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Abstract

Recent advancements in noisy multi-label text
classification have primarily relied on the class-
conditional noise (CCN) assumption, which
treats each label independently undergoing la-
bel flipping to generate noisy labels. How-
ever, in real-world scenarios, noisy labels often
exhibit dependencies with true labels. In
this study, we validate through hypothesis test-
ing that real-world datasets are unlikely to ad-
here to the CCN assumption, indicating that
label noise is dependent on the current labels.
To address this, we introduce a label-specific
denoising framework designed to counteract
label-dependent noise. The framework ini-
tially presents a holistic selection metric that
evaluates noisy labels by concurrently consid-
ering loss information, ranking information,
and feature centroid. Subsequently, it identi-
fies and corrects noisy labels individually for
each label category in a fine-grained manner.
Extensive experiments on benchmark datasets
demonstrate the effectiveness of our method
under both synthetic and real-world noise con-
ditions, significantly improving performance
over existing state-of-the-art models.

1 Introduction

Multi-label text classification (MLTC) aims to pre-
dict the most relevant labels for each text from
a label set. In real applications, noise is in-
evitably present in the data of MLTC (Snow et al.,
2008; Chen et al., 2023). It poses a significant
challenge for machine learning models, particu-
larly deep learning models (Frénay and Verleysen,
2014; Arazo et al., 2019). In noisy multi-label
classification, most existing methods rely on the
class-conditional noise (CCN) assumption (Li et al.,
2022b; Xia et al., 2023; Xie and Huang, 2023; Song
et al., 2024). This assumption posits that label noise
originates from independent label flipping for each
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Figure 1: An illustration of noisy multi-label text classi-
fication.

category, with each category having a distinct flip-
ping probability.

However, in practice, noisy labels often exhibit
a certain degree of correlation with the true labels
(Cui et al., 2020; Xie and Huang, 2022). As shown
in Figure 1, due to category ambiguity, lack of ex-
pert knowledge, or the influence of attention shift
(Wu et al., 2023), annotators are more likely to mis-
label the current document as “Moon” or “Earth”
instead of unrelated labels such as “Pytorch” or
“Tensorflow”.

In this paper, our first contribution (Section 2) is
to propose a theoretical hypothesis test on the real-
world dataset Riedel (Chen et al., 2023) to demon-
strate that real-world multi-label noise is less likely
to be CCN, and more likely to be label-dependent
noise (LDN), where the occurrence of label noise
depends on the positive labels associated with the
current sample. To mitigate noisy multi-label text
classification under LDN, our second contribution
(Section 2) is to introduce for generating control-
lable LDN and analyze the characteristics of train-
ing under LDN. Our third contribution (Section
3) is the proposal of a Label-Specific Denoising
(LeD) framework to address LDN. LeD initially
introduces a holistic selection metric (HSM), incor-
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porating ranking-enhanced loss (REL) and centroid
distance (CD) to assess labels from both output and
feature perspectives. Following this, LeD employs
the HSM to conduct label-specific noise identifica-
tion and correction for each label category. The
superior performance of LeD is verified in exten-
sive experiments, under LDN with varying noise
fractions, including on real-world benchmarks.

2 From CCN to LDN

In this section, we introduce the problem setting
of noisy multi-label classification from traditional
class-conditional noise (CCN) assumption to our
proposed label-dependent noise (LDN) assumption.
In what follows, sets are in calligraphic letters (e.g.,
A), matrices are in capital bold letters(e.g., A),
vectors are in lower-case bold letters (e.g., a), and
scalars are in capital or lower-case letters (e.g. A,
a). For simplicity, let [L] = {1, ..., L}. Addition-
ally, proofs of theorems can be found in Appendix
A.1.

2.1 Preliminaries

Considering a multi-label classification problem,
the input of training stage includes N instances
D = {(xi,yi)}Ni=1, each of which consists
of an input vector xi and output labels yi =
(Yi,1, Yi,2, ..., Yi,L) ∈ {0, 1}L related to the input.
Here L is the total number of candidate labels. In
real-world scenarios, it is often not possible to di-
rectly observe the true labels y. Instead, we have
an observable distribution of noisy labels ỹ and a
noisy training set D̃ = {(xi, ỹi)}Ni=1. In noisy
multi-label classification, our goal is to predict
proper labels for each unseen instance by only us-
ing the noisy training set.

2.2 Class-Conditional Noise Assumption

The class-conditional noise assumption is com-
monly used in previous works (Chen et al., 2019;
Li et al., 2022b; Xie and Huang, 2023; Chen et al.,
2023) on noisy multi-label classification.
Definition 1. (Noise transition matrix) In multi-
label classification, the random variables Ỹ·,j and
Y·,j for the label j are related through a noise tran-
sition matrix Tj ∈ [0, 1]2∗2, j ∈ [L]. Generally,
the transition matrix depends on instances (feature
x and labels y), i.e., Tj

k,l(x,y) = P (Ỹj = k|Yj =
l,x,y), where k and l ∈ {0, 1}.
Definition 2. (Class-conditional noise) Under
the class-conditional assumption, the transition

