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Abstract

We propose a neuro-symbolic approach for re-
alistic few-shot relation classification via rules.
Instead of building neural models to predict
relations, we design them to output straight-
forward rules that can be used to extract rela-
tions. The rules are generated using custom
T5-style Encoder-Decoder Language Models.
Crucially, our rules are fully interpretable and
pliable (i.e., humans can easily modify them
to boost performance). Through a combina-
tion of rules generated by these models along
with a very effective, novel baseline, we demon-
strate a few-shot relation-classification perfor-
mance that is comparable to or stronger than
the state of the art on the Few-Shot TACRED
and NYT29 benchmarks while increasing inter-
pretability and maintaining pliability.

1 Introduction

In recent years, many data-driven approaches have
been proposed for relation classification (RC).
Most of them (e.g., Park and Kim, 2021; Lyu and
Chen, 2021; Baldini Soares et al., 2019) require
extensive training data similar to that in the test set.
Using this data, these approaches have achieved
high effectiveness in RC tasks. For example, Li
et al. (2024) score 91.2% F1 on Re-TACRED (Sto-
ica et al., 2021). Consequently, new data-lean for-
mulations for RC have emerged, including few-
shot (FS) RC tasks such as FewRel 1.0 (Han et al.,
2018) and FewRel 2.0 (Gao et al., 2019), where
there are very few training examples available for
each relation in the test set.

However, these new datasets are unrealistic with
respect to how relation classification is encoun-
tered in practice. A few of the unrealistic traits
of these datasets include: a) equal distribution of
instances for target relations, b) all test instances
having a relation associated with them, and c) ab-
sence of common nouns and pronouns as entities.
To address these issues, Sabo et al. (2021) pro-

... said Marc H. Morial,   the    former  New Orleans mayor who is president of 
the National Urban League.

S1: In August, Baldino , who lived in West Chester,  Pa. , ...
Support Sentences:

Query Sentence:

S2: The Huntington Library, founded in 1919 by Henry Huntington, ...

S3: ... said John Gay, senior vice president of the National Restaurant Association.

Relation: person's state of residence

Relation: organization founded by

Relation: organization's top members

Relation: organization's top members

Anchor-Word Rules:
Relation type: person's state of residence
 [entity=person] []* [lemma=chester] []* [entity=state_or_province]
Relation type: organization founded by
 [entity=person] []* [lemma=found] []* [entity=organization]
Relation type: organization's top members
 [entity=person] []* [lemma=president] []* [entity=organization]

Matching Engine

Output:

▪ person's state of residence    ▪ organization founded by    ▪ organization's top members 

Matched rule: [entity=person] []* [lemma=president] []* [entity=organization]

Model-Generated Rules:
Relation type: person's state of residence
 [entity=person] [tag=VBD] [entity=state_or_province]
Relation type: organization founded by
 [entity=person] [lemma=found] [entity=organization]
Relation type: organization's top members
 [entity=person] [word=president] [tag=NN] [entity=organization]

Figure 1: Our approach for few-shot relation classi-
fication. We generate two types of rules for each sup-
port sentence: Anchor-Word rules and Model-Generated
rules. The relation whose corresponding rules match
the query sentence is selected as the prediction.

pose a more realistic approach to few-shot rela-
tion classification (FS-RC) which eliminates these
unrealistic traits. They also propose a method to
convert supervised datasets to a realistic few-shot
version and apply it to TACRED (Zhang et al.,
2017), resulting in the FS-TACRED dataset. Later,
Alam et al. (2024) follow a similar technique on the
NYT29 dataset (Nayak and Ng, 2019; Takanobu
et al., 2018) to create the FS-NYT29 dataset.

Many deep-learning approaches have been pro-
posed for realistic FS-RC (Sabo et al., 2021; Lv
et al., 2022). These approaches aim only to pre-
dict the relation that holds between two query en-
tities, and it is often impossible to explain how
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they arrived at these predictions. A new line of
work (Vacareanu et al., 2022a,b) aims to solve this
task through rules. Rules are, by their very na-
ture, interpretable; it’s easy to understand why they
make a particular prediction—they either match a
given text or they do not. In addition, they are pli-
able (i.e., easily edited), making it straightforward
to correct any erroneously generated rules.

Our work belongs to the latter line of work.
We introduce a new approach to generating rules:
Encoder-Decoder Language Models—more specif-
ically, T5-style models (Raffel et al., 2019). Such
neural models are used in many NLP tasks these
days and have been found to be very effective. They
also have the benefit of being able to be trained
end-to-end. Note that the output of these mod-
els may not be interpretable. However, because
we output rules instead of relations, using these
rules for relation classification allows us to read
the matched rules and understand the reasoning
behind our predictions. Our models generate rules
that outperform all previous work, aside from Soft-
Rules (Vacareanu et al., 2024), in two out of four
evaluated scenarios. Notably, our approach is more
interpretable because we use exact matching with
our rules.

We also propose a novel baseline that generates
what we term Anchor-Word rules, which we later
demonstrate to be highly effective for FS-TACRED.
To create these rules, we first identify an anchor
word in a sentence that represents the relation in
question. We then complete each rule by connect-
ing the anchor word with the two query entities
through appropriate paths.

The main contributions of this paper are:
1. An effective baseline that generates Anchor-

Word rules. This method surpasses all pre-
vious efforts on FS-TACRED, except for the
state of the art.

2. The very first attempt at learning to gener-
ate rules for realistic FS-RC using Encoder-
Decoder Language Models.

3. By combining Anchor-Word and Model-
Generated rules, we achieve results compa-
rable to the state of the art in the 1-shot sce-
nario of FS-TACRED and outperform all prior
methods in the 5-shot scenarios of both FS-
TACRED and FS-NYT29.

Crucially, our approach is fully interpretable,
as rules must match exactly to be considered a
match, and pliable, as shown by an experiment
where manual rule refinement triples performance.

2 Background

Terminology In relation classification, we are
tasked with identifying the relation between two
entities in a sentence. A relation instance consists
of a subject entity, an object entity, and the relation
they are connected by. For example, consider the
sentence: “John Riccitiello steps into the role of
CEO of Unity Technologies having served on the
Board of Directors from November 2013.” Here,
“John Riccitiello” is the object entity and “Unity
Technologies” is the subject entity. The relation de-
scribed is org:top_members/employees, which means
an organization’s top members or employees.

Realistic FS-RC as proposed by Sabo et al.
(2021) follows an N-way K-shot setup where the
evaluation protocol consists of many episodes.
Each episode consists of N target relations, K sup-
port sentences per target relation, and a variable
number of query sentences. The query sentences
are relation instances that need to be classified
into (a) one of the N target relations or (b) the
no_relation category, which indicates that none of
the N target relations hold between the entities in
the query sentence. The setup also provides a large
number of background relations (and their exam-
ples) that are completely disjoint from the set of
target relations. These relations can be used to
construct a few-shot relation classifier.

