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Abstract

Large language models perform well on tasks
that have undergone fine-tuning of instructions,
but their performance on completely unseen
tasks is often less than ideal. To overcome
the challenge of cross-task generalization, task-
level LoRAs combination is proposed, which
does not require training a model for new
tasks. Instead, it learns the LoRA modules
combination weights based on a small num-
ber of samples to form the task model. How-
ever, task-level LoRAs combination only uti-
lizes a few task modules due to its reliance on
the weight enumeration method, and it also
ignores the specificity between different in-
stances. Therefore, we proposed an instance-
level LoRAs composition for cross-task gen-
eralization, which selects appropriate multiple
task LoRA modules for each input instance
and dynamically determines the composition
weights. Our experiments on publicly avail-
able datasets show that our method outperforms
the typical method, LoraHub, in 16 out of 27
tasks. We release the source code at https:
//github.com/noname822/iLoraComp.git

1 Introduction

Currently, large language models (LLMs) demon-
strate remarkable zero-shot learning capabilities
on tasks that have undergone instruction tuning
(Chung et al., 2022; Achiam et al., 2023; Touvron
et al., 2023; AI@Meta, 2024). However, numerous
studies have revealed that when encountering novel
tasks outside their training distribution, these mod-
els often fail to exhibit satisfactory performance
(Ovadia et al., 2024; Huang et al., 2024). Explor-
ing strategies to enhance the cross-task general-
ization abilities of these massive language models,
enabling them to adapt swiftly and accurately to
diverse new tasks, has emerged as a pressing chal-
lenge that demands attention.
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Figure 1: Previous task-level composition constructs
a shared task model for all instances. The proposed
instance-level composition constructs a unique task
module for each instance.

Addressing the challenge of cross-task general-
ization has traditionally involved fine-tuning mod-
els for each task and in-context learning. However,
these conventional approaches come with inherent
limitations. Fine-tuning for every new task can
be resource-intensive, demanding extensive data,
storage, and computing power, which compromises
flexibility. Although methods such as LoRA (Hu
et al., 2021), falling under the delta tuning (Ding
et al., 2022) approach, aim to adapt to specific tasks
or domains by introducing smaller parameter up-
dates while minimizing computation and storage
costs, thus mitigating storage issues and enhanc-
ing flexibility, they still require backpropagation
for precise output tuning, rendering them less cost-
effective for multiple tasks. In-context learning
(Dong et al., 2022), on the other hand, necessi-
tates more input than zero-shot to fully leverage
the model’s capabilities, indirectly increasing the
computational resources needed for inference.

To address the shortcomings of these methods
and achieve efficiency and sustainability in multi-
task, few-shot, and high-volume scenarios, inno-
vative approaches such as LoraHub (Huang et al.,
2024) have emerged. LoraHub rapidly adapts to
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unseen tasks by intelligently combining pre-trained
low-rank adapters from other relevant tasks. This
method enhances model performance across di-
verse tasks without increasing input requirements,
striking a balance between performance and energy
consumption.

However, LoraHub also has room for improve-
ment in terms of its effectiveness. Firstly, when
selecting LoRA modules from a trained LoRA li-
brary for task adaptation composition, LoraHub’s
current strategy is to randomly select modules from
the library. This random selection may result in the
inclusion of tasks that are either overly similar or
completely unrelated, leading to significant perfor-
mance variations under different random seeds for
the same task, thus exhibiting poor stability. Sec-
ondly, when training on instances, LoraHub does
not consider the subtle nuances between individual
instances, preventing the full utilization of the lim-
ited instance data to capture the potential specificity
of inputs, which in turn limits LoraHub’s perfor-
mance. To address these two issues, we propose
the following solutions:

• To address the issue with the LoRA module se-
lection strategy, we adopt a selection method
based on task similarity. By calculating the se-
mantic similarity between the target task and
the training sets of the available LoRA mod-
ules, we prioritize the combination of LoRA
modules that are most closely related to the
current task, thereby enhancing the stability
and effectiveness of the task-level adaptation.

• To fully account for the unique characteristics
of each input instance, we propose tailoring a
dedicated LoRA module combination for each
instance. By calculating the semantic similar-
ity between the input instance and the training
instances used to create the available LoRA
modules, we select the most fitting instance-
specific LoRA combination as the processing
strategy for that input. This approach effec-
tively leverages the subtle nuances across dif-
ferent input instances.