matrix is assumed class-conditional and instance-
independent, i.e., Tj

k,l(x,y) = Tj
k,l = P (Ỹj =

k|Yj = l).
As illustrated in Figure 1, in the context of noisy

multi-label learning, there exist two types of noise:
false positives and false negatives. Among them,
false positives often exhibit a strong label correla-
tion with the ground truth y. Therefore, we argue
that real-world multi-label noise should at least be
label-dependent, i.e., Tj

k,l(y) = P (Ỹj = k|Yj =
l,y). To underscore the importance of moving be-
yond the CCN assumption, which pertains to label-
independent noise (LIN), we theoretically validate
its significance through hypothesis testing.
Definition 3. (Label flip) Given the noisy dataset D̃,
consider randomly sampling a validation set D̃′ =
{(xi, ỹi)}ni=1, and assume we also know the clean
labels {yi}ni=1 corresponding to the validation set.
We define the random variable Zj = {Ỹj |Yj = 0},
where Zj represents the event that the jth class
of the current sample flip from a negative label to
a positive label. Here, Zj ∈ {0, 1}, with a flip
probability of Tj

1,0(x,y).
Theorem 1. If CCN assumption holds, then for
∀j0, j1 ∈ [L], random variables Zj0 and Zj1 are
independent.

Next, we verify the independence of Zj0 and Zj1

through hypothesis testing. The null hypothesis H0

and the corresponding alternative hypothesis H1

are defined as follows:

H0 : Zj0 , Zj1 are independent;

H1 : Zj0 , Zj1 are dependent.

By applying the chi-square test to the real-world
noisy multi-label benchmark Riedel (Chen et al.,
2019, 2023), the hypothesis testing results show
that χ2 = 940.5 with a p-value of 1.5e−206, indi-
cating that the result is highly statistically signif-
icant. Thus, the null hypothesis H0 is rejected
with the significance value. Hypothesis “H1 :
Zj0 , Zj1 are dependent.” is accepted. Therefore,
based on Theorem 1, we can conclude that the
CCN assumption does not hold on Riedel. Please
refer to Appendix A.2 for more details.

2.3 Label-Dependent Noise
Now both the intuition and theoretical evidence
imply that multi-label noise should be dependent on
labels. As presented in Definition 4, we can model
label-dependent mislabelling among given labels.
Definition 4. (Label-dependent noise) Under the
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label-dependent assumption, the transition matrix
is Tj

k,l(x, y) = Tj
k,l(y) = P (Ỹj = k|Yj = l, y)

CCN can be seen as a degenerated case of LDN
assumption such that all instances have the same
noise transition matrix. By assuming LDN, we
can better model the label correlation of real-world
multi-label noise, as depicted in Figure 1. Note that
LDN is also a special case of instance-dependent
noise (IDN) (Chen et al., 2021). Its noise transi-
tion depends on the labels corresponding to each
instance.

Previous works on noisy multi-label classifica-
tion under CCN assumption often conducted ex-
periments on synthetic noise with varying noise
fractions (Li et al., 2022b; Chen et al., 2023). They
randomly flip an element Yi,j in the label vector yi

from 0 to 1 or 1 to 0 by the probability Tj
1,0and

Tj
0,1 respectively, thereby generating noise labels

of false positives and false negatives. Similarly, it
is desired to easily generate LDN with any noise
fraction for any given benchmark dataset. To stim-
ulate the development of theory and methodology,
we propose a novel LDN generator.

As shown in Figure 1, the LDN assumption pri-
marily manifests in the generation of false positive
noise. for the generation of false negative noise la-
bels, we adopt the method used in previous studies
(Li et al., 2022b), which involves a fixed transition
probability Tj

0,1 = T0,1 = ρ+. For the generation
of false positive noise, we follow a label depen-
dency approach, meaning that true negative labels
with strong label correlation to the ground truth are
more likely to be flipped to false positive labels
(Liang et al., 2023). We simulate the label flips
based on a label correlation matrix C, which can
be obtained through the label co-occurrence ma-
trix (Su et al., 2022). Each element Cj0,j1 of C is
defined as:

Cj0,j1 =
cj0,j1∑L
j=1 cj0,j

, j0, j1 ∈ [L] (1)

cj0,j1 =

{
0 j0 = j1∑N

i=1 Yi,j0 · Yi,j1 j0 ̸= j1
(2)

The probability Tj
0,1(y) of a true negative label

j transitioning to a false positive label should be
related to the current set of positive labels for the

sample.

Tj
1,0(y) = ρ− ∗ pj(y,C) (3)

pj(y,C) =




0 yj = 1
∑

j0:yj0=1
Cj0,j∑

j0:yj0
=1 1

yj = 0

(4)

Here, ρ− controls the extent of negative labels tran-
sitioning. pj(y,C) denotes the probability of a neg-
ative label j transitioning to a positive label given
the current set of labels and the label correlation
matrix. The label noise is label-dependent since it
takes into account the label set of each instance.

In some works (Chen et al., 2023; Ghiassi et al.,
2022), it was assumed that ρ− = ρ+. However,
we argue against this approach because in MLTC,
the label dimension L is usually much larger than
the average number of labels per instance Lavg.
Therefore, if ρ− = ρ+, the number of false positive
(FP) labels would be much greater than the number
of false negative (FN) labels. This situation does
not accurately reflect the challenges of NMLTC
problems. Hence, we adopt the approach proposed
in Multi-T (Li et al., 2022b), setting ρ+ = ρ and
ρ− =

Lavg
L−Lavg

ρ. This configuration is designed to
ensure that the difference between the number of
FP labels and FN labels is relatively small. The
noise rate ρ is set to 0.2, 0.4, and 0.6. The algorithm
of LDN generation can be found in the Appendix
B.1.

