additional
validation sets.

B Implementation Details

Following SimCSE, which is a widely used base-
line for unsupervised settings, we train SimACE
using the two representative PLMs, BERTbase &
BERTlarge and RoBERTabase & RoBERTalarge. We
use the [CLS] token as the sentence representation
for training and save the best model checkpoint by

using the validation score on the development set
of STS-B.

Unsupervised STS tasks We conduct all Sim-
CSE experiments based on the original paper’s con-
figuration. We choose a learning rate between [1e-5,
3e-5], batch size between [64, 512], and tempera-
ture = 0.05. In the case of ArcConLoss, We carry
out grid-search of batch size between [16, 32, 64],
learning rate between [1e-5, 3e-5], and temperature
= 0.05. Detailed settings of SimACE’s hyperparam-
eters can be seen in Table 7.

Connection to Off-the-shelves For these exper-
iments, we follow all settings of hyperparameters
in the original paper: PCL and RankCSE. Since the
introduction of the angle-based similarity function
requires an additional margin term, we follow the
same margin (m=10) as the vanilla SimACE im-
plementation. Furthermore, there is no other grid-
search for hyperparameter tuning.

C Training Efficiency

There may be concern about computational effi-
ciency when using the arccosine function for our
proposed angular similarity function. Dealing with
this issue, we report the training time of SimCSE
and SimACE on several baseline methods using
in the main paper’s experiments. We measure the
required time for training when using a single
NVIDIA Tesla A100 GPU (40GB memory). For
a fair comparison, we use the same experimental
settings, including batch size, epoch, and others,
although their training configurations are different
with each other. As seen in Table 8, we do not find
any meaningful difference between the angular-
based function and other baselines.

D Training Objective of Baseline Methods

We briefly introduce each method in Section 4.6,
focusing on each one’s loss function which is based
on the cosine similarity. We simply replace the
original similarity function with our angular-based
one:

• PCL contrasts the anchor (xi) with aug-
mented positives (Xi) from a different dis-
crete augmentation set (∆(d)) and in-batch
negatives, which models a group-wise rela-
tion (P-Cf) for cooperation across two peer
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batch_size learning_rate max_seq eval_steps
BERTbase 64 3e-5 32 125
BERTlarge 32 1e-5 32 125
RoBERTabase 128 1e-5 32 125
RoBERTalarge 128 1e-5 32 125

temperature margin eval_metric pooler
BERTbase 0.06 10◦ stsb cls
BERTlarge 0.06 10◦ stsb cls
RoBERTabase 0.05 10◦ stsb cls
RoBERTalarge 0.05 10◦ stsb cls

Table 7: The hyperparameters that correspond to the best results of the STS tasks. stsb : Saving the best checkpoint of
the model based on validation on STS-B dataset. The unit of margin value is degree (◦). cls : Using the representation
of the [CLS] token, consisting of a linear layer and the following activation function.

Method Similarity Batch size Epoch Time
SimCSE Cosine 64 1 64min

ArcCon 64 1 76min
Angular 64 1 68min

PCL Cosine 64 1 134min
Angular 64 1 130min

ListNet Cosine 64 4 374min
Angular 64 4 372min

ListMLE Cosine 64 4 369min
Angular 64 4 372min

Table 8: Comparison of training time between original
cosine similarity-based method and angular similarity
function in several baselines. We report the results of
BERT-base model. Cosine : SimCSE-variants. ArcCon:
ArcConLoss-based method. Angular : SimACE-variants.
min: elapsed minutes.

networks (f(⋅) and f
′(⋅)):

p
P-Cf
f,f ′ (xi) ∶= P-Cf(xi,∆(d)

; f, f
′)

= softmax({sim(f(xi), f ′(x̂ik)/τ)}x̂i
k∼X̂i+

{sim(f(xi), f ′(xj)/τ)}xj∼X∧j/=i),
(12)

where sim(⋅, ⋅) denotes cosine similarity be-
tween two different representations.