FS-TACRED Sabo et al. (2021) propose a con-
version logic that can transform any supervised
RC dataset into an FS-RC format. When applied
to the TACRED (Zhang et al., 2017) dataset—a
large English RC dataset composed of sentences
from public news articles—this logic generates the
FS-TACRED dataset. There are two evaluation sce-
narios in FS-TACRED: 5-way 1-shot and 5-way
5-shot. As the names suggest, the 5-way 1-shot
scenario includes 5 relations with 1 example per
relation in an episode, while the 5-way 5-shot sce-
nario contains 5 relations with 5 examples per rela-
tion. Both scenarios contain 3 query sentences per
episode. We include examples in Appendix A.

The transformation also splits the original 41 re-
lations of the TACRED dataset into train, dev, and
test splits such that each relation is unique to its
split. Table 1 depicts the total number of unique
relations belonging to each split. It should be noted
that the depicted numbers are one more than the
actual unique relation count because the transfor-
mation also includes the no_relation category in
each split.

5908



FS-TACRED FS-NYT29

Train Dev Test Train Dev Test

Number of relations 26 7 11 16 8 6
Number of relation instances 68,124 22,631 15,509 78,885 5,859 8,759
Number of relation instances (without no_relation) 8,163 633 804 56,620 190 2,031

Number of episodes n/a 10,000 10,000 n/a 10,000 10,000
Percentage of no_relation queries n/a 97.20 94.84 n/a 96.77 76.76
Percentage with at least 1 target relation query n/a 8.16 14.76 n/a 9.40 54.58

Average number of tokens
per sentence 34.42 31.79 35.00 38.49 41.93 38.11
between subject and object 6.43 8.45 7.03 9.21 11.64 9.86

in the shortest syntactic path 1.53 1.87 1.65 2.51 3.03 2.73

Table 1: Basic statistics of FS-TACRED and FS-NYT29. An episode includes (a) one or five support examples for
five target relations and (b) three query sentences with two entities (subject and object). For many query sentences
(∼95% in test set of FS-TACRED), none of the target relations hold between the entities. Syntactic paths are an
abstract representation and shorten the distance between subject and object.

The transformation creates 10,000 episodes for
each data split it is applied to. The logic can be
applied to the train, dev, or test split of TACRED,
but we are only concerned with evaluation on the
dev or test split in this work. We use the relations
and their corresponding instances from the training
split as background relation data. To be noted is the
percentage of query sentences with the no_relation

category. As depicted, most query sentences are of
this type (i.e., none of the five relations hold).

At the bottom of Table 1, we present the aver-
age number of tokens per sentence for each split,
including counts between the subject and object
entities. We observe similar numbers across splits.
We also note the token count along the shortest syn-
tactic path between these entities. These paths are
used to create syntax rules, which, as we will show,
yield better results due to their shorter lengths.

FS-NYT29 The NYT29 dataset (Nayak and Ng,
2019; Takanobu et al., 2018; Riedel et al., 2010) for
relation classification was developed through dis-
tant supervision by aligning the New York Times
corpus (Sandhaus, 2008) with Freebase (Bollacker
et al., 2007) relations. Alam et al. (2024) apply
the same FS-RC conversion technique as Sabo
et al. (2021) to this dataset to create the FS-NYT29
dataset. The details for this dataset are also de-
picted in Table 1. Compared to FS-TACRED, FS-
NYT29 has a lower percentage of query sentences
labeled as no_relation.

Rules We use rules for relation classification.
These rules are in the Odinson query lan-
guage (Valenzuela-Escárcega et al., 2020). We use
Odinson for two reasons. First, the language sup-

ports rules written for both the original token order
in a sentence (surface tokens) as well as tokens on
the syntactic paths in its dependency tree (syntax
tokens). Second, the authors provide an efficient
rule-matching engine: it finds matches in around
150 million sentences in under 3 seconds.

Here is a sample rule in this language for the sen-
tence “he eats from the plate”: “[word=he] [tag=VBZ]

[tag=IN] [tag=DT] [lemma=plate]”. To represent
a word, we enclose a property of the word—its
lemma, POS tag, entity type, or word-form—in
square brackets. To represent any word, we use
“[]”. Standard regex wildcards are allowed (e.g.,
with “*” we can represent zero or more words
satisfying the listed property). Some other ex-
ample rules to match the above sentence include:
“[tag=PRP] [lemma=eat] [word=from] [lemma=the]

[tag=NN]” and “[lemma=he] []* [word=plate]”.

As mentioned earlier, these rules can be written
for surface tokens (surface rules) as well as syntax
tokens (syntax rules). The rules in the previous
paragraph are examples of surface rules. Odinson
provides keywords for representing dependency
edge types to write syntax rules. However, for the
sake of simplicity and to avoid dealing with de-
pendency edges of various types, we instead write
syntax rules as surface rules over the tokens on the
shortest syntactic path between the subject and ob-
ject entities. For example, for the above sentence,
the tokens on the shortest syntactic path between
the first and last words can be written as: “he eats
plate”. Here is a syntax rule, which is formulated as
a surface rule, for the running example: “[word=he]
[lemma=eat] [word=plate]”.
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3 Related Work

Deep Learning Approaches Sentence-Pair (Gao
et al., 2019) concatenates each support sentence
with the query sentence sequentially and processes
them through a BERT model (Devlin et al., 2019)
to predict two values: the first value measures the
semantic similarity between the sentences, and the
second value quantifies their dissimilarity. The
method then selects the relation with support sen-
tences most similar to the query sentence as its
prediction. The similarity score for the no_relation

category is obtained by taking the minimum of the
set of dissimilarity scores.

Sabo et al. (2021) propose two similar tech-
niques: NAV and MNAV. In NAV (NOTA As Vec-
tors), they embed query and support sentences into
the same latent space. The cosine similarity be-
tween the query sentences and support sentences is
calculated through their embeddings, and the rela-
tion corresponding to the support sentence with the
highest similarity is chosen as the output. The core
innovation in this technique is that NOTA (none of
the above) is also represented as an embedding and
treated like a relation. MNAV (or Multiple NOTA
As Vectors) is similar to NAV, except multiple em-
beddings are used to represent NOTA.

CKPT (Lv et al., 2022) utilizes BERT to com-
plete a prompt missing key words that indicate the
predicted relation. For example, given “Paris is
located in France”, the prompt could be “Paris is
the [MASK] of France” for the relation “A nation’s
capital.” Additionally, it expands the vocabulary in-
dicating each relation by leveraging external knowl-
edge and outputs relations based on similarity.

Our approach outperforms these methods in
three of four scenarios across the evaluated datasets
and offers full interpretability and pliability.

Hybrid Approaches: Deep Learning and Rules
OdinSynth (Vacareanu et al., 2022a) generates
rules for a support relation instance using a branch-
and-bound search through the rule space. This
process is guided by a specialized BERT model.
A target relation is chosen as the prediction for a
test instance if it matches a rule for that relation.
Although the approach presented here outperforms
the OdinSynth rules, we utilize them as a training
source for one of our models.

