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Abstract

Warning: This paper contains examples of
very offensive material. The widespread use
of social media necessitates reliable and ef-
ficient detection of offensive content to miti-
gate harmful effects. Although sophisticated
models perform well on individual datasets,
they often fail to generalize due to varying
definitions and labeling of "offensive content."
In this paper, we introduce HateCOT, an En-
glish dataset with over 52,000 samples from
diverse sources, featuring explanations gen-
erated by GPT-3.5-Turbo and curated by hu-
mans. We demonstrate that pretraining on
HateCOT significantly enhances the perfor-
mance of open-source Large Language Mod-
els on three benchmark datasets for offensive
content detection in both zero-shot and few-
shot settings, despite differences in domain
and task. Additionally, HateCOT facilitates
effective K-shot fine-tuning of LLMs with lim-
ited data and improves the quality of their ex-
planations, as confirmed by our human eval-
uation. Our repository is available at https:
//github.com/hnghiem-usc/hatecot .

1 Introduction

As social media has become indispensable to mod-
ern discourse, this channel of communication has
amplified the propagation of offensive content.
Speech that promotes hateful sentiments thrives on
such platforms, leading to real and significant harm
on their audience (Giachanou and Rosso, 2020;
Saha et al., 2019). However, “offensive content”
is still a contested construct, as what is and is not
allowed varies by platform. In research, different
approaches analyze semantically similar but still
distinct concepts: Cyber-bullying, Toxicity, Sexist,
Racist, Hate etc. (Poletto et al., 2021; Fortuna et al.,
2021; Nghiem et al., 2024; Nguyen et al., 2023),
further highlighting this contestedness.

Compounding the challenge, reliable detection
of offensive content typically requires significant

amounts of data. Sophisticated models tend to be
data-hungry, and the process of curating a dataset
tailored to a specific use case can be costly, time-
consuming, and emotionally challenging for anno-
tators (Founta et al., 2018; Toraman et al., 2022).
The typical pipeline consists of collecting samples
based on topic-relevant key words, then recruiting
either crowdworkers or experts to annotate data
before developing classification models (Paullada
et al., 2021). Each step incurs investment and may
inject subtle idiosyncrasies proportionate to the size
of the downstream dataset, further limiting trans-
ferable usefulness to related tasks (Fortuna et al.,
2021). The size of a dataset also does not necessar-
ily guarantee cross-domain transferrability (Poletto
et al., 2021; Fortuna et al., 2021).

In practical settings, users may desire trans-
parency from social media platforms. Therefore,
the ability to provide human-understandable justifi-
cation based on platform-specific policy becomes
an attractive feature for content moderation. Nev-
ertheless, current techniques often still fail to offer
intuitive explanatory signals (Yadav et al., 2023;
Babaeianjelodar et al., 2022; Ibrahim et al., 2022).

In this work, we attempt to simultaneously re-
duce the cost of data curation, enhance cross-
dataset generalization, and address the necessity
of explainable decisions for offensive content de-
tection. Specifically, our main contributions are:

1. We release HateCOT (Hate-related Chains-
of-Thought), a dataset of over 52, 000 samples
consisting of input text, a hate speech label,
and an explanation for that label. This corpus
is constructed by merging eight datasets with
explanations created by using GPT-3.5-Turbo
to augment human annotations.

2. We demonstrate the benefits of using Hate-
COT as a pretraining corpus before finetuning
on a target domain. Empirical results across
3 datasets show that open-source Large Lan-
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guage Models (LLMs) can effectively lever-
age definitions to adapt to new tasks using
zero-shot and few-shot settings via finetuning
and in-context learning .

3. We assess the quality of explanations gener-
ated by our finetuned models with respect to
the criteria described in their corresponding
definitions. These insights showcase LLM-
generated explanations as a means to enhance
transparency in content moderation.

2 Related Works

2.1 Offensive Speech Detection
Offensive speech detection has attracted consider-
able interest from the research community. Earlier
approach typically investigated coarse-grained la-
bels (e.g. Hate vs Not Hate) while subsequent
efforts explored more diverse facets of offensive
speech at higher granularity (Founta and Specia,
2021; Poletto et al., 2021; Vidgen and Derczyn-
ski, 2020). Increasingly more advanced models
emerged over time with the diversity of datasets.

Cross-domain generalization, however, still re-
mains a relevant challenge in the area. Fortuna
et al. (2021) found empirically that cross-dataset
transference is highly dependent on semantic sim-
ilarity between their label spaces. Recent works
have pretrained Transformer-based models, such as
HateBERT and fBERT, on specialized corpora to
enhance generalization to various levels of success
(Caselli et al., 2021; Sarkar et al., 2021).

2.2 LLMs in Offensive Speech Classification
Zampieri et al. (2023) assessed a range of open-
sourced LLMs on zero-shot prompting on the Of-
fensEval task and found their performance trailing
by a wide margin behind trained existing finetuned
BERT-based systems. Chiu et al. (2021) and Han
and Tang (2022) used the proprietary GPT-3 on
a set of different datasets and noted that informa-
tive contexts and examples could boost the model’s
performance to competitive levels on a different
set of data. Similarly, Roy et al. (2023) found that
adding explanation to pipeline could result in 10
to 20% boost in performance of LLMs over base-
lines. (Yang et al., 2023)’s study found that training
LLMs with step-by-step reasoning grounded by an-
notations could improve predictive power.

Pretrained language models have exhibited re-
markable ability in text generation (Celikyilmaz
et al., 2020). Recent large-size LLMs such as

GPT-3 and later models are capable of astound-
ingly fluent, convincing and knowledge-infused
outputs (Zhang et al., 2023). LLMs with hundreds
of billions of parameters even exhibit reasoning
capabilities (Wei et al., 2022, 2021), leading to
a flurry of research on prompting techniques to
harness their prowess, such as Chain-of-thought
(COT), Tree-of-thought etc. (Yao et al., 2023; Diao
et al., 2023). An interesting line of research lever-
ages LLMs to efficiently generate high volumes of
synthetic data for tasks with training resource is
scarce (Puri et al., 2020; Bao et al., 2023; White-
house et al., 2023). We build upon these works to
construct a dataset that can induce smaller LLMs
to efficiently adapt to new categories of offensive
content by leveraging their provided definitions.

3 Building HateCOT

We first describe the process to identify the candi-
date datasets from literature, and the procedure to
obtain annotation-guided explanations from these
samples (Section 3.1). We then perform a set of
validation experiments to optimize the data’s pa-
rameters for downstream tasks before augmenting
our corpus to its eventual size (Section 3.2).

3.1 Data Selection

Datasets for Training. We use the following cri-
teria to filter existing corpora related to offensive
speech detection:

▷ Size: datasets should contain more than 5,000
samples to ensure adequate size for subse-
quent sampling.

▷ Label: datasets should contain diverse label
space that address different facets of offen-
sive language. Both neutral and non-neutral
categories should be included for parity.

▷ Definition: each dataset should have the as-
sociated definitions with each label available
(Figure 6). This criteria is important to gener-
ate informative explanations.

▷ Target / Rationale: the dataset should provide
the a) targets and/or b) rationales, which are
fragments of free texts by human annotators to
convey some understanding of the correspond-
ing post. Figure 4 shows several examples of
rationales, demonstrating their unsuitability to
be used as explanations in their native format.

These criteria significantly reduce the number of
eligible candidates since many do not provide the
required annotation on target and definition. Table
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1a lists the 8 selected datasets.
Datasets for Evaluation. Using similar criteria,
we select 3 additional datasets with different la-
bel spaces and definitions for downstream testing
(details in Table 1b).

HateCheck was created by Röttger et al. (2021)
with the explicit goal of evaluating hate speech de-
tection models. 10 trained annotators labelled the
dataset using a binary schema: Hateful and Non-
hateful, with the reported inter-annotator agree-
ment coefficient to be 0.93.

HateXplain was primarily collected from Twit-
ter and the Gab platform (Mathew et al., 2021).
In addition to the labels Hate, Offensive, Normal,
annotators also provide justification for their se-
lection by highlighting the span of tokens, called
rationales, that contribute to their decision.

Latent_Hate was created on the premise that
offensive speech classifiers tend to bias towards
covert negative sentiment (ElSherief et al., 2021).
After discarding the augmented portion from the
Social_Bias dataset to avoid contamination, 22,584
samples collected from Twitter remained. This
dataset contains 3 coarse-grained labels Not Hate,
Explicit Hate, Implicit Hate, while a subset con-
tains 6 fine-grained categories, which we refer to
as Implicit_Hate in subsequent test regimens.
Obtaining Annotation-Guided Explanation. In-
spired by Yang et al. (2023)’s work that shows that
GPT-3.5 could augment human-written rationales
to create coherent texts that are still faithful to the
original content, we use the prompt template in Fig-
ure 1 to generate the explanation, which is guided
by the available annotations on label, target, and
rationale from the chosen corpora. For datasets that
contain multiple annotations per sample, we select
the ultimate label via majority voting and concate-
nate annotations on the targets and/or rationales
into a single string delimited by "|".

We use GPT-3.5-Turbo, accessed via the Ope-
nAI’s API, to generate explanations due to this
model’s affordability and its capability to follow in-
structions and generate coherent outputs (Ye et al.,
2023a; Koubaa, 2023). For each of the 8 training
datasets, we first randomly select and qualitatively
analyze 20 samples to ensure the generated expla-
nations are a) stylistically coherent, b) consistent
with the provided labels, and c) congruent with the
criteria denoted by the definitions. If deemed un-
satisfactory, we iteratively adjust the input prompt
until the quality threshold is achieved. Appendix
A.4 describes this quality assurance process and

Figure 1: Template used to obtain explanations from
GPT-3.5-Turbo guided by human-annotated rationales.

the final prompts for different scenarios.

3.2 Optimization of Synthesized Corpus

Extending previous works (Magister et al., 2022;
Ho et al., 2023), we are interested in optimizing 2
parameters central to the construction of our cor-
pus: the distribution of neutral vs. non-neutral
classes in the data and the number of explanations
per sample. The former has been noted to influ-
ence predictive powers (Rathpisey and Adji, 2019;
Casula and Tonelli, 2020). The latter, also referred
to as degree of reasoning diversity, could improve
knowledge distillation (Ho et al., 2023). We use
the open-source model Llama 2 Chat-HF of 7 bil-
lion parameters (hereby referred to as Llama 7B)
(Touvron et al., 2023) to perform tuning experi-
ments in this stage due to its manageable size and
strong classification performance. These empirical
findings then guide the final augmentation process.

3.2.1 Optimization Procedure
Below are the experiments we perform on a sample
of the collected data to optimize these parameters.
Description of Procedure. We choose 1,000 sam-
ples from each of the eight training datasets based
on the following distribution: 20% are selected
from neutral samples (categories that do not indi-
cate any offensive content, e.g., Not Hate, Normal),
while the remaining samples are evenly distributed
among the non-neutral categories. Inspired by Ho
et al. (2023) that diverse reasoning paths could im-
prove knowledge distillation, we collect 4 alterna-
tive explanations, or degree of reasoning diversity,
generated by GPT-3.5-Turbo for these samples us-
ing temperature 0.7, resulting in 32,000 samples.

Figure 5 illustrates the Alpaca-styled template
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Dataset Total
Size

Sample
Size

Platform Target Ration. Selected Labels

Salminen et al. (2018) 137,098 5, 418 Y, F ✓ Hateful, Neutral
Qian et al. (2019) 34,000 5, 034 G ✓ Not Hate, Hate
Sap et al. (2020) 44,671 6, 033 G, R, T ✓ ✓ Not Offensive, Offensive
Vidgen et al. (2021a) 27,494 6, 717 R ✓ ✓ Neutral, Person Directed Abuse, Affiliation

Directed Abuse, Identity Directed Abuse
Vidgen et al. (2021b) 10,152 7, 209 S ✓ None, Derogation, Dehumanization, Ani-

mosity, Support, Threatening
Sachdeva et al. (2022) 135,556 7, 272 Y, T, R ✓ Not Hate speech, Hate Speech
Hartvigsen et al.
(2022)

274,186 7, 239 S ✓ Benign, Toxic

Toraman et al. (2022) 100,000 7, 215 T ✓ Normal, Offensive, Hate

Total - 52, 137

(a) Datasets used to create training corpus. Sample Size denotes the number of chosen samples from corresponding dataset
included in the training corpus.

Dataset Total
Size

Split
Ratio

K
val

K
test

Platform Target Ration. Selected Labels

HateCheck 3,728 50:50 300 500 S ✓ Non-hateful, Hateful
HateXplain 20,148 60:40 200 400 G, T ✓ ✓ Normal, Offensive, Hate
Latent_Hate 19,112 60:40 200 400 T ✓ ✓ Not Hate, Explicit Hate, Implicit Hate
Implicit_Hate 4,153 60:40 - 150 T ✓ ✓ White Grievance, Incitement to Vi-

olence, Inferiority Language, Irony,
Stereotypes and Misinformation, Threat-
ening and Intimidation

(b) Datasets for testing