• RankCSE proposed cosine similarity-based
loss terms for ranking consistency and ranking
distillation. The ranking consistency loss aims
to minimize Jensen-Shannon (JS) divergence:

Lconsistency =
N

∑
i=1

JS(Pi∣∣Qi), (13)

where Pi and Qi denote the probability dis-
tribution (λ) of similarity score lists (S(xi),
S(xi)′) obtained from independent networks
f(⋅) and f(⋅)′, respectively. In addition, this
work explores two list-wise ranking methods,
ListNet (Cao et al., 2007) and ListMLE (Xia

et al., 2008), for ranking distillation:

Lrank =
N

∑
i=1

rank(S(xi), ST (xi)), (14)

where rank(⋅, ⋅) indicates the list-wise
method. S(xi) and S

T (xi) denote similarity
score lists obtained from a student model and
a teacher model. All the aforementioned simi-
larity score lists are based on cosine similarity
sim(⋅, ⋅) between two different inputs xi and
x
′
i.

The ranking consistency loss refers to main-
taining consistency between two sentence rep-
resentations obtained using different dropout
masks by optimizing the Jensen-Shannon(JS)
divergence between two similar sentence rep-
resentations. RankCSE tries to guide the stu-
dent model to learn better sentence representa-
tions by distilling the listwise ranking knowl-
edge through ListNet (Cao et al., 2007) and
ListMLE (Xia et al., 2008) algorithms, which
minimize the cross entropy between the top
one probability distribution and maximizing
the likelihood of the ground truth permutation,
respectively.

E Statistical Results of Experiments

In addition to Section 4.5, we report the full sta-
tistical information of our experimental results.
These statistics include the statistical significance
(p-value) and the standard deviation of performance
on STS correlation. As seen in Table 9, most results,
except two PCL results and a RankCSE-listMLE
on BERT-large, show statistically highly significant.
The calculated standard deviation of results for Ta-
ble 4 is reported in Table 10. In line with the re-
sults of the main paper, plugging the angular-based
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PLMs SimCSE ArcCon PCL RankCSElistNet RankCSElistMLE

BERTbase 0.001 0.05 0.12 0.001 0.001
BERTlarge 0.001 0.01 N/A 0.001 0.85
RoBERTabase 0.001 0.001 0.57 0.001 0.04
RoBERTalarge 0.001 0.001 N/A 0.001 0.05

Table 9: Statistical significance of experimental results (p-value) across different random seeds. Most cases show
statistically highly significant in terms of performance improvement.

PLMs PCL RankCSElistNet RankCSElistMLE

Original Ours Original Ours Original Ours
BERTbase 77.39±0.22 77.52±0.39 76.32±0.12 78.02±0.26 80.06±0.08 80.22±0.06
BERTlarge N/A N/A 79.06±0.17 79.62±0.26 80.11±0.15 80.13±0.11
RoBERTabase 76.08±0.63 76.23±0.24 78.05±0.04 78.77±0.14 79.14±0.18 79.36±0.21
RoBERTalarge N/A N/A 77.09±0.28 78.94±0.20 79.49±0.35 79.79±0.18

Table 10: Mean and standard deviation across 5 different runs of different methods with random seeds. Unfortunately,
since large-size models trained by PCL with different random seeds show a gradient explosion, we report these
results as N/A (Not Applicable or Not Available). We report p-values for each baseline in the Appendix (Table 9),
which are highly statistically significant (p < 0.001).

method shows better performance and robustness
compared to the original method using the cosine
similarity function.

F Experiments of Different Objectives

We compare several candidates of different con-
trastive objectives with regard to sentence represen-
tation learning. These objectives include replacing
the cosine similarity function with RBF, and 4 dif-
ferent losses proposed in Nie et al., 2022. RBF can
be defined as below:

ϕ(x) = exp(−∥x − c∥2

2σ2
) . (15)

Considering the contrastive pairs, we set c as the
anchor instance and calculate the similarity log-
its with all in-batch negative instances (x). We
also properly tuned the hyperparameter value σ
by conducting grid-search. We report the overall
results in Table 11. As seen in the table, our pro-
posed method mostly shows better performance
compared to other methods, except for the case of
BERT-base. We think that the angular property may
play a more important role in the larger models in
terms of both model size and inductive bias (in
general, RoBERTa is better than BERT).