SoftRules (Vacareanu et al., 2024) presents a
fuzzy semantic rule matcher—rules do not need
to match a sentence exactly to indicate a match.
For example, “[entity=person] [word=founded]

[entity=organization]” will match both “Elon
Musk founded Tesla” and “Elon Musk is the
founder of Tesla”, despite the latter not matching
the rule exactly—the authors term this a soft rule
and soft match. Matches are determined by a neural
model using a specific threshold. This fuzzy match-
ing approach makes these rules less interpretable
than ours.

4 Generating Rules for Relation
Classification

As mentioned before, in relation classification, we
are tasked with finding the relation between two
entities (subject and object) in a sentence. A rule
that identifies a relation finds a path between the
subject and object entities that is peculiar to that
particular relation. If the path specified by a rule
is found in a given sentence, we expect that such
a relation exists in that sentence. In the following
sections, we discuss the various ways1 we generate
rules for relation classification.

4.1 An Effective Baseline: Anchor-Word
Rules

In this section, we discuss a style of rules which
we call Anchor-Word rules. We find these rules
very effective at FS-RC. They are based on the
intuition that many relations are characterized by
certain words—anchor words—around the two en-
tities in question. Anchor words can appear be-
fore, after, or between the two entities. To identify
the relation, the entities and anchor words have
to be connected through specific paths. For ex-
ample, for the relation per:city_of_birth (a per-
son’s city of birth), one possible rule could be:
“[entity=person] [lemma=be]? [lemma=bear] [tag=IN]

[entity=location]”. In this case, the two entity
types are person and location and they are con-
nected by an anchor word that has the lemma ‘bear.’
In the rule, we have specified one way of going
from the subject entity to the anchor word, and then
to the object entity. It is possible there are other
ways. For simplicity’s sake and to prevent having
to list all the possible ways, in this work, we allow
any word in the path between the anchor words and
the entities. Another possible Anchor-Word rule
for the previous relation could be: “[entity=person]
[]* [lemma=bear] []* [entity=location]”.

Identifying Anchor Words We follow a simple
approach to find anchor words. For each word

1Code at: https://github.com/mayanks43/anchorT5.
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Rule: [entity=nationality] []* [lemma=student] []* [entity=person]

object entity

object entity

object entity

subject entity

subject entity

subject entity

anchor word

anchor word

anchor word

... Punjab province -- where Bibi has been held ...

Rule: [entity=location] []* [entity=person] []* [lemma=hold]

... works at the University of Foreigners which Knox ...

Rule: [lemma=work] []* [entity=organization] []* [entity=person]

...  American  exchange  student    Amanda Knox  ...

Relation type: person's state of residence

Relation type: person's nationality

Relation type: person works for

Figure 2: Procedure for identifying two paths forming
an Anchor-Word rule depending on the relative position
of the anchor word. Paths are defined either by surface
(tokens around entities in the sentence) or by syntax
(tokens in the shortest syntactic path between entities).

in the sentence, we calculate its cosine similarity
to a text representing the relation using Sentence-
BERT, a sentence similarity model (Reimers and
Gurevych, 2019). Words exceeding a similarity
threshold are chosen as anchor words. We use de-
scriptions of the relations from the corresponding
datasets to represent them in similarity calculations.
Additionally, we found that using word definitions,
rather than the words themselves, is more effective.
We use WordNet (Miller, 1994) to obtain defini-
tions. Finally, for each anchor word, we generate a
separate Anchor-Word rule.

Generating Anchor-Word Rules After finding
an anchor word, we create the Anchor-Word rule.
The construction of the rule follows the order in
which the entities and the anchor word are present
in the sentence. First, we represent the entities
with their entity types and the anchor word with
its lemma. We, then, connect these words together
into a rule by adding the expression “[]*” (which
indicates any number of tokens) between them.

We show three types of Anchor-Word rules in
Figure 2. Let’s consider the first example. The ex-
ample represents the rule “[entity=nationality] []*

[lemma=student] []* [entity=person]” and shows
part of a sentence “[. . . ] American exchange stu-
dent Amanda Knox [. . . ]” that matches this rule.
Our procedure first identifies the anchor word ‘stu-
dent.’ This word lies between the two entities and
thus, to build the rule we place the representation
of the anchor word (lemma) between the represen-
tations of those entities (entity type). To depict the

Original Sentence: As a career diplomat who also served as ambassador to 
[Mexico]object, the Philippines and Honduras, [Negroponte]subject brought a 
policymaker's perspective to the role of intelligence chief, a post established 
by Congress at the end of 2004 to address a lack of coordination among 
intelligence agencies.

Input Text For Model: Generate relation extraction rule for relation: All 
countries in which the person has lived. Given sentence: as a career diplomat 
who also served as ambassador to <obj> country </obj>, the philippines and 
honduras, <subj> person </subj> brought a policymaker's perspective to the 
role of intelligence chief, a post established by congress at the end of 2004 to 
address a lack of coordination among intelligence agencies. The rules are: 

One-to-Many Scenario Output Text:  
[entity=country] []* [lemma=philippine] []* [entity=person] ~ [entity=country] []* 
[lemma=honduras] []* [entity=person] ~ [lemma=diplomat] []* [entity=country] []* 
[entity=person] ~ [lemma=ambassador] []* [entity=country] []* [entity=person]

Original Rules: 
[entity=country] []* [lemma=philippine] []* [entity=person]
[entity=country] []* [lemma=honduras] []* [entity=person]
[lemma=diplomat] []* [entity=country] []* [entity=person]
[lemma=ambassador] []* [entity=country] []* [entity=person]

One-to-One Scenario Output Text:  
Epoch 1: [entity=country] []* [lemma=philippine] []* [entity=person] 
Epoch 2: [entity=country] []* [lemma=honduras] []* [entity=person]
Epoch 3: [lemma=diplomat] []* [entity=country] []* [entity=person]
Epoch 4: [lemma=ambassador] []* [entity=country] []* [entity=person]

Figure 3: Procedure to prepare data for fine-tuning
CodeT5plus. To get the input, we surround entities
with tags and replace their contents with entity types.
We experiment with two techniques to represent outputs:
only one output per input sentence or multiple outputs
concatenated together with a delimiter.

path between these words, we just use “[]*” to indi-
cate any number of tokens. The other examples are
similar, but demonstrate different order of words
between the entities and the anchor word.

4.2 Learning to Generate Rules

We use an Encoder-Decoder approach to learn to
generate rules. More specifically, we fine-tune a T5-
style code-generation model, CodeT5plus (Wang
et al., 2023), using a dataset that maps relation in-
stances (input) to corresponding rules (output). We
use CodeT5plus as it can handle all of the special to-
kens in the rule language. We fine-tune this model
using supervised data from two sources: Odin-
Synth (Vacareanu et al., 2022a) and Anchor-Word
rules. Model training details such as tuned hyper-
parameters are provided in Appendix D. Rules are
generated for the relation instances in the train-
ing and development splits of FS-TACRED (or
FS-NYT29), and are then used to fine-tune the
pre-trained model, CodeT5plus.

Our training methodology is defined by the input
and output (i.e., supervision) during training.