By employing the aforementioned improvements,
our method has achieved a significant enhancement
in inference stability. Additionally, compared to the
original LoraHub, our approach has demonstrated
a noticeable performance advantage. In our experi-
ments, a total of 27 tasks were tested, and in these,

our proposed method outperformed LoraHub on 16
of them.

2 Related work

Instance-Based Generation for LLMs refers to
a method that leverages dataset analysis to extract
valuable instance, thereby enhancing the perfor-
mance of a task. The introduction of large language
models has since inspired numerous works (Xu
et al., 2024), including Wiki-Chat (Semnani et al.,
2023), EPR (Rubin et al., 2022), LLM-R (Wang
et al., 2024b), which have sought to augment lan-
guage model capabilities through retrieval-based
knowledge enhancement. This trend originated
with RAG (Lewis et al., 2020), which incorporates
knowledge as prompts for in-context learning in
LLM. Additionally, there are works that do not
retrieve text as prompts, but instead retrieve delta-
tuning modules, using these modules to generate
prompts for answering questions, such as Knowl-
edge Card (Feng et al., 2023). In this paper, we
retrieve delta-tuning modules by calculating the
semantic similarity between instance and question
using the method of DPR (Karpukhin et al., 2020a).
Module Composition represents an endeavor to
integrate diverse models, Consequently, tasks that
retrieve model modules for composition have nat-
urally emerged, such as MAC (Tack et al., 2024),
SLM (Peng et al., 2024), Arrow (Ostapenko et al.,
2024), LoraRetriever (Zhao et al., 2024), and Lora-
Flow (Wang et al., 2024a). While most methods
adopt a simplistic processing approach for mod-
els. These approaches strive to leverage retrieval
methods by employing retrieval scores as weights
during composition, thereby obviating the need for
manual parameter tuning and facilitating immedi-
ate usage. Concurrently, methods such as Moelora
(Liu et al., 2023) exist that directly assign weights
through backpropagation. LoraHub occupies an
intermediary position that uses a gradient-free op-
timization. In comparison to previous work, our
approach places a stronger emphasis on utilizing in-
stances to get model modules that are more relevant
to the given question.

3 Background

3.1 LoRA
LoRA (Hu et al., 2021) is an efficient parameter
fine-tuning technique designed to address the issue
of excessive storage space needed for model modi-
fications. Specifically, in each selected linear layer,
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LoRA uses two low-rank matrices, A ∈ Rr×d and
B ∈ Rm×r. Here, r ∈ Z denotes the custom
rank of the matrices, while d,m ∈ Z represent
the original dimensions of the linear layer. These
matrices are applied in Equation 1 to calculate the
weight change matrix ∆W ∈ Rm×d, which is sub-
sequently incorporated into the linear layer during
model inference.

∆W = BA (1)

3.2 LoraHub

LoraHub (Huang et al., 2024) is a method for adap-
tive integration of LoRA modules. With LoraHub,
we can swiftly adapt to various tasks using a mini-
mal number of instances, employing a gradient-free
method (Sun et al., 2022). Through LoraHub, we
obtain a set of weights ŵ = {w1, . . . , wN} for
N LoRA modules. For every linear layer within
LoRAs, the weights are combined according to
Equation 2.

∆Wcombine =
N∑

i=1

wi∆Wi (2)

4 Method

In this section, we will provide an overview of
the process, followed by an explanation of how
to identify appropriate task LoRA modules based
on LoRA training data. Finally, we will offer a
detailed account of how to integrate the selected
LoRA combinations with the input data.

4.1 Overview

We first train the upstream tasks T on the large
model Mθ using the training set T i ∈ T to get
LoRA module Li and collect them into LoRA
library L. Next, We specify the hyperparame-
ter N as the number of LoRA modules to be
composed. Each new task T ′ /∈ T has their in-
stance set I ′. For each instance ej ∈ I ′, we find
the closest N LoRA library from L, denoted as
Lej = {L1, . . . , LN}, and optimize a weight com-
bination ŵej = {w1, . . . , wN} using a gradient-
free method (Sun et al., 2022) as ng. For a new
question Q belonging to new task T ′, we select the
most suitable weight combination ŵej based on the
semantic similarity between Q and ej then make
new LoRA module L̂j . Finally, we combine these
to form the model Mϕ = LoRA(Mθ, L̂) and use
it for reasoning on Q.