G Detailed Results on MTEB benchmark

We evaluate several PLMs trained by SimACE
on MTEB benchmark (Muennighoff et al., 2022).
MTEB benchmark is designed to provide better
evaluation for sentence embedding quality. The
benchmark consists of several datasets including

prior works and newly introduced by the paper.
There are all 56 datasets: 12 classification datasets
are AmazonCounterfactual (O’Neill et al., 2021),
AmazonPolarity (McAuley and Leskovec, 2013),
AmazonReviews (McAuley and Leskovec, 2013),
Banking77 (Casanueva et al., 2020), Emotion (Sar-
avia et al., 2018), Imdb (Maas et al., 2011), Mas-
siveIntent (FitzGerald et al., 2022), MassiveSce-
nario (FitzGerald et al., 2022), MTOPDomain (Li
et al., 2020c), MTOPIntent (Li et al., 2020c), Toxi-
cConversations3, and TweetSentimentExtraction4,
11 cluster datasets are ArxivClusteringS2S, Biorx-
ivClusteringS2S, BiorxivClusteringP2P, Medrx-
ivClusteringP2P, MedrxivClusteringS2S 56, Red-
ditClustering (Geigle et al., 2021), RedditClus-
teringP2P, StackExchangeClusteringP2P (Muen-
nighoff et al., 2022), StackExchangeClustering
(Geigle et al., 2021), and TwentyNewsgroupsClus-
tering7, 3 pair classification datsets are SprintDu-
plicateQuestions (Shah et al., 2018), TwitterSe-
mEval2015 (Xu et al., 2015), and TwitterURL-
Corpus (Lan et al., 2017), 4 reranking tasks are
AskUbuntuDupQuestions8, MindSmall (Wu et al.,
2020), SciDocsRR (Cohan et al., 2020), and Stack-
OverflowDupQuestion (Liu et al., 2018), 15 re-

3
https://www.kaggle.com/competitions/

jigsaw-unintended-bias-in-toxicity-classification
4
https://www.kaggle.com/competitions/

tweet-sentiment-extraction
5
https://arxiv.org/help/api/

6
https://api.biorxiv.org/

7
https://scikit-learn.org/0.19/datasets/

twenty_newsgroups.html
8
https://github.com/taolei87/askubuntu
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Method BERTbase BERTlarge RoBERTabase RoBERTalarge
Ours(SimACE) 77.46 79.02 77.87 79.14

RBF 76.04 77.58 76.58 78.32
DCL♡ 71.13 72.73 73.18 72.43
MPT♡ 77.25 77.35 76.42 78.84
MET♡ 78.38 78.38 77.38 78.71
MAT♡ 77.76 77.76 76.95 78.82

Table 11: Comparative results of different optimization objectives, including different similarity functions and
modified contrastive objectives. We report the averaged performance of different random seeds same with the
Table 2. Each bold number and underlined number indicates the best performance within PLMs. DCL: Debiased
contrastive objective. MPT: Minimum Dot Product Triplet Loss. MET: Minimum Euclidean Distance Triplet Loss.
MAT: Minimum Angle Triplet Loss. ♡: Results from Nie et al., 2022.