Input: The training input for the model consists
of a sentence along with the subject and object en-
tities it contains. Encoder-Decoder models expect
a full sentence as input. Therefore, to highlight the
subject and object entities, we (a) enclose the rel-
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5-way, 1-shot 5-way, 5-shot

Precision Recall F1 Precision Recall F1

Previous work
MNAV n/a n/a 12.39 ± 1.01 n/a n/a 30.04 ± 1.92
OdinSynth 23.48 ± 1.46 11.46 ± 1.02 15.40 ± 1.21 29.77 ± 0.83 20.34 ± 0.53 24.16 ± 0.44
CKPT n/a n/a 15.14 ± 1.12 n/a n/a 32.26 ± 2.13
SoftRules 33.46 ± 1.47 19.69 ± 1.14 24.78 ± 1.22 51.66 ± 1.85 26.02 ± 1.29 34.59 ± 1.24

Anchor-Word rules
syntax 25.86 ± 0.39 10.73 ± 0.32 15.16 ± 0.35 22.40 ± 0.72 32.02 ± 0.62 26.34 ± 0.46
surface 37.62 ± 3.05 10.48 ± 0.78 16.38 ± 1.22 34.21 ± 1.03 30.83 ± 1.27 32.42 ± 1.10
surface and syntax 27.37 ± 1.20 15.99 ± 0.83 20.19 ± 0.97 28.35 ± 0.93 34.04 ± 1.48 30.92 ± 0.99

Anchor-Word + OdinSynth rules 21.86 ± 0.86 23.10 ± 1.08 22.46 ± 0.94 31.96 ± 0.85 35.49 ± 1.50 33.62 ± 1.01

Model-Generated rules training w/
Anchor-Word rules

syntax 21.87 ± 0.60 7.67 ± 0.11 11.35 ± 0.14 18.39 ± 0.59 21.93 ± 0.32 19.99 ± 0.31
surface 27.13 ± 4.00 5.20 ± 0.92 8.73 ± 1.50 22.16 ± 1.54 15.09 ± 1.36 17.94 ± 1.45
surface and syntax 21.92 ± 1.13 10.74 ± 0.78 14.41 ± 0.94 17.67 ± 0.26 29.23 ± 0.91 22.02 ± 0.32

OdinSynth rules
syntax 19.95 ± 0.94 19.62 ± 1.00 19.79 ± 0.97 20.81 ± 0.86 30.56 ± 1.22 24.75 ± 0.95
surface 31.29 ± 2.30 3.20 ± 0.30 5.81 ± 0.53 35.28 ± 1.18 8.98 ± 0.40 14.31 ± 0.50
surface and syntax 19.82 ± 1.19 20.40 ± 1.30 20.10 ± 1.24 20.97 ± 0.76 31.85 ± 1.21 25.28 ± 0.87

Anchor-Word + OdinSynth rules 19.38 ± 0.74 25.47 ± 1.27 22.01 ± 0.95 20.07 ± 0.58 39.52 ± 1.56 26.62 ± 0.79
+ paraphrasing background 17.60 ± 0.36 28.32 ± 0.85 21.71 ± 0.50 26.41 ± 0.84 27.20 ± 1.38 26.80 ± 1.07

Anchor-Word + Model-Gen. rules 20.31 ± 0.60 28.57 ± 1.19 23.74 ± 0.82 29.67 ± 0.87 36.19 ± 1.59 32.60 ± 1.08
+ paraphrasing support 17.27 ± 0.39 30.06 ± 0.63 21.93 ± 0.38 25.56 ± 0.97 38.92 ± 1.78 30.85 ± 1.17
+ paraphrasing query 19.55 ± 0.63 31.93 ± 1.04 24.24 ± 0.72 32.46 ± 0.48 39.92 ± 0.94 35.80 ± 0.48
+ paraphrasing support and query 20.80 ± 1.47 21.75 ± 1.61 21.25 ± 1.46 18.56 ± 0.58 54.08 ± 1.55 27.63 ± 0.77

Table 2: Results with the test split of FS-TACRED. Our baseline, Anchor-Word rules, outperforms all previous work
except SoftRules even though it disregards the background data (i.e., training data with non-overlapping relations).
Anchor-Word and Model-Generated rules result in complementary rules: combining them yields better results.
Paraphrasing yields further improvements. All rule combinations (indicated with ‘+’) refer to the best system (i.e.,
using surface, syntax or both). While we use the background data to train our models and SoftRules does not, our
rules and matching mechanism are more interpretable—we know which rule is an exact match in the query sentence.

evant words within “<subj> ... </subj>” or “<obj>
... </obj>” tags, and (b) replace the entity words
with their respective types. Additionally, we in-
corporate the relation description in the input as it
is crucial in identifying anchor words for Anchor-
Word rules. If the target output consists of syntax
rules, the syntax path is also included in the input.

Output: Since we have multiple rules available
per sentence, the decoder can represent them in
multiple ways as output. In this work, we exper-
imented with two such approaches (depicted in
Figure 3):

• One-to-One. In this approach, we use only one
rule as supervision for each sentence. How-
ever, across different epochs, we randomly
select a different rule for learning. During the
validation phase, the loss is zero if the model
outputs any one of the possible rules. At pre-
diction time, we use beam search to generate
a fixed number of rules. A limitation of this
method is that we need to decide the number

of rules to be predicted. This can lead to the
generation of faulty or repetitive rules when
the possible rule set is limited.

• One-to-Many. In this approach, we concate-
nate all possible rules corresponding to a sen-
tence using the delimiter ’∼’. During the vali-
dation step, the loss is zero only if all the rules
are generated correctly. Here, the model de-
termines the number of rules to be generated,
allowing for no rule generation if appropriate.

We did not find a clear winner between the two ap-
proaches; therefore, we chose the one that achieved
the best results for each rule type.

5 Experiments and Results

We apply the above techniques to generate rules
for support sentences in the test set, creating multi-
ple rules per target relation for each episode. If a
rule matches the query sentence, the score for the
corresponding relation increases. The relation with
the highest score is the predicted relation for the
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5-way, 1-shot 5-way, 5-shot

Precision Recall F1 Precision Recall F1

Previous work
MNAV 25.08 ± 0.73 34.37 ± 0.87 29.00 ± 0.80 33.24 ± 1.06 15.47 ± 0.38 21.12 ± 0.55
OdinSynth 30.07 ± 0.93 9.42 ± 0.31 14.34 ± 0.46 21.61 ± 0.61 17.98 ± 0.45 19.63 ± 0.51
SoftRules 22.23 ± 0.47 13.45 ± 0.38 16.76 ± 0.41 27.29 ± 0.77 19.52 ± 0.49 22.76 ± 0.56

Anchor-Word + Model-Gen. rules 32.04 ± 0.43 8.67 ± 0.14 13.64 ± 0.21 27.23 ± 0.78 18.83 ± 0.40 22.26 ± 0.52
+ paraphrasing support 21.92 ± 0.53 12.37 ± 0.29 15.82 ± 0.37 20.38 ± 0.50 22.25 ± 0.45 21.27 ± 0.46
+ paraphrasing query 31.78 ± 0.38 13.25 ± 0.19 18.70 ± 0.25 26.44 ± 0.46 27.27 ± 0.30 26.85 ± 0.35
+ paraphrasing support and query 23.75 ± 0.37 21.08 ± 0.39 22.33 ± 0.38 20.11 ± 0.40 37.01 ± 0.49 26.06 ± 0.44

Table 3: Results with the test split of FS-NYT29. A more detailed version is available in Table 6. Like FS-TACRED,
paraphrasing yields further improvements for FS-NYT29 as well. In the 1-shot scenario, we find that paraphrasing
both the query and support sentences helps us attain the second-best performance by a large margin. In the 5-shot
scenario, paraphrasing only the query sentences allows us to outperform all previous work.

query. If no rules match, we predict no_relation.
If there’s a tie, a relation is chosen randomly. We
compare these predictions with ground truth la-
bels and summarize the Precision, Recall, and F1
scores in Table 2 and 3, including error margins for
variability across five randomly seeded runs of FS-
TACRED and FS-NYT29. We discuss the specifics
of these techniques and examine their individual
and combined results in subsequent sections.