2.4 Characterizations of Training with LDN

In noisy label learning, a simple yet effective
method to identify label noise is to utilize the mem-
orization effect (Arazo et al., 2019). This effect
highlights that DNNs tend to learn simple and gen-
eral patterns before memorizing the noise, inspiring
many sample selection based approaches (Lu et al.,
2023; Song et al., 2024). Existing methods have
confirmed that this approach can also be applied
under CCN conditions (Li et al., 2022b; Song et al.,
2024). However, can this method be used in
NMLTC under LDN conditions? Here, we conduct
an empirical study to compare the performance
of these two types of noise. We generate 40%
LDN noise and conduct experiments on the AAPD
dataset. Simultaneously, we generate 40% CCN
noise for comparison. In all experiments presented
in this paper, the DNN model and training hyper-
parameters we use are consistent.
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Figure 2: Individual loss curves on AAPD.

0.0 0.2 0.4 0.6 0.8 1.0
Loss

0

200

400

600

800

Fr
eq

ue
nc

y

Clean
Noise

(a) CCN

0.0 0.2 0.4 0.6 0.8 1.0
Loss

0

200

400

600

800

Fr
eq

ue
nc

y
Clean
Noise

(b) LDN

Figure 3: Loss distributions on AAPD.

LDN is harder to identify Figure 2 shows the
changes in loss values for randomly sampled clean
and noisy labels during training (under both CCN
and LDN conditions). If we use the small loss cri-
terion (Li et al., 2022b; Song et al., 2024) to filter
noisy samples, we find that noisy samples are rel-
atively easier to identify under CCN. During the
early epochs of training, clean and noisy labels ex-
hibit a significant difference. However, under LDN,
clean and noisy labels are not easily distinguishable.
In addition, we carried out a quantitative analysis,
as shown in Figure 3. We illustrate the contrast
in distribution of loss between labels affected by
noise versus clean ones. It can be seen that under
CCN noise, the overlap between the clean region
and the noisy region is small, indicating that it is
easier to identify the noise. In contrast, under LDN,
it is relatively difficult to identify the noise due to
the larger overlap. The reason is that LDN is
very similar to the correct labels, making it prone
to overfitting and thus difficult to distinguish from
the correct labels. Additional observations can be
found in Appendix B.2.

3 Method

Previous work (Han et al., 2018; Northcutt et al.,
2021; Song et al., 2024) has identified noisy labels
based on the “memorization effect”, using the loss
values from early epochs of deep learning models.
However, as shown in section 2, this approach faces
challenges with LDN due to its similarity to the true
labels. Therefore, in this section, we propose a
Label-Specific Denoising (LeD) framework. This
framework considers various aspects of neural net-

work training, including loss, ranking, and feature
space neighbors, which provide a more compre-
hensive reflection of the likelihood that a label is
noisy. Specifically, we introduce a holistic selec-
tion metric (HSM) that includes ranking-enhanced
loss (REL) and centroid distance (CD). We then
identify noisy labels for each label category from
the perspective of each individual label category.
We use a Gaussian mixture model (GMM) to iden-
tify noisy labels among positive and negative labels
for each category, resulting in a noise probability
for each label. Based on these noise probabilities,
we refine the original labels in a fine-grained man-
ner. The corrected labels are then used for retrain-
ing the model. The overall framework is shown
in Figure 4.

3.1 Noisy Multi-Label Text Classification

The goal of noisy multi-label text classification
(NMLTC) is to learn a function f that maps the
input instance xi and a label l to a relevance score
Ŷi,j = f(xi, j). We constructed the scoring
function f by combining a text encoder ϕ and a
multi-label classifier ψ. Following the approach of
previous works (Su et al., 2022; Tan et al., 2024;
Chai et al., 2024), we employed a BERT-based text
encoder ϕ and adopted a multi-layer MLP as our
multi-label classifier ψ. We then employed binary
cross entropy (BCE) LBCE =

∑N
i=1

∑L
l=1 Li,j as

the loss function, where

Li,j = −(Ỹi,j log(Ŷi,j)+(1− Ỹi,j) log(1− Ŷi,j)).
(5)

The notation Li,j represents the loss value associ-
ated with the j-th label for the i-th instance.

3.2 Holistic Selection Metric

Due to the presence of LDN, noisy labels and cor-
rect labels appear more similar, making it difficult
to effectively identify noisy samples using a sin-
gle metric, such as loss information. Therefore,
we propose to jointly use two metrics from differ-
ent perspectives: ranking-enhanced loss (REL) and
centroid distance (CD). REL fully utilizes the in-
formation from prediction confidence, while CD
relies on the distance in the feature space.