4.2 LoRA module Retrieval

To select the most suitable LoRA modules from
L for composition, we identify the corresponding
training set Ti = {(x1, y1), . . . , (xn, yn)} for each
Li ∈ L. We then derive the task embedding vector
embT i =

1
n

∑n
k=1Ms(xk+yk) using the sentence

vectorization model Ms. Similarly, for the instance
ej = (xej , yej ), we can obtain its embedding vec-
tor embej = Ms(xej+yej ). Consequently, Follow-
ing the approach of Mussmann and Ermon, 2016
and Karpukhin et al., 2020b in using cosine similar-
ity as a measure of task similarity, we can identify
the top N most similar tasks to ej . The formula for
cosine similarity is as follows:

similarity(ej , T i) =
embej · embT i

∥embej∥ · ∥embT i∥
(3)

Where embTi represents the embedding vector of
the i-th task, and ∥ · ∥ denotes the Euclidean norm
of a vector. By calculating the cosine similarity
between each task T i and the instance ej , we can
select the top N tasks with the highest similarity
as the candidate set of similar tasks for ej , which
is denoted as Lej , and then collect all Lej as a set
called SL.

4.3 Instruct based Module Composition and
Inference

To fine-tune the model Mθ to the state that best
aligns with the instance ej = (xj , yj), we employ
the non-gradient optimization method ng to refine
the weights. We perform a broad adjustment of
the init weights winit using all the instances for T i
donated as Ii = {e1, . . . , en}. Then, we conduct a
targeted adjustment using the instruct-level LoRA
set Lej corresponding to the specific instance ej .
The optimization process is encapsulated in the
following formula:

ŵej = ng(Ii,Lej , winit) (4)

Having aggregated the adjusted weights ŵej

for all e into the set Sŵ, we proceed to identify
the ej that shares the most affinity with the input
x. This is accomplished by calculating the co-
sine similarity between the input embedding vector
embeix = Ms(xj) for ej and the embedding vec-
tor embx = Ms(x) for the input x. This analysis
allows us to select the most suitable LoRA module
from SL, denoted as Lsuit, and its corresponding
weights from Sŵ, denoted as ŵsuit. Utilizing these
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components, we construct the optimal LoRA mod-
ule L̂ = ŵsuitLsuit. As a result, we obtain the
model Mϕ = LoRA(Mθ, L̂) that is specifically
tailored to the given input. This model is then em-
ployed for inference, with the output expressed as
y = Mϕ(x).

5 Experimental Setup

LLM. We utilized the Flan-T5-Large (Chung
et al., 2022) model as our foundational large
language model Mθ for experimentation pur-
poses. Concurrently, we employed the compact
all_datasets_v4_MiniLM-L6 (flax sentence embed-
dings, 2021; Wang et al., 2020) model as our Ms,
which was trained on a dataset comprising one bil-
lion sentence pairs, excluding the BBH and flanv2
datasets that we utilized. This compact model effec-
tively supported our sentence vectorization efforts.

Dataset and Evaluation. We utilize the flanv2
dataset (Longpre et al., 2023), which incorporates
data from four mixed sources, as the training set
for upstream tasks. It encompasses 264 distinct
datasets, out of which we selected 97 for our pur-
poses. We then employed the LoRA modules
trained on these datasets by Huang et al. (2024)
as our repository of LoRA modules for potential
selection.

The Big-Bench Hard benchmark (Suzgun et al.,
2022), with 27 tasks, offers a valid test for Mθ as
it was not trained on these datasets. We sampled
5 instances per task, used 20 LoRA modules for
adaptation, and initiated with 40 steps of global
optimization, followed by EM-based evaluation on
the remaining data.

Baseline Setup. To ensure our method’s credibility,
we used our LoRA library to test LoraHub (Huang
et al., 2024) refined parameters for 40 steps as a
baseline, averaging three runs for the final score
(LoraHubavg). We compared scores using zero-
shot, full fine-tuning (FFT), and in-context learning
(ICL). For LoRA module selection, we conducted
ablation experiments using the average embedding
vector of five instances per task (BatchComp). In
FFT, we maintained consistency by training with
the same random seeds and 5 instances. We trained
the model over 40 epochs with a learning rate of
3e-5 and batch size of 5.

Method average average-3
FFT∗ 39.8 44.3
0-shot 24.4 27.4
ICL 30.9 34.8

LoraHubavg 34.0 38.1
BatchComp 34.7 39.0

Ours 35.6 40.0

Table 1: Experimental results on 27 tasks of BBH, the
"average-3" has excluded three tasks with an accuracy
of less than 10%, (*) represents the upper limit.