5.1 FS-TACRED

Anchor-Word Rules Anchor-Word rules are cre-
ated in an unsupervised manner, and, therefore, we
can directly generate these rules from the support
sentences in the test set. The results of applying
these rules to directly predict the relations in the
test set’s query sentences are presented in Table 2,
within the block titled “Anchor-Word rules.” In that
block, we also depict the evaluation metrics for us-
ing syntax rules, surface rules, or a combination
of both. For the 1-shot scenario, we find that com-
bining syntax and surface rules helps improve the
F1 score. However, in the 5-shot scenario, surface
rules alone perform the best and mixing them with
syntax rules degrades performance. Interestingly,
surface rules outperform all previous work in the
1-shot and 5-shot scenarios except SoftRules.

Model-Generated Rules As described in Sec-
tion 4.2, we fine-tune the encoder-decoder lan-
guage models using two data sources and train
separate models for syntax rules and surface rules.
Therefore, we build four models. After training
these models, we use them to generate rules for
the support sentences in the test set. We report the
performance of these generated rules in the third
block of Table 2.

As the table indicates, rules generated by models
trained on Anchor-Word rules do not perform as
well as those directly generated from the support
sentences in the test set. In contrast, rules derived
from training with OdinSynth rules are more suc-
cessful. This discrepancy could stem from the diffi-
culty of replicating the logic of the similarity model
used for generating Anchor-Word rules with the
limited amount of supervised data available (only
around 8,000 training data samples). In compari-
son, the logic behind OdinSynth rules is simpler to
replicate. It is also important to note that surface
rules generally underperform compared to syntax
rules. However, when we combine these rule types,
their performance usually exceeds that of each type
used independently.

Combining Rules We also experiment with com-
bining all the rule types: Anchor-Word rules and
Model-Generated rules (Table 2, last block). Both
the 1-shot and 5-shot scenarios benefit from com-
bining the rules. However, the improvement in the
5-shot scenario is minimal compared to the perfor-
mance of Anchor-Word surface rules.

Paraphrasing We also experiment with para-
phrasing the sentences in FS-TACRED. Specif-
ically, we paraphrase three parts of the dataset:
a) background relation instances, b) support sen-
tences, and c) query sentences. We generate 5
paraphrases per sentence using ChatGPT 3.5, fol-
lowing the prompt detailed in Appendix C. The
experimental results are presented in Table 2 in
the 3rd and 4th blocks. We find that paraphrasing
query sentences is the only beneficial strategy. In
the 1-shot scenario, there is a modest increase of
0.5 F1 points, while the 5-shot scenario sees a more
substantial improvement of around 3 F1 points.
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Overly general rule
Prevalence: 1-shot (30%) | 5-shot (20%) Gold: org:top_members/employees Predicted: org:founded_by
Example Query sentence: “... to help create a platform for independent film in China and to strengthen the ties between the Chinese
film community and the Tribeca Film Festival,” said [Jon Patricof]object, chief operating officer of [Tribeca Enterprises]subject.
Misfiring rule: [entity=person] [tag=NN] [entity=organization]

Close-but-not-exact rule
Prevalence: 1-shot (26%) | 5-shot (20%) Gold: org:founded_by Predicted: no_relation

Example Query sentence: Nielsen said James Finkelstein, who founded [Pluribus]subject this year with George Green and [Matthew
Doull]object, will serve as e5’s chairman.
Close rule: [entity=person] []* [lemma=founder] []* [entity=organization]

No matching rules
Prevalence: 1-shot (14%) | 5-shot (26%) Gold: per:origin Predicted: no_relation

Example Query sentence: [Graham]subject, a [Southern Tutchone Indian]object from Canada, is charged with first- and second-
degree murder in the slaying of Aquash, and could be sent to prison for life if convicted.

Annotation error
Prevalence: 1-shot (8%) | 5-shot (6%) Gold: no_relation Predicted: org:top_members/employees

Query sentence: Single-sex schools are an “illusionary silver bullet,” said [Lisa Maatz]object, director of public policy and
government relations for the [American Association of University Women]subject.
Matched rule: [entity=person] []* [lemma=director] []* [entity=organization]

Wrong anchor word
Prevalence: 1-shot (4%) | 5-shot (12%) Gold: no_relation Predicted: per:schools_attended

Example Query sentence: About an hour after landing at Eindhoven, the [foreign ministry]object said “Ruben has arrived safely at
[his]subject final destination”, which it declined to specify.
Misfiring rule: [entity=organization] []* [lemma=say] []* [entity=person]

Table 4: Most common error types discovered after manually analyzing 50 errors made with Anchor-Word and
Model-Generated rules for both 5-way 1-shot and 5-way 5-shot scenarios. Gold indicates the true relation between
the entities (indicated with square brackets) for an example query sentence.

Post-processing We experiment with adding
reversed versions of the generated rules as a
postprocessing step. For example, if the original
rule is “[entity=person] [lemma=president]

[entity=organization]”, we reverse it to
“[entity=organization] [lemma=president] [entity=

person]”. We discover empirically that reversing
rules is only beneficial for some of the methods in
Table 2 and report results accordingly.

5.2 FS-NYT29

We conducted the same experiments and post-
processing as FS-TACRED on the FS-NYT29
dataset. Table 3 summarizes the results, with a
detailed version in Table 6. Our system outper-
forms the current SOTA in the 5-shot scenario. In
the 1-shot scenario, we achieve the second-best
performance. We find paraphrasing to be very ef-
fective for this dataset, with F1 scores improved by
about 9 points in the 1-shot scenario and about 5
points in the 5-shot scenario.

6 Qualitative Analysis

In this section, we present results from two types of
qualitative analyses. First, we perform error anal-

ysis on episodes that did not result in the correct
answer when using our best method. Thereafter,
we investigate the pliability of the generated rules
by manually editing them and evaluating the im-
provements in performance.

6.1 Error Analysis

We analyze 50 errors by our best method for both
the 1-shot and 5-shot scenarios (Table 4, 100 total).

Misclassification by overly general rules are
common in the 1-shot (30%) and 5-shot scenar-
ios (20%). This type of error occurs when a
very general rule was generated, resulting in false
positives. An example of a very general rule is
“[entity=person] [tag=NN] [entity=organization]”
for the relation org:founded_by.