3.2.1 Ranking-Enhanced Loss
When learning with noisy labels, it is commonly
observed that instances with clean labels typically
have smaller loss values than those with noisy
labels (Han et al., 2018; Northcutt et al., 2021).
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However, relying solely on the loss value Li,j to
identify LDN, we may overlook differences be-
tween samples. For instance, some difficult labels
may have a relatively high loss Li,j , but their pre-
diction Ŷi,j ∈ ŷi could still be correct. Therefore,
we propose using the model’s predicted ranking
of labels as an additional metric. A smaller pre-
dicted ranking for a label indicates it is more likely
to be clean. Label ranking can reveal distinctions
between labels at the sample level. For each in-
stance xi and its predicted label ŷi, we can ob-
tain the rank of each label using the rank function
Rank(ŷi) = (Ri,1, Ri,2, ..., Ri,L) , where Ri,j is
the rank metric for Ŷi,j . To combine ranking
information with loss information, we propose the
ranking-enhanced loss (REL) by adding an extra
weight to the loss information. Thus, REL Ei,j can
be calculated by:

W (Ŷi,j) = min(log(Ri,j) + 1, θ), (6)

Ei,j =W (Ŷi,j)× Li,j . (7)

The logarithmic function is used to constrain the
scale of the rank values, and a fixed value θ is em-
ployed for truncation to ensure that it has a limited
impact on the loss information.

3.2.2 Centroid Distance

Although the sample separability achieved through
REL is better, the separation metric still relies on
model prediction. This reliance means there is still
a risk of overfitting the classifier, especially in the
case of LDN, where label noise often occurs among
similar labels, increasing the likelihood of classifier
overfitting. Consequently, this leads to low discrim-
ination between the model predictions of clean and
noisy labels. Therefore, solely using REL may not

be sufficient to distinguish clean labels from noisy
ones when model predictions are close.

Except for separating the samples in the output
space, we propose an additional metric computed
in the feature space to mitigate the bias introduced
by the classifier, as the learned features can handle
noise labels better. Specifically, we proposed the
centroid distance (CD) metric. for a given sample,
we can compute the distance between its feature
and the class feature centroid to assess the extent
to which the sample’s feature differs from its class
centroid. To improve the quality of the class
feature centroid for distance calculation, we con-
struct the feature centroid by incorporating high-
confidence samples from the observed class. The
class centroid cj based on a high-confidence sam-
ple set Hj is calculated by:

cj =
1

|Hj |

|Hj |∑

i=1

vi, (8)

Hj = {xi|xi ∈ Sj , Ŷi,j > hj}, (9)

where vi is the feature of xi and Sj = {xi|Ỹi,j =
1}. we can use the prediction confidence of class
j for sample xi, e.g., Ŷi,j , as the selection criteria
compare with the threshold hj . Hj is constructed
by the samples in Sj whose corresponding predic-
tion confidence of class Ŷi,j is higher than hj . The
high-confidence threshold hj is defined as:

hj =
1

|Sj |

|Sj |∑

i=1

wi × Ŷi,j (10)

wi = max
(
1, Ŷi,j/Ȳj

)
. (11)

hj is calculated by the weighted sum of the pre-
diction confidence of class j for all samples. The
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weight wi increases when a sample’s prediction
confidence of class j is higher than its class average
Ȳj . Thus, the threshold is high enough to ensure
the quality of the selected samples. Therefore,
the proposed metric CD Di,j can be calculated by
Di,j = − cos(vi, cj).

To facilitate the integration of these two met-
rics, we perform min-max normalization on them
(Hu et al., 2022), obtaining normalized results Êi,j

and D̂i,j respectively. The linear combination
of both metrics results in a new holistic selection
metric (HSM) Mi,j = α · Êi,j + (1 − α)D̂i,j .
The combination coefficient α plays a crucial role
in determining the balance between the two met-
rics. By combining the advantages of both met-
rics, HSM effectively captures both the confidence
from model predictions and the robustness from the
feature space, thus improving the discrimination
between clean and noisy labels.

3.3 Fine-Grained Label-Specific Correction

As previously mentioned, there are two types of
noise in noisy multi-labels: false positive and false
negative. In this section, we take false positive
noise as an example, with the method for handling
false negative noise being similar. After obtain-
ing the HSM for each label, we proceed with the
identification and fine-grained correction of noisy
labels based on each label category. Fine-grained
label-specific correction involves re-labeling the
noisy dataset based on the HSM values to create a
cleaner training set.

If noisy labels are divided globally (without dis-
tinguishing between categories), the differences
between categories will be ignored. Some diffi-
cult categories may all be classified as noise, while
some simple categories may not be classified as
noise at all. Therefore, we individually identify
noisy labels for each class. We first obtain
the HSM set M+

j corresponding to all positive
labels for label j, i.e., M+

j = {Mi,j |Ỹi,j = 1}.
True labels have lower HSM values compared to
noisy ones due to DNNs’ memorization effect
(Arpit et al., 2017; Hu et al., 2023). Therefore,
we employ a bi-modal univariate Gaussian mix-
ture model (GMM) for each HSM set using the
expectation-maximization (EM) algorithm, result-
ing in L GMM models for positive labels.