Method FFT ICL 0-shot LoraHub
BatchComp 7/18 18/3 16/8 13/12

Ours 11/16 19/2 18/7 16/8

Table 2: In the A/B comparison across all 27 tasks, ’A’
represents the number of tasks where our method out-
performed the baseline, while ’B’ represents the number
of tasks where it underperformed compared to the base-
line.

6 Result And Discussion

6.1 Result
The primary results are presented in Table 1 and
Table 2, with detailed task scores in Appendix A.
Our method significantly outperforms the zero-shot
approach on 19 out of 27 tasks and the in-context
learning (ICL) method on 18 tasks in terms of aver-
age performance. Compared to ICL, our approach
is more computationally efficient, requiring fewer
tokens. Our modifications to LoraHub are also
notably successful, with our method outperform-
ing LoraHub’s random selection approach on 16
tasks. Crucially, our instance-level method exhibits
a 0.9% performance enhancement over our task-
level method in the ablation study, underscoring
the efficacy of capturing input nuances through
instance-specific adaptation.

However, our method still cannot compete with
full fine-tuning (FFT), which holds a significant
performance advantage over other methods on cer-
tain highly structured tasks, such as "date under-
standing" and "dyck language". The results suggest
that only FFT enables the model to adequately learn
the underlying structure and patterns required for
these more complex and specialized tasks.

6.2 Discussion
Ablation study. Our instance-level approach sig-
nificantly outperforms the task-level BatchComp,
which directly selects LoRA modules without pair-
ing questions to instances. BatchComp’s 0.7% im-
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provement over random LoraHub selection pales
in comparison to our approach’s doubling of per-
formance in the "disambiguation qa" task, likely
due to our method’s superior ability to highlight
the importance of key instances for task success.

Retrieval method average
BM25 25.6

DPR L2 Distance 34.3
DPR Cosine Similarity 35.6

Table 3: Result of different retrieval strategy

Retrieval strategy. Our approach is highly de-
pendent on retrieval performance. If accurate re-
trieval is not achieved, properly aligning suitable in-
stances with corresponding questions and matching
them with the appropriate LoRA modules, the over-
all effectiveness will be reduced, as demonstrated
in Table 3 like BM25(Robertson et al., 1995). The
results obtained from the DPR’s L2 distance (Ram
and Gray, 2012) and Cosine Similarity(Mussmann
and Ermon, 2016) confirm the efficacy of DPR in
instance-level fusion.

Time consumption. We evaluated the train-
ing and inference times for four methods—few-
shot, LoraHub, BatchComp, and our Instance-
Level method on a single RTX 3090 GPU. All
inference tasks used a batch size of 10. The aver-
age time per batch was 2.1s for few-shot, 1.4s for
LoraHub, 1.4s for BatchComp, and 3.7s for our
method, respectively. Our method is 2.3 seconds
slower than LoraHub because it requires training
different parameters for each instance, which ap-
proximately necessitates N times the training re-
sources for N instances. However, since inference
utilizes the same resources, the time consumption
is less than N times. Compared to the few-shot
method, our method is only 1.6 seconds slower, as
it, like LoraHub, does not require additional tokens
for in-context learning.

Case study. Upon closer examination of the
results for each task, we observed that tasks re-
quiring reasoning, such as those performed with
flan-t5-large, showed varying contributions to per-
formance improvements based on the learning of
task patterns. For instance, the Boolean expres-
sions task, which has a standard "True or False"
answer format, saw its accuracy increase to approx-
imately 50% after training, compared to a signif-
icantly lower pre-training accuracy. Conversely,
tasks involving date understanding, which could

potentially mislead the model, exhibited shifts in
outcomes for both zero-shot and ICL scenarios.
Specifically, while the standard answer required
selecting a response from given options, the inclu-
sion of the MM/DD/YYYY format in the prompt
led many responses to incorrectly provide dates
like "08/03/1996" instead of choosing the correct
option. However, methods that learned from indi-
vidual instances were able to effectively avoid this
type of misguidance.