Close-but-not-exact rules are also common: 26%
(1-shot) and 20% (5-shot). This error indicates
that one of our rules is very close but fails the
exact match requirement. For example, this is
the situation when the rule is “[entity=person] []*

[lemma=founder] []* [entity=organization]” but the
query sentence contains the word ‘founded’ instead.
This rule would’ve matched the sentence with a
fuzzy matching approach.
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Sometimes, our rules completely miss the rela-
tion. This kind of error is much less common in the
1-shot scenario than in the 5-shot scenario (14% vs
26% of examined errors).

Annotation errors are present in any dataset, and
they inevitably lead to correct predictions being
counted as wrong. In the example depicted in Ta-
ble 4, the entities in the query sentence are con-
nected by the org:top_members/employees relation,
and our rules make this prediction. However, the
gold truth label indicates no_relation, and thus it
is counted as an error. Only 6% (1-shot) and 8%
(5-shot) of errors belong to this type.

Anchor words are obtained deterministically
based on similarity between words in a sentence
and relation descriptions. While simple, our ap-
proach sometimes identifies anchor words that ap-
pear to be unconnected to the relation. In the ex-
ample rule depicted, the anchor word identifies
a word with lemma ‘say’ as a close word to the
per:date_of_birth relation, which is incorrect.

6.2 Pliability: Can Humans Quickly Improve
Performance?

This section discusses an experiment evaluating
the pliability of rules generated by our methods.
Similar to Vacareanu et al. (2022a), we refine
the rules from our best method by manually edit-
ing them over two hours to enhance their perfor-
mance. Conducted by two experts (from the au-
thors), the exercise involved modifying rules for
the per:date_of_birth relation by adding, removing,
or revising rules. After this exercise, we measured
the F1 score of the edited rules for the test sentences
of the concerned relation. Post-edit, the average
F1 score of these rules on test sentences improved
by 227%, demonstrating significant flexibility and
pliability. Appendix B provides examples of edits
including rules added, modified, and removed.

7 Conclusions

In this work, we describe an approach for realis-
tic few-shot relation classification (FS-RC) using
rules generated with Encoder-Decoder Language
Models. We also present Anchor-Word rules, an ef-
fective baseline to generate rules. A crucial benefit
of both approaches is that they generate rules which
are inherently interpretable and pliable, allowing
users to easily understand and modify them.

Later, we evaluate the rules generated by our
methods on two datasets – FS-TACRED and FS-

Rules Precision Recall F1

Original 11.68 ± 4.32 50.77 ± 14.14 18.71 ± 6.18

Human 1 62.00 ± 8.94 81.13 ± 12.62 69.69 ± 7.72
Human 2 81.71 ± 16.29 40.72 ± 12.98 52.70 ± 13.17

Table 5: Results on the test split in the 1-shot scenario
(per:date_of_birth relation) with (a) the best automati-
cally obtained rules (original: Anchor-Word and Model-
Generated rules, Table 2) and (b) after humans modify
these rules for two hours. Our method is interpretable
(exact rules and exact matching) and pliable: F1 im-
proves 272% and 182% respectively.

NYT29. We find that Anchor-Word rules are highly
effective for FS-TACRED outperforming most pre-
vious work, except for the state of the art. Addi-
tionally, our Model-Generated rules excel in two of
four scenarios across the datasets, surpassing most
prior efforts. When combined, these rules match
state-of-the-art performance in the 1-shot scenario
of FS-TACRED and outperform all previous meth-
ods in the 5-shot scenarios of both FS-TACRED
and FS-NYT29.

Limitations

Most machine learning models’ outputs are limited
by the training data they were shown during the
training step. In this work, we used two kinds of
rule sources to train our models. There are defi-
nitely many more kinds of rules possible and some
could be more accurate than the ones we were able
to generate. Future work could, therefore, focus on
improving the variety and quantity of rule types in
the training data and potentially boost the perfor-
mance of these models.

Syntax rules rely on access to the dependency
trees of sentences. These trees may not be available
for many low-resource languages. This is a limi-
tation because a part of our technique cannot be
applied to these languages (Surface rules will still
work). Thankfully, there exists a significant effort
in the form of Universal Dependencies (de Marn-
effe et al., 2021) that aims to create comprehensive
dependency tree annotations for all of world’s lan-
guages (they have already created dependency tree-
banks for around 100 languages) and this limitation
should vanish over time.

Ethics

Model Biases Our work employs T5-style
Encoder-Decoder Language Models as the foun-
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dation for all our models, inheriting the typical
ethical and social risks (Bender et al., 2021) as-
sociated with most language models. While our
models output rules that users can potentially ad-
just to correct any biases, there is a risk that biased
rules could be produced without user intervention.

Data Sources To build FS-TACRED, we require
the TACRED dataset which we obtain from the
Linguistic Data Consortium (LDC) under a non-
commercial license. We use it solely for research
purposes, as intended.
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5-way, 1-shot 5-way, 5-shot

Precision Recall F1 Precision Recall F1

Previous work
MNAV 25.08 ± 0.73 34.37 ± 0.87 29.00 ± 0.80 33.24 ± 1.06 15.47 ± 0.38 21.12 ± 0.55
OdinSynth 30.07 ± 0.93 9.42 ± 0.31 14.34 ± 0.46 21.61 ± 0.61 17.98 ± 0.45 19.63 ± 0.51
SoftRules 22.23 ± 0.47 13.45 ± 0.38 16.76 ± 0.41 27.29 ± 0.77 19.52 ± 0.49 22.76 ± 0.56

Anchor-Word rules
syntax 32.82 ± 0.37 4.95 ± 0.10 8.60 ± 0.16 31.45 ± 0.36 12.19 ± 0.29 17.57 ± 0.33
surface 26.81 ± 2.30 1.06 ± 0.12 2.05 ± 0.22 23.22 ± 1.56 3.96 ± 0.27 6.76 ± 0.45
surface and syntax 32.11 ± 0.51 5.21 ± 0.12 8.96 ± 0.19 30.28 ± 0.43 13.32 ± 0.24 18.50 ± 0.29

Anchor-Word + OdinSynth rules 32.17 ± 0.56 8.51 ± 0.18 13.46 ± 0.27 27.55 ± 0.64 18.40 ± 0.37 22.06 ± 0.45

Model-Generated rules training w/
Anchor-Word rules

syntax 32.49 ± 0.76 4.87 ± 0.15 8.48 ± 0.25 30.89 ± 0.33 11.92 ± 0.25 17.20 ± 0.27
surface 25.40 ± 1.67 0.96 ± 0.09 1.85 ± 0.17 21.93 ± 1.68 3.56 ± 0.28 6.12 ± 0.48
surface and syntax 32.04 ± 0.32 5.22 ± 0.09 8.98 ± 0.14 29.77 ± 0.62 13.11 ± 0.30 18.20 ± 0.38