Given the HSM, its clean-label probability is
obtained by the posterior probability PG(Ỹi,j) of
the corresponding GMM, Since distinguishing

Datasets Ntrn Ntst L Lavg Navg

MOVIE 105,616 11,736 28 2.1 112
AAPD 54,840 1,000 54 2.4 163
RCV1 23,149 781,028 103 3.2 124

Table 1: Data statistics. Ntrn, Ntst refer to the number of
documents in the training and test sets, respectively. L
is the number of labels. Lavg is the average number of
labels per documents. Navg refers to the average number
of words per document.

between noisy and clean labels near the decision
boundary is challenging, we have employed a fine-
grained correction strategy, as opposed to using
hard pseudo-labels (Li et al., 2020). The specific
approach is as follows:

Y̌i,j =





1− Ỹi,j PG(Ỹi,j) ≤ 0.5− ϵ,

PG(Ỹi,j) 0.5− ϵ < PG(Ỹi,j) ≤ 0.5 + ϵ

Ỹi,j PG(Ỹi,j) > 0.5 + ϵ
(12)

The corrected pseudo-label Y̌i,j is obtained. The
implication is that if PG(Ỹi,j) is large, we consider
the label to be likely a clean label and thus keep
it unchanged. Conversely, if PG(Ỹi,j) is small, we
consider the label to be likely incorrect and thus
perform label flipping. When the value of PG(Ỹi,j)
is close to 0.5, it is difficult to determine the noise
situation, so we adopt a soft label approach.

4 Experiment

4.1 Experimental Setup
Datasets Following previous work (Chen et al.,
2023), we evaluate the proposed model on three
synthetic benchmark datasets namely MOVIE,
AAPD, and RCV1 with varying LDN fractions.
Table 1 contains the statistics of these three bench-
mark datasets.

Evaluation Metrics For a comprehensive and re-
liable evaluation, we follow conventional settings
(Chen et al., 2019, 2023) and report the following
metrics: micro-F1 (mi-F1), macro-F1 (ma-F1) and
mean Average Precision (mAP). Note that only the
training set is affected by noise, whereas the evalu-
ation metrics are computed on the clean testing set.
The best results are in bold, and the second-best
results are in underscore.

Baselines To verify the effectiveness of LeD, we
selected the nine most representative baseline mod-
els in three groups. (1) MLTC methods: AttXML
(You et al., 2019), HTTN (Xiao et al., 2021) and
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Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP

AttXML 61.89 34.56 51.70 56.72 33.50 44.32 50.16 29.79 40.83
HTTN 61.13 34.45 51.16 56.59 32.82 44.24 49.26 28.58 39.10
LSFA 62.81 37.40 53.26 58.84 33.53 47.87 52.13 29.92 38.45
GCE 65.68 39.65 53.17 61.80 35.95 48.92 52.76 31.37 41.98
WSIC 62.82 38.94 52.82 60.26 35.89 46.89 53.93 31.37 39.38
RTM 64.79 39.15 54.70 62.02 36.26 46.97 53.66 32.18 41.79

MLLSC 63.85 38.48 51.41 60.83 36.46 47.74 53.09 31.57 39.22
Multi-T 65.54 38.84 52.79 60.36 36.06 46.15 52.67 30.87 41.20

nEM 65.37 40.92 54.00 62.45 36.91 48.76 53.15 31.70 42.23
LeD 66.74 42.15 55.29 63.77 37.89 49.32 56.66 34.26 44.57

Table 2: Performance on MOVIE with different LDN ratios.

Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP

AttXML 52.16 18.80 43.10 42.65 8.74 32.02 37.49 5.28 28.12
HTTN 55.15 21.16 43.84 46.37 11.98 35.59 40.68 8.69 32.33
LSFA 56.53 22.51 45.90 47.94 11.31 36.32 41.72 9.19 32.90
GCE 54.31 23.59 43.28 47.09 13.20 35.45 42.94 8.74 32.87
WSIC 56.11 23.44 44.56 49.34 13.71 36.63 42.15 9.78 32.67
RTM 54.76 22.20 44.70 49.18 13.39 36.37 42.91 8.82 34.14

MLLSC 55.16 22.67 45.47 47.41 13.59 36.38 41.34 8.41 32.22
Multi-T 56.87 23.16 44.68 49.93 11.78 37.01 43.77 10.61 33.70

nEM 55.46 22.99 46.43 48.89 16.16 39.76 43.84 9.89 34.80
LeD 57.34 24.33 46.30 50.26 17.75 41.27 45.30 11.62 36.18

Table 3: Performance on AAPD with different LDN ratios.

LSFA (Xu et al., 2023). (2) Noisy multi-label learn-
ing (NMLL) methods: GCE (Zhang and Sabuncu,
2018), WSIC (Hu et al., 2019), RTM (Patrini et al.,
2017), Multi-T (Li et al., 2022b), and MLLSC (Ghi-
assi et al., 2022). (3) NMLTC method: nEM (Chen
et al., 2023). More details about the implementa-
tion setting can be found in Appendix C.3.

4.2 Experimental Results

Main Results As depicted in Tables 2-4, we have
observed the following phenomena: (1) In all cases,
our method shows significant improvements com-
pared to other methods. By utilizing a holistic
selection metric, we evaluate labels from multiple
perspectives, enabling finer-grained identification
and correction of noisy labels, which leads to op-
timal experimental results. (2) Due to overfitting
to noisy labels, most existing MLTC methods tend
to perform worse compared to NMLL methods.