PLMs Method Clas Clus Pair Rank Retr STS Sum Avg.
BERTbase original 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33

SimCSE 62.28 29.04 74.65 53.96 20.29 74.33 30.10 46.16
SimACE 63.56 33.87 75.25 54.92 22.09 75.70 29.51 48.19

BERTlarge SimCSE 64.50 35.62 76.15 55.96 28.08 74.94 31.00 50.35
SimACE 64.83 38.09 77.26 54.95 30.15 75.97 30.14 51.62

RoBERTabase SimCSE 64.00 34.32 74.65 53.96 19.82 73.96 28.43 47.33
SimACE 64.51 37.79 75.25 54.92 23.12 75.78 29.68 49.46

RoBERTalarge SimCSE 65.28 36.55 76.93 55.44 25.42 77.42 30.84 50.43
SimACE 64.98 38.92 77.33 54.82 28.44 77.79 29.21 51.66

Table 12: Performance of SimACE on MTEB benchmark. A bold face number indicates the best performance within
the PLMs. We report averaged results of different random seeds. Considering the space, we use abbreviation for a
task name: Clas: 12 classification tasks, Clus: 11 clustering tasks, Pair: 3 pair classification tasks, Rank: 4 reranking
tasks, Retr: 15 retrieval tasks, STS: 10 sts tasks, Sum: 1 summarization tasks.

trieval datasets are from Thakur et al., 2021, 10
STS datasets are 8 from STS benchmark, STS229,
and BIOSSES10, and 1 summarization dataset is
SummEval (Fabbri et al., 2021).

We report the averaged results within tasks in
Table 12. As seen in Table, models trained by
SimACE show considerable performance com-
pared to SimCSE. Specifically, 2 base PLMs
trained by SimACE show better performance on all
tasks, while 2 large PLMs trained by SimACE show
better performance on most tasks except classifica-
tion, reranking, and summarization task. Nonethe-
less, SimACE outperforms SimACE on STS, along
the lines with results of main experiment (Table 1).

H Deeper Analysis of Uniformity and
Alignment

To intuitively understand the characteristic of
SimACE, we visualize the histogram of the angle
between representations, as shown in Figure 5. Sim-
CSE plots a higher average on angles than SimACE.
From the results, we interpret that the lower angular

9
https://competitions.codalab.org/

competitions/33835
10urlhttps://tabilab.cmpe.boun.edu.tr/BIO

SSES/DataSet.html
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(a) BERT-Base (b) RoBERTa-Base

Figure 5: Histogram of the angle between each sentence
representation. We use the BERT-base model trained by
SimCSE (•) and SimACE (•).

average results in better alignment than SimCSE
because it pulls the positive sample at the begin-
ning of training and doesn’t push the negative far
enough when past the middle of training.

Following the literature, we also plot the change
of uniformity and alignment during contrastive
learning. We observe that SimACE improves align-
ment more than SimCSE, while its uniformity is
getting worse during training. In the early stages
of training, Figure 6 shows that SimACE’s align-
ment drops below 0.2, which verifies our intuitions
that the property of gradient and the training dy-
namics of SimACE can lead to better alignment,
as we have discussed in Section 5.2. Moreover, as
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PLMs Method MR CR SUBJ MPQA SST TREC MRPC Avg.
BERTbase SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41

with MLM 81.64 86.81 95.76 88.32 85.94 89.40 73.74 85.94
ArcCon 81.31 85.80 94.44 88.96 88.56 87.40 74.43 85.41
with MLM 82.26 87.74 95.57 88.45 85.72 91.60 74.84 86.60
SimACE∗ 81.19 85.22 94.42 89.14 86.05 86.60 75.71 85.48
with MLM∗ 82.63 87.92 95.68 88.91 86.33 91.00 76.41 86.98

BERTlarge SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
with MLM 85.78 89.72 95.83 87.94 90.83 93.00 72.87 88.00
ArcCon 85.34 88.98 95.32 89.58 91.27 89.40 75.71 87.94
with MLM 85.77 90.04 95.98 89.01 91.05 93.40 75.36 88.66
SimACE∗ 84.34 89.51 95.24 89.88 90.61 92.40 76.00 88.28
with MLM∗ 86.15 90.33 95.81 88.89 91.16 92.60 75.54 88.64