7 Conclusion

Our work introduces two key enhancements to the
LoraHub framework. The first is a method that
indexes models trained on datasets based on their
semantic centroids, improving LoraHub’s precision
at the task level. The second is instance-level adap-
tation, which leverages the unique characteristics
of individual instances to raise the performance
ceiling of the LoraHub approach. These comple-
mentary strategies work together to enhance the
model’s cross-task generalization capabilities.
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9 Limitation

Increased Computational Cost. Our method in-
curs a higher computational cost than LoraHub,
mainly because we train weights for each indi-
vidual instance during the LoRA group weights
training phase. This means that our approach will
require computational resources proportional to the
number of instances, multiplied by the cost of Lo-
raHub’s training.
Application Scenario Limitation. Our method is
not universally cost-effective. In scenarios where
a task involves a limited number of questions, em-
ploying our method may not be the most economi-
cal choice. For tasks without any instances, zero-
shot learning would be a more appropriate and
efficient approach.
Additional Preliminary Preparations Required.
When utilizing LoRA for composition, our method
not only requires identifying the appropriate LoRA
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modules within the library but also necessitates ac-
cess to the data used during the training of those
LoRA modules. Consequently, our approach in-
curs greater initial preparation costs compared to
methods that do not rely on such specific training
data.
Requirement For Higher-Quality Instances.
Instance-level methods, such as ours, are more sen-
sitive to the quality of the instances used. Lower-
quality instances, including those that are flawed
or not closely related to the task, can potentially
lead to misleading answers for associated questions.
This underscores the importance of careful instance
selection and curation to ensure the method’s effec-
tiveness.
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A Result Detail And Stability Testing

This section presents our result details. Addition-
ally, we conducted multiple random experiments,
using random instances and random LoRA mod-
ules for LoraHub in each run to evaluate the sta-
bility of our method. We also tested the results
with configurations other than the 5-shot, and the
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Method zero-shot ICL FFT LoraHubavg BatchComp Ours
boolean expressions 35.9 25.7 53.5 48.2 46.1 49.8
causal judgement 58.8 58.2 58.8 58.8 57.7 59.9
date understanding 0.81 0.0 73.5 32.0 34.7 31.8
disambiguation qa 0.0 65.7 69.4 24.4 22.0 46.9
dyck languages 0.0 0.0 8.6 1.6 0.0 0.0
formal fallacies 55.1 52.7 52.2 53.1 52.2 53.5
geometric shapes 0.81 13.5 18.4 14.5 17.6 18.8
hyperbaton 26.5 0.41 48.2 68.6 69.8 71.8
logical deduction 5 objects 33.1 41.2 43.3 42.6 42.0 43.4
logical deduction 7 objects 33.5 38.0 47.4 44.4 41.2 40.8
logical deduction 3 objects 16.3 51.0 55.5 45.9 51.0 51.0
movie recommendation 49.8 42.4 64.5 53.1 52.7 50.2
multistep arithmetic two 0.0 0.0 0.0 0.5 0.0 0.4
navigate 56.3 59.6 57.1 53.5 58.8 56.3
object counting 26.5 26.9 34.7 27.9 28.6 31.4
penguins in a table 16.3 28.4 32.6 37.1 40.4 36.9
reasoning about colored objects 20.0 37.1 37.1 37.4 42.0 38.0
ruin names 22.0 26.1 57.1 21.9 22.4 22.0
salient translation error detection 29.0 42.0 20.0 31.6 30.2 31.0
snarks 48.6 43.9 48.0 52.2 58.4 58.4
sports understanding 4.1 53.5 45.3 50.1 50.2 46.5
temporal sequences 22.4 25.7 33.4 24.5 25.3 24.9
tracking shuffled objects 5 objects 11.0 10.6 16.7 11.0 11.0 11.0
tracking shuffled objects 7 objects 8.6 8.2 13.9 8.6 8.6 8.6
tracking shuffled objects 3 objects 31.0 31.8 34.3 31.0 32.2 32.2
web of lies 52.6 51.8 48.2 43.4 40.4 44.1
word sorting 0.81 0.0 3.7 0.95 0.81 0.81
average 24.4 30.9 39.8 34.0 34.7 35.6