(3) NMLL methods like RTM and Multi-T depend
only on loss for noise rate estimation, which is in-
adequate under LDN. Similarly, nEM and MLLSC
are constrained by insufficiently sensitive metrics
to detect noisy labels.

Experiments on the Real-world Dataset The
Riedel dataset (Chen et al., 2023) is a large-scale
real-world NMLTC dataset, containing 53 classes,
each representing a different relation. It is derived
from the New York Times corpus. The training
data consists of 281,270 instances, while the test
set includes 3,762 instances. We used the same
backbone as nEM to ensure a fair comparison. The
results, shown in Table 5, indicate that our method
outperforms the best baseline by 10% in terms of
the ma-F1 metric, demonstrating the effectiveness
of our approach on the real-world NMLTC dataset.
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Noise Rate ρ = 0.2 ρ = 0.4 ρ = 0.6

Methods mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP mi-F1 ma-F1 mAP

AttXML 71.30 32.10 60.99 65.69 22.23 58.01 64.18 20.20 52.70
HTTN 64.59 27.19 54.87 62.87 20.44 54.16 63.18 19.67 51.78
LSFA 69.67 30.87 59.43 64.55 21.73 56.25 64.23 20.46 53.17
GCE 68.08 27.95 56.93 61.94 20.81 54.78 64.41 21.66 53.70
WSIC 72.69 32.89 63.54 64.36 23.35 57.66 65.02 21.16 53.38
RTM 72.15 33.48 63.41 66.44 21.11 57.75 64.48 20.16 54.11

MLLSC 71.03 32.97 63.18 67.53 20.03 57.85 64.92 19.03 52.56
Multi-T 72.99 31.89 62.75 66.49 19.41 56.65 62.85 19.31 50.95

nEM 71.86 32.93 62.47 67.67 20.92 57.79 63.61 20.71 52.86
LeD 74.66 35.32 64.90 69.61 24.70 62.29 67.65 23.33 56.42

Table 4: Performance on RCV1 with different LDN ratios.

Methods mi-F1 ma-F1 mAP

AttXML 56.77 33.78 50.81
GCE 55.60 32.95 47.93
WSIC 58.96 35.57 54.06
Multi-T 57.15 34.40 52.87
nEM 59.58 35.70 54.51
LeD 63.72 39.40 57.82

Table 5: Performance comparison on Riedel.

Ablation Study In the following experiments,
we aim to analyze the effectiveness of each compo-
nent of the proposed LeD method on three datasets.
The LDN ratio is 0.4. We compare the complete
LeD method with the following variants: (a) HSM
(Loss): This variant uses only the loss as the metric
for identifying noisy labels. (b) HSM (REL): This
variant uses the REL metric for identifying. (c)
HSM (CD): This variant uses the CD metric for
identifying. According to Table 6, we observe that
the different components of the HSM metric collec-
tively contribute to enhancing the quality of noise
identification. By incorporating instance-level rank
information, the model gains the ability to differen-
tiate between different instances, enabling a more
accurate distinction between clean and corrupted
labels. Additionally, the introduction of the feature-
based metric, CD, significantly contributes to noise
identification.

Effectiveness of HSM In Figure 5, we present
the distributions of the positive label "cs.IT" in the
AAPD dataset using HSM(Loss), HSM(REL), and
HSM(CD). Firstly, as shown in (a) and (b), loss

HSM Dataset

Loss REL CD MOVIE AAPD RCV1

✓ 60.15 48.06 68.75
✓ ✓ 62.15 48.95 69.16

✓ 59.87 47.88 66.29
✓ ✓ ✓ 63.77 50.26 69.61

Table 6: Performance comparison of HSM components
based on mi-F1 scores across various datasets.

information demonstrates a certain capability in
noise identification. When rank information is in-
troduced, using REL as a metric, the noise identifi-
cation capability is significantly enhanced (reduced
overlapping areas). From (c), we can observe the
complementary nature of the prediction-based REL
metric and the feature-based CD metric. Finally,
in (d), it is evident that combining both metrics in
HSM results in a significantly improved noise iden-
tification capability (minimal overlapping areas).

5 Related Work

Learning from Noisy Labels In multi-class clas-
sification with noisy labels, most approaches lever-
age the memorization effect of deep neural net-
works (DNNs) (Arpit et al., 2017), where simple
and generalized patterns are learned before over-
fitting to noisy patterns. Specifically, small-loss
instances are likely to be clean instances (Han et al.,
2018; Jiang et al., 2018; Wei et al., 2020). Another
approach involves sample selection based on fea-
ture distributions (Li et al., 2022a, 2023). Recent
methods (Hu et al., 2023; Lu et al., 2023) have
proposed more comprehensive evaluation metrics
to distinguish between clean and corrupted data,
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Figure 5: The visualization of metric distribution on AAPD with 40% LDN noise.

considering aspects such as information through-
out the training process and prediction confidence.
Inspired by these approaches, we propose a holistic
selection metric for noisy MLTC that integrates
various noise label characteristics, including multi-
label ranking and feature information.

Noisy Multi-Label Learning Noisy Multi-Label
Learning is an emerging research topic due to the
complexity of noise mechanisms in multi-label
settings compared to multi-class problems. Zhao
et al. (2021) introduced pre-trained label embed-
dings for regularization, achieving robust learning.
GCE (Zhang and Sabuncu, 2018), WISC (Hu et al.,
2019), and MLLSC (Ghiassi et al., 2022) developed
robust loss functions by weighting labels. Meth-
ods like RTM (Patrini et al., 2017) and Multi-T (Li
et al., 2022b) address the estimation problem of
noise transition matrices in the multi-label context.
The nEM method (Chen et al., 2023) uses latent
variable models to model the transition process of
noisy labels, achieving robust MLTC. Xia et al.
(2023) identifies noisy labels through label corre-
lation. Song et al. (2024) employs the small loss
trick for noisy label selection and correction. How-
ever, existing methods either assume label noise is
entirely random or class conditional, neglecting the
fact that label noise is often correlated with current
labels in real-world scenarios.

6 Conclusions

In this paper, we first verify that real-world datasets
often deviate from the class-conditional noise as-
sumption. Based on this observation, we introduce
label-dependent noise (LDN), revealing the char-
acteristics of label-dependent noise and designing
a method to generate controllable LDN. Subse-
quently, we propose a novel label-specific denois-
ing framework to enhance multi-label text classifi-
cation under label-dependent noise. Extensive ex-
periments on benchmark datasets demonstrate that
our method significantly improves performance un-
der both synthetic and real-world noise conditions,

outperforming existing state-of-the-art models.

7 Limitations

Our method leverages the memorization effect
(Arpit et al., 2017) observed in deep learning mod-
els for sample selection and correction. This effect
has not been observed in other traditional machine
learning methods, limiting the applicability of our
framework to deep learning-based approaches only.
Although label-dependent noise (LDN) can be con-
sidered a special case of instance-dependent noise
(IDN) (Chen et al., 2021; Wang et al., 2024), our
framework has not been explicitly validated for
handling IDN in our experiments. Calculating the
HSM for each label can be computationally de-
manding, particularly with larger label size datasets.
This could limit the scalability of our approach for
significantly larger datasets.
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A From CCN to LDN

A.1 Proof of Theorem 1

Proof. If the CCN assumption is satisfied, then
by Definition 2, the random variable Zj follows a
Bernoulli distribution with parameters Tj

0,1. For
the joint probability of Zj0 and Zj1 , we have:

P (Zj0 = l, Zj1 = k)

= P (Ỹj0 = l, Ỹj1 = k|Yj0 = 0, Yj1 = 0)

= P (Ỹj0 = l|Yj0 = 0, Yj1 = 0)

· P (Ỹj1 = k|Yj0 = 0, Yj1 = 0)

= P (Ỹj0 = l|Yj0 = 0) · P (Ỹj1 = k|Yj1 = 0)

= P (Zj0 = l) · P (Zj1 = k)

□

A.2 Hypothesis Test

It is assumed that in the actual data, nk,l repre-
sents the number of samples for the joint distribu-
tion {Zj0 = k, Zj1 = l}, where k, l ∈ {0, 1}.
And the total sample size is denoted as n =∑1

i=0

∑1
j=0 nk,l. Under the assumption of H0,

we can estimate the maximum likelihood estimates
of the parameters:

P̂ (Zj0 = k) =
nk,0 + nk,1

n
,

P̂ (Zj1 = l) =
n0,l + n1,l

n

Therefore,

P̂ (Zj0 = k, Zj1 = l) = P̂ (Zj0 = k) · P̂ (Zj1 = l)

From this, we can calculate the test statistic:

χ2 =
1∑

k=0

1∑

l=0

(nk,l − n · P̂ (Zj0 = k, Zj1 = l))2

n · P̂ (Zj0 = k, Zj1 = l)

Now we apply the chi-square test to the real-world
noise multi-label benchmark Riedel (Chen et al.,
2019). We select the labels “nationality” and
“place_lived” from the Riedel validation set as j0
and j1, respectively. Hypothesis testing results
show that χ2 = 940.5, with a p-value of 1.5e−206.

B Label-Denpendent Noise

B.1 LDN Generation Algorithm

Algorithm 1 LDN Generation.

Input: Clean training set D = {(xi,yi)}Ni=1,
noise fraction parameters ρ+ and ρ−.

Output: A dataset with LDN D̃ = {(xi, ỹi)}Ni=1.
1: Calculate correlation matrix C by Eq.(1).
2: for xi,yi in D do
3: for Yi,j in yi do
4: if Yi,j = 0 then
5: Calculate Tj

0,1(yi) by Eq.(3).
6: Ỹi,j ∼ Bernoulli(1,Tj

0,1(yi))
7: else
8: Ỹi,j ∼ Bernoulli(1, 1− ρ+)
9: Record Ỹi,j

10: end if
11: end for
12: ỹi = {Ỹi,1, Ỹi,2, ..., Ỹi,L}
13: Record ỹi

14: end for
15: return D̃ = {(xi, ỹi)}Ni=1.
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Figure 6: Loss curves with varying types of 40% noise
on AAPD.

B.2 Characterizations of Training with LDN

LDN is easier to fit Figure 6 shows the training
and validation loss curves under different noise
settings. It can be observed that the training and
validation loss is lower under LDN compared to
CCN. This suggests that DNNs find it easier to fit
LDN. This finding aligns with our intuition since
the noisy labels under LDN are closely related to
the output labels and can mislead DNNs. In this re-
gard, LDN is more challenging to mitigate because
the label-dependent noise significantly confuses
DNNs, potentially leading to overfitting.