RoBERTabase SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
with MLM 84.14 89.04 94.49 88.07 89.24 87.20 74.38 86.65
ArcCon 81.61 87.36 93.22 87.65 87.86 85.60 76.00 85.61
with MLM 83.36 88.90 94.42 87.54 89.40 89.80 76.81 87.18
SimACE∗ 81.87 87.36 92.87 87.54 86.93 87.00 74.61 85.45
with MLM∗ 84.35 89.57 94.65 88.28 90.28 89.80 75.19 87.45

RoBERTalarge SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
with MLM 83.00 87.87 94.64 87.38 87.92 90.80 75.07 86.67
ArcCon 83.30 89.38 93.59 88.59 88.63 92.40 74.03 87.13
with MLM 76.56 64.69 90.41 70.25 84.84 40.60 66.38 70.53
SimACE∗ 82.90 88.90 93.60 88.91 87.64 91.60 73.04 86.66
with MLM∗ 84.56 88.50 94.85 88.68 89.07 93.00 74.09 87.54

Table 13: Performance of different unsupervised contrastive learning methods on transfer tasks. Each bold number
and underlined number indicates the best and second performance best within the PLMs, respectively. ∗: Our
method.
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Figure 6: Uniformity and Alignment of BERT-base
trained by SimCSE (•) and SimACE (•).

depicted in the figure, a higher value of uniformity
than SimCSE also backs up our assumption of an
angle-based approach.

I Training Dynamics of Angle with
Different Temperatures

Motivated by Section 3.1, we further analyze the
role of temperature in terms of training dynam-
ics. In particular, we conduct additional experi-
ments similar to Section 5.3, by using BERT-base
trained by SimACE with 3 different temperature
values. For a fair comparison, we choose τ = 0.05,
which is the same as SimCSE, τ = 0.06 (original
SimACE’s hyperparameter as seen in Table 7), and
a larger value τ = 0.07.

As we mentioned before, the temperature is re-
lated to the entropy of sentence embedding since

(a) SimACE τ=0.05, 0.06, 0.07 (b) SimACE (τ=0.05) (c) SimACE (τ=0.07)
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Figure 7: Change of angle between anchor and positive,
negative instance during training on BERT-base. We av-
erage the angle values of all in-batch negative instances.
We compare SimACE with different temperatures (0.05,
0.06, 0.07). (a), (b), (c): A smaller temperature (0.05,
•) leads to a narrower range of angles (larger positive
angle (mean = 28.22), smaller negative angle (mean =
88.75)), while a larger temperature (0.07, •) leads to the
wider range of angles (smaller positive angle (mean =
22.65), larger negative angle (mean = 90.90)).

it plays a role in altering gradient weight for neg-
ative instances. Concretely, the temperature value
is proportional to the entropy of the distribution. It
indicates that higher temperature leads to higher
entropy so that embedding space becomes more
tolerant of similar samples and thus improves the
alignment, while lower temperature leads to lower
entropy which improves uniformity.

Similar to findings of the role of temperature,
we may assume two premises: (1) InfoNCE loss
with high temperature will repulse every negative
sample equally; (2) InfoNCE loss with low temper-
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase SimACE 71.63 83.44 76.65 83.85 79.95 79.99 71.86 78.20

+m = 0 70.20 81.76 75.56 82.44 79.52 78.94 71.09 77.08
+m = −10 64.73 78.83 70.47 79.60 74.67 74.92 70.98 73.46

BERTlarge SimACE 73.89 85.07 77.67 84.87 79.18 79.96 74.61 79.32
+m = 0 72.39 84.12 76.92 83.88 79.13 79.53 73.99 78.57
+m = −10 69.68 83.32 74.35 81.00 78.62 78.42 74.04 77.06

RoBERTabase SimACE 70.50 84.16 76.33 83.38 82.45 82.24 69.69 78.39
+m = 0 70.38 83.19 74.85 82.86 80.74 80.65 69.04 77.39
+m = −10 67.35 80.29 71.90 81.56 79.73 79.52 69.12 75.64