Table 4: The results for the 27 tasks of BBH simulations have been obtained.
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Method zero-shot ICL FFT LoraHub BatchComp Ours
boolean expressions 37.1 33.1 52.5 49.6 42.9 48.0
causal judgement 58.6 57.1 55.1 58.0 57.7 58.2
date understanding 0.8 2.3 55.9 28.8 25.2 23.9
disambiguation qa 0.0 65.2 57.7 13.1 23.5 33.7
dyck languages 0.0 0.0 11.4 1.1 0.7 0.1
formal fallacies 55.2 53.7 52.7 54.7 54.3 54.8
geometric shapes 0.8 9.8 25.0 14.4 16.9 19.5
hyperbaton 25.9 0.1 58.0 69.0 69.7 67.3
logical deduction 5 objects 33.1 41.1 43.1 42.9 43.1 42.2
logical deduction 7 objects 33.5 38.0 46.0 43.3 40.7 41.9
logical deduction 3 objects 16.5 50.7 54.1 50.4 50.7 53.7
movie recommendation 49.5 47.5 69.7 53.1 54.7 54.3
multistep arithmetic two 0.0 0.0 0.0 0.3 0.4 0.3
navigate 56.3 59.5 52.0 52.3 52.7 52.4
object counting 26.9 26.8 33.3 30.9 29.0 30.3
penguins in a table 16.3 24.3 37.6 38.1 39.7 38.1
reasoning about colored objects 20.0 37.7 35.6 39.0 40.1 39.9
ruin names 22.6 22.7 52.9 22.6 22.7 22.6
salient translation error detection 28.8 41.1 21.9 30.7 29.7 29.3
snarks 48.2 42.2 47.0 51.8 51.4 52.6
sports understanding 4.1 53.7 47.3 51.3 51.6 51.6
temporal sequences 21.6 25.9 36.2 24.5 23.0 23.1
tracking shuffled objects 5 objects 11.3 12.0 17.7 11.5 11.6 11.3
tracking shuffled objects 7 objects 8.4 7.9 14.1 8.4 8.4 8.4
tracking shuffled objects 3 objects 30.9 32.5 31.2 31.4 32.1 31.8
web of lies 52.7 51.4 49.4 51.0 24.2 48.0
word sorting 0.8 0.0 3.8 0.6 0.7 0.8
average 24.4 31.0 39.3 34.2 33.2 34.8

Table 5: The results for multiple random experiments.

5707



Method zero-shot ICL FFT LoraHub BatchComp Ours
boolean expressions 0.88 5.84 3.89 3.02 3.28 1.50
causal judgement 0.26 0.90 2.92 1.51 0.45 1.35
date understanding 0.00 2.71 15.83 7.73 7.24 7.34
disambiguation qa 0.00 0.77 14.57 13.10 4.95 8.76
dyck languages 0.00 0.00 2.73 1.13 0.51 0.19
formal fallacies 0.19 1.02 0.33 1.28 1.45 1.02
geometric shapes 0.00 3.00 7.50 5.70 0.51 3.08
hyperbaton 0.51 0.19 8.00 4.79 0.19 3.05
logical deduction 5 objects 0.00 1.17 0.84 0.51 1.26 1.95
logical deduction 7 objects 0.00 0.33 1.92 3.79 5.68 1.35
logical deduction 3 objects 0.19 0.38 1.17 6.12 3.34 2.17
movie recommendation 0.19 4.00 3.72 3.12 3.79 2.65
multistep arithmetic two 0.00 0.00 0.00 0.17 0.33 0.19
navigate 0.33 1.50 7.60 6.39 6.74 5.89
object counting 0.33 1.17 1.02 1.87 1.53 0.38
penguins in a table 0.58 2.86 4.05 3.37 4.37 1.86
reasoning about colored objects 0.00 2.04 2.41 3.92 1.50 0.51
ruin names 0.51 2.67 2.99 0.48 0.38 0.51
salient translation error detection 0.19 0.69 7.78 2.80 1.71 1.71
snarks 0.27 1.25 1.79 5.02 4.90 4.03
sports understanding 0.00 0.38 1.67 2.30 1.02 2.55
temporal sequences 0.67 1.17 4.79 7.86 4.48 2.27
tracking shuffled objects 5 objects 0.19 1.02 0.84 0.45 0.51 0.19
tracking shuffled objects 7 objects 0.19 0.38 0.69 0.19 0.19 0.19
tracking shuffled objects 3 objects 0.19 0.51 2.50 0.87 0.84 0.58
web of lies 0.33 0.33 1.73 1.99 11.45 0.38
word sorting 0.00 0.00 0.19 0.34 0.19 0.00
average 0.02 0.06 0.65 0.90 1.05 0.72

Table 6: The standard deviation of the result from multiple random experiments.

#instance avg score standard deviation
1 30.6 0.35
3 34.2 0.38
5 34.8 0.72
10 35.6 0.81

Table 7: Average scores and standard deviations for different number of instances.
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