LDN causes relatively less harm Precisely be-
cause LDN is closely related to the output labels, it
causes relatively less harm compared to CCN noise,
as illustrated in Figure 6b. In CCN, many irrele-
vant noisy labels significantly affect the model’s
training, leading to greater harm.
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C Experiments

C.1 Datasets

We evaluate the proposed model on three synthetic
benchmark datasets and one real-world dataset
for noisy multi-label text classification (NMLTC),
namely MOVIE, AAPD, RCV1, and Riedel.

• MOVIE: The MOVIE dataset is designed
for movie genre classification. It contains
movie plots and genre types extracted from
the IMDB database and is publicly available
1.

• AAPD: The AAPD dataset (Yang et al., 2018)
includes abstracts and corresponding subjects
of 55,840 publications in the field of computer
science from arXiv 2.

• RCV1: The Reuters Corpus Volume I (RCV1)
(Lewis et al., 2004) is a benchmark dataset for
text categorization, consisting of newswire
articles produced by Reuters from 1996 to
1997 3.

• Riedel: The Riedel dataset (Chen et al., 2019,
2023) was created by aligning entity pairs
from Freebase (a large knowledge graph) with
the New York Times (NYT) corpus. The
dataset includes 53 relations, with training
data from the 2005-2006 corpus and test data
from the 2007 corpus 4.

C.2 Evaluation Metrics

Following previous works (Chen et al., 2023), we
use three main metrics which are commonly used
in MLTC evaluations: micro-F1 (mi-F1), macro-F1
(ma-F1), and mAP.

Micro-F1: This metric is calculated by aggre-
gating the contributions of all classes to compute
the average F1 score. It is particularly useful when
dealing with imbalanced datasets, as it gives equal
weight to each instance. The micro-F1 score is
defined as:

micro-F1 =
2× Precision × Recall

Precision + Recall
1https://github.com/davidsbatista/

text-classification
2https://git.uwaterloo.ca/jimmylin/

Castor-data/tree/master/datasets/AAPD/data
3http://www.ai.mit.edu/projects/jmlr/papers/

volume5/lewis04a/lyrl2004_rcv1v2_README.htm
4https://github.com/AlbertChen1991/nEM

where Precision and Recall are computed globally
over all instances.

Macro-F1: Unlike micro-F1, macro-F1 calcu-
lates the F1 score for each class independently and
then takes the average. This metric treats all classes
equally, regardless of their frequencies. It is defined
as:

macro-F1 =
1

L

L∑

i=1

F1i

where L is the number of classes and F1i is the F1
score of class i.

Mean Average Precision (mAP): mAP is a mea-
sure used to evaluate the ranking quality of the
model’s predictions. It calculates the average pre-
cision across all classes and then averages these
values. It is particularly useful for tasks where
the order of the predictions matters. The mAP is
defined as:

mAP =
1

L

L∑

i=1

APi

where APi is the average precision of class i.

C.3 Implementation Details
Backbone Given that the Riedel dataset is a
multi-instance MLTC dataset, we use the same
backbone as nEM (Chen et al., 2023) for fair com-
parison, i.e., PCNN+ATT. For the other three syn-
thetic datasets, we adopt the pre-trained BERT (De-
vlin et al., 2019) as the backbone of our model,
using the PyTorch implementation from Hugging-
Face Transformers (Wolf et al., 2019). The maxi-
mum document length is set to 512 due to BERT’s
limitations (Devlin et al., 2019), and documents are
either zero-padded or truncated to this length.

All experiments are conducted in a Linux envi-
ronment with a single Tesla A100 GPU (40GB).
Our model is trained using AdamW (Kingma and
Ba, 2015). To optimize GPU memory usage and en-
hance training efficiency, we use automatic mixed
precision (AMP).

The training time for the MOVIE and AAPD
datasets is approximately 5.4 hours and 7.7 hours,
respectively. For the RCV1 and Riedel datasets,
the training time is approximately 9.0 hours and
14.5 hours, respectively.

Hyperparameters Regarding the key hyperpa-
rameters of our proposed method, the coefficient
α and threshold ϵ, we set α = 0.7 and ϵ = 0.1 for
MOVIE. For AAPD and RCV1, we set α = 0.7
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and ϵ = 0.05. For the Riedel dataset, we set
α = 0.6 and ϵ = 0.15. We set θ = 3 for all
datasets. All experiments are run at least three
times with different random seeds, and we report
the average values of the results.

D Related Work

Multi-Label Text Classification Early multi-
label text classification (MLTC) primarily focused
on learning better text representations (Liu et al.,
2017) and capturing label correlations (Zhang et al.,
2021). Label-specific feature learning (You et al.,
2019; Xiao et al., 2019; Ma et al., 2021) intro-
duced label representations to learn specific text
representations for different labels, improving la-
bel differentiation. Recently, some methods (Su
et al., 2022; Xu et al., 2023; Lin et al., 2023) have
used contrastive learning to achieve more stable
text representations, mitigating the impact of la-
bel imbalance. In contrast, we focus on improving
MLTC performance in the presence of noisy labels.
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