RoBERTalarge SimACE 72.12 84.41 77.25 85.05 81.92 83.35 71.37 79.35
+m = 0 71.92 84.12 76.95 84.76 80.99 82.98 71.14 78.98
+m = −10 67.68 80.44 72.47 81.68 78.66 79.27 71.07 75.90

Table 14: Performance of SimACE with subtracting margin values on STS tasks. A bold face number indicates the
best performance within the PLMs. All results are based on default random seed (42) same with Table 1. +m: A
different margin value is applied to SimACE. −10 indicates the additive margin (see margin term in Equation 9).

ature will give more gradient weight to the negative
instance which is more similar to anchor. These as-
sumptions also align with our intuition from Equa-
tion 4. We can infer that the inverse of temperature
value shows a similar pattern with the derivative of
the similarity function, which we find some notable
points in Section 5. Still, there is a major difference
between the temperature and the similarity func-
tion: the temperature is a constant value for all
instances.

As seen in Figure 7, the results partially satisfy
our assumptions. First, higher temperature leads to
improving alignment (Figure 7(a)). In contrast, it
is interesting to see that a lower temperature value
does not lead to an improvement in uniformity (Fig-
ure 7(a) and (b)). This result is an unanticipated
finding since it violates both previous studies in
the field of VRL and our intuition based on gradi-
ent analysis. We think that the anisotropic space of
PLMs and the smaller number of negative instances
may be problematic since degeneration to a simple
contrastive loss due to lower temperature does not
have enough power to equally push all negative
instances.

J Results of Transfer Tasks

Following the literature, we also compare different
contrastive methods on the off-the-shelves transfer
tasks. We first freeze the feature extractor of sen-
tence embeddings and then train a classifier. We
conduct experiments using a standard configuration
from SentEval(Conneau and Kiela, 2018), which
uses 10-fold evaluation protocols to report the fi-
nal test results. For fair comparison to the baseline
SimCSE, we also train AngConLoss and SimACE
with MLM (Masked Language Modeling) (Devlin

et al., 2018), which is a typical pre-trained method
for a BERT-like model, and report these results.

As seen in Table 13, SimACE shows a perfor-
mance improvement compared to the baseline Sim-
CSE. Moreover, similar to the SimCSE, we find
that adding the MLM also improves the perfor-
mance of vanilla SimACE. This backs up experi-
mental results about the extensibility of SimACE,
which was mentioned before in Section 4.6.
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Figure 8: Histogram of the angle between each sentence
representation. We use BERT-base model trained by
SimACE with different margins: • is m=10 (original), •
is m=0 (no margin), and • is m=-10 (additive margin).

In addition to Figure 8, we also evaluate sev-
eral SimACE with different margins on STS bench-
marks within PLMs. Specifically, we compare 3
cases: our proposed subtractive margin, additive
margin (m = −10) similar to ArcCSE (Zhang
et al., 2022b), and no margin (m = 0). As seen
in Table 14, SimACE method with the original
subtractive margin shows the best averaged per-
formance on STS tasks. While a vanilla SimACE
with no margin shows comparable performance to
the baseline, the method with an additive margin
suffers severe performance degradation.
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Figure 9: Uniformity and Alignment of the BERT-base
model trained by SimACE with different margin (•:
m = 10 (original), •: m = 0 (no margin), and •:
m = −10 (additive margin)). Averaged STS correla-
tion scores for the original SimACE, SimACE with no
margin, and with additive margin are 78.20, 76.69, and
73.46, respectively.

In addition, we drag the observation into the
angular margin to further understand the relation-
ship between angular distribution and alignment.
Therefore, we conduct supplementary experiments
to plot uniformity and alignment of SimACE with
varying margin m ∈ {-10, 0, 10}. As shown in
Figure 9 (a), the angular margin leads the induc-
tive bias against alignment, showing that margin
penalty for negative perturbations encourages the
representations to well-align due to the property
of large gradient magnitude at the beginning of
training.
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