OdinSynth rules
syntax 31.37 ± 0.59 5.43 ± 0.17 9.26 ± 0.27 28.69 ± 0.63 13.28 ± 0.41 18.16 ± 0.49
surface 39.99 ± 0.91 6.62 ± 0.24 11.36 ± 0.38 38.91 ± 0.64 12.57 ± 0.44 19.00 ± 0.57
surface and syntax 33.13 ± 0.73 7.84 ± 0.21 12.68 ± 0.32 28.52 ± 0.57 15.55 ± 0.38 20.12 ± 0.43

Anchor-Word + OdinSynth rules 32.00 ± 0.40 8.46 ± 0.15 13.38 ± 0.22 27.36 ± 0.78 18.19 ± 0.45 21.85 ± 0.55
+ paraphrasing background 31.95 ± 0.52 8.37 ± 0.18 13.27 ± 0.27 27.21 ± 0.69 17.92 ± 0.42 21.61 ± 0.50

Anchor-Word + Model-Gen. rules 32.04 ± 0.43 8.67 ± 0.14 13.64 ± 0.21 27.23 ± 0.78 18.83 ± 0.40 22.26 ± 0.52
+ paraphrasing support 21.92 ± 0.53 12.37 ± 0.29 15.82 ± 0.37 20.38 ± 0.50 22.25 ± 0.45 21.27 ± 0.46
+ paraphrasing query 31.78 ± 0.38 13.25 ± 0.19 18.70 ± 0.25 26.44 ± 0.46 27.27 ± 0.30 26.85 ± 0.35
+ paraphrasing support and query 23.75 ± 0.37 21.08 ± 0.39 22.33 ± 0.38 20.11 ± 0.40 37.01 ± 0.49 26.06 ± 0.44

Table 6: Results on the test split of FS-NYT29. The scores in the "Previous Work" block are from Vacareanu
et al. (2024). Anchor-Word rules are not as effective as FS-TACRED on this dataset. However, their combined
performance with Model-Generated rules is on par with previous methods, surpassing MNAV and OdinSynth in the
5-shot scenario. Paraphrasing further improves performance, and our system outperforms all previous work in the
5-shot scenario.
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Support for per:stateorprovinces_of_residence:
- [The leader of the group of Americans]subject charged on Thursday with abducting children in Haiti is an [Idaho]object busi-
nesswoman with a complicated financial history that involves complaints from employees over unpaid wages, state liens on a
company bank account and lawsuits in small claims court.

Support for per:origin:
- There was just one problem: No mention was made of [Alan P. Gross]subject, an [American]object from Potomac, Md., who
passed the holiday in a Cuban military facility, where he has been imprisoned for a year without trial because he tried to help
Cuba’s Jews.

Support for org:founded_by:
- “The consumer is just tired” of all the bad news, said [Bill Martin]object, co-founder of [ShopperTrak]subject, based in Chicago.

Support for org:top_members/employees:
- [Patrick Graham]object, president of the local [Urban League]subject, a civil rights group, estimated that black unemployment in
the area was 2 1/2 times the overall rate.

Support for org:member_of:
- The [White Rose Coalition]object includes members of the Los Angeles National Impeachment Center (LANIC), CODEPINK,
Troops Out Now Coalition, World Can’t Wait, ANSWER, [Progressive Democrats of America]subject, the Green Party, Veterans
for Peace, United for Peace and Justice, and others.

Query sentence:
- Despite a paralyzing blizzard in Washington, Obama brought together Al Sharpton, founder of the National Action Network;
NAACP President [Benjamin Jealous]object; and Marc Morial, president of the [National Urban League]subject, for a conversation
that lasted nearly an hour.

Expected output: no_relation, as none of the relations corresponding to the support sentences hold between the two named
entities in the query sentence (indicated with square brackets).

Figure 4: Example of a 5-way, 1-shot episode from FS-TACRED. The problem is to identify the relation between
the entities in the query sentence (between square brackets) out of the five relations in the support sentences. Each
relation is exemplified with one example. Even though we only depict one query sentence in this figure, there are
three query sentences per episode in FS-TACRED.

A Examples of FS-TACRED 5-way
episode: 1-shot and 5-shot

In Figures 4 and 5, we depict examples from FS-
TACRED of a 5-way 1-shot episode and a 5-way
5-shot episode, respectively. In both scenarios, the
marked entities (surrounded by square brackets) in
the query sentence could belong to one of 5 target
relations (5-way) or the no_relation category. In
the 5-way 1-shot scenario, we are provided with
1 example for each target relation. In contrast, in
the 5-way 5-shot scenario, we are provided with 5
examples per target relation. In these examples, we
only show one query sentence per episode but we
are actually provided with three query sentences
per episode in FS-TACRED.

B Pliability Exercise: Original and
Modified Rules

We show some example rule changes from the pli-
ability exercise discussed in Section 6.2 in Fig-
ure 6. All the rules were related to the relation
per:date_of_birth which translates to “a person’s
date of birth.” In the rest of the paragraph, we dis-
cuss the changes made. We don’t modify the rule

“[entity=person] [word=born] [entity=date]” be-
cause it perfectly captures most statements regard-
ing a person’s date of birth. Note that this rule is ac-
tually a syntax rule and therefore, it only attempts
to match a syntactic path. We added a surface
rule “[entity=person] [lemma=be]? [lemma=bear]

[tag=IN]? [entity=date]” similar to the syntax
rule just discussed. We removed many rules
that were either nonsensical—“[entity=person] []*

[entity=date] []* [lemma=represent]”—or overly
broad—“[entity=person] [tag=VBN] [entity=date]”.
Finally, we modified an anchor-word rule by adding
an extra lemma: “[entity=person] []* [lemma=bear

| lemma=birth] []* [entity=date]”.

C Paraphrasing Procedure

We use ChatGPT 3.5 to generate paraphrases for
sentences in the FS-TACRED dataset. Below, we
describe this technique. For querying the ChatGPT
API, we utilize Azure OpenAI Services and use
the following prompt (inspired by Vacareanu et al.
(2024)):

Please generate 5 paraphrases for the following

sentence. Please ensure the meaning and the

message stays the same. Also, ensure that these
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Support for per:children:
- Knox’s father, Curt Knox, said [his]subject daughter looked “confident in what [she]object wants to say.”
- “We definitely see it as a victory,” said [Kunstler]object, the daughter of [William Kunstler]subject, the colorful crusading civil
rights lawyer who died in 1995.
- [Bibi]subject’s 18-year-old daughter, [Sidra]object, said she followed the crowd to the mosque and witnessed people hitting and
insulting her mother.
- She was in [her]object early teens when her mom told her dad he couldn’t see his daughters if [he]subject continued taking drugs.
- [Andrew E. Lange]object was born in Urbana, Ill., on July 23, 1957, the oldest son of [Joan Lange]subject, a school librarian, and
Albert Lange, an architect, and grew up in Easton, Conn.

