@inproceedings{liu-etal-2024-longwanjuan,
title = "{L}ong{W}anjuan: Towards Systematic Measurement for Long Text Quality",
author = "Liu, Xiaoran and
Lv, Kai and
Guo, Qipeng and
Yan, Hang and
He, Conghui and
Qiu, Xipeng and
Lin, Dahua",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.327/",
doi = "10.18653/v1/2024.findings-emnlp.327",
pages = "5709--5725",
abstract = "The quality of training data is crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there`s a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-longwanjuan">
<titleInfo>
<title>LongWanjuan: Towards Systematic Measurement for Long Text Quality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoran</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Lv</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qipeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hang</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Conghui</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dahua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The quality of training data is crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there‘s a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks.</abstract>
<identifier type="citekey">liu-etal-2024-longwanjuan</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.327</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.327/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>5709</start>
<end>5725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LongWanjuan: Towards Systematic Measurement for Long Text Quality
%A Liu, Xiaoran
%A Lv, Kai
%A Guo, Qipeng
%A Yan, Hang
%A He, Conghui
%A Qiu, Xipeng
%A Lin, Dahua
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F liu-etal-2024-longwanjuan
%X The quality of training data is crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there‘s a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks.
%R 10.18653/v1/2024.findings-emnlp.327
%U https://aclanthology.org/2024.findings-emnlp.327/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.327
%P 5709-5725
Markdown (Informal)
[LongWanjuan: Towards Systematic Measurement for Long Text Quality](https://aclanthology.org/2024.findings-emnlp.327/) (Liu et al., Findings 2024)
ACL
- Xiaoran Liu, Kai Lv, Qipeng Guo, Hang Yan, Conghui He, Xipeng Qiu, and Dahua Lin. 2024. LongWanjuan: Towards Systematic Measurement for Long Text Quality. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 5709–5725, Miami, Florida, USA. Association for Computational Linguistics.