Support for per:city_of_death:
- Grace Burgess, a spokeswoman for the [New York City]object medical examiner’s office, said the office on Tuesday ruled
[Cerniglia]subject’s death a suicide.
- A chef once featured on Gordon Ramsay’s “Kitchen Nightmares” show has jumped to [his]subject death from the George
Washington Bridge that connects [New York]object and New Jersey.
- The [New York]object City medical examiner on Tuesday ruled the death of 39-year-old Joseph Cerniglia a suicide and confirmed
that [Cerniglia]subject jumped from the bridge.
- Police say [Samudio]subject was kidnapped early June in Rio de Janeiro, driven to [Belo Horizonte]object and killed at a suburban
house.
- Dr. [Frank Baldino Jr.]subject who founded the pharmaceutical company Cephalon, best known for the drug Provigil, which is
used to increase alertness, died Thursday in [Philadelphia]object.

Support for per:schools_attended:
- [Piedra]subject testified he struggled to get his career going after graduating in 1998 from [Tufts University School of Dental
Medicine]object.
- He attended Princeton University and then the [University of California]object, Berkeley, where [he]subject received a Ph.D. in
1987 and was promptly hired as a professor.
- [Her]subject accusers, however, see a dark side to the [University of Washington]object student standing trial along with Italian
Raffaele Sollecito, the engineering student who became her lover just a week before the murder.
- [His]subject former student Mark Devlin of the [University of Pennsylvania]object was co-leader of the other, known as the
Microwave Anisotropy Telescope.
- Prosecutors had accused [Amanda Knox]subject, 22, then a student at the [University of Washington]object, and her boyfriend,
Raffaele Sollecito, 25, of killing her housemate, Meredith Kercher, 21, of Surrey, England, in November 2007 after a scuffle
escalated into their coercing her into a sex game.

Support for per:date_of_birth:
- Her birth name was Barbara Jean Davis, and [her]subject birth date was [Jan 31, 1949]object.
- [Baldino]subject was born [May 13, 1953]object, and grew up in New Jersey and Pennsylvania.
- [Lange]subject was born [July 23, 1957]object, in Illinois.
- [Ble Goude]subject was born in [1972]object in Gbagbo’s centre west home region, Guiberoua, and rose to become secretary
general of the powerful and aggressive Students’ Federation of Ivory Coast (FESCI).
- By the time Emily (born in 1978) and [Sarah]subject (born in [1976]object) were kids, their father had become better known for
representing accused Mafia don John Gotti and, in a mock trial staged for Fox TV’s “The Reporters,” a cat named Tyrone.

Support for org:top_members/employees:
- The general assembly of the Organisation of Asia-Pacific News Agencies ([OANA]subject) is seeking to boost the quality of the
40 news agencies across 33 countries that comprise it, said incoming OANA head and chief of Indonesia’s state-run Antara news
agency [Ahmad Mukhlis Yusuf]object.
- [Robert Holden]object, deputy director at [the National Congress of American Indians]subject, said the Washington, DC-based
group is hopeful the use of secured cards could be expanded to allow tribal members to travel abroad.
- The country’s installed wind power capacity will reach 20 gigawatts this year, said [Shi Lishan]object, vice director of the
[National Energy Administration]subject’s New Energy Department, the Xinhua news agency said Wednesday.
- [National Taiwan Symphony Orchestra]subject (NTSO) leader [Liu Suan-yung]object said Chang, who has played the violin since
he was five years old and was now one of the orchestra’s violinists, was the top prize winner.
- China’s primary energy consumption will be kept to between 4 to 42 billion tonnes of standard coal by 2015, [Jiang Bing]object,
director of the development and planning department of the [National Energy Administration]subject (NEA), said on Saturday.

Query sentence:
- Survivors include [his]subject wife, [Sandra]object; four sons, Jeff, James, Douglas and Harris; a daughter, Leslie; his mother,
Sally; and two brothers, Guy and Paul.

Expected output: no_relation, as none of the relations corresponding to the support sentences hold between the two named
entities in the query sentence (indicated with square brackets).

Figure 5: Example of a 5-way, 5-shot episode from FS-TACRED. The problem is to identify the relation between
the entities in the query sentence (between square brackets) out of the five relations in the support sentences. Each
relation is exemplified with five examples. Even though we only depict one query sentence in this figure, there are
three query sentences per episode in FS-TACRED.
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Original rules
Anchor-Word rules r1: [entity=person] []* [lemma=bear] []* [entity=date]

r2: [lemma=bear] []* [entity=person] []* [entity=date]
r3: [entity=person] []* [entity=date] []* [lemma=represent]

Model-Generated rules r4: [entity=person] [tag=VBN] [entity=date]
r5: [entity=person] [tag=NN] [tag=NN]? [tag=VBD] [entity=date]
r6: [entity=person] [word=born] [entity=date]

Rules after human modifications
Unmodified r6: [entity=person] [word=born] [entity=date]

Added r7: [entity=person] [lemma=be]? [lemma=bear] [tag=IN]? [entity=date]

Removed r2: [lemma=bear] []* [entity=person] []* [entity=date]
r3: [entity=person] []* [entity=date] []* [lemma=represent]
r4: [entity=person] [tag=VBN] [entity=date]
r5: [entity=person] [tag=NN] [tag=NN]? [tag=VBD] [entity=date]

Modified r1’: [entity=person] []* [lemma=bear | lemma=birth] []* [entity=date]

Figure 6: Examples of the modifications made to the original rules (Anchor-Word and Model-Generated rules) after
two hours of human analysis. From the original six rules, 1 rule is not modified; 1 rule is added, 4 rules are removed,
and 1 rule is modified.

two entities are preserved in the paraphrases:

<subject entity> , <object entity>. Output in JSON.

JSON should be of the format: { “paraphrases”:

[“..”, “..”, “..”, “..”, “..”] }. Sentence: <input

text>.

In this prompt, variable texts such as entities
and input text are enclosed in angular brackets. We
query the model named gpt-3.5-turbo, version 0613.

D Implementation and Model Training
Details

We fine-tuned the CodeT5Plus (Wang et al., 2023)
models using Nvidia RTX 4090, RTX 6000, V100,
and A100 GPUs with the HuggingFace Transform-
ers Library, version 4.41.2. (Wolf et al., 2019).
Our experiments required approximately 10 GPU-
days. We used the base version of CodeT5Plus
(model name codet5p-220m), which contains 220
million parameters, and fine-tuned it using Python
with Pytorch version 2.3.1 (Paszke et al., 2019)
and Pytorch Lightning version 2.2.5 (Falcon
and The PyTorch Lightning team, 2019). For
rule matching, we employed the Odinson pack-
age version 0.3.1 (Valenzuela-Escárcega et al.,
2020). To identify anchor words, we utilized
the all-MiniLM-L12-v2 model from the sentence-
transformers package version 3.0.0 (Reimers and
Gurevych, 2019).

Hyperparameters were tuned on the development
sets of the FS-TACRED and FS-NYT29 datasets.
We implemented early stopping based on develop-
ment set results, maintaining the same batch size
of 8 for both training and validation, while using

AdamW (Loshchilov and Hutter, 2017) as the opti-
mizer with a learning rate of 0.0001. For generating
rules with beam search in the multi-output scenario,
we produced a total of 5 sequences per input with
a beam size of 6. In the single-output scenario, we
maintained the beam size of 6 but generated only
one sequence per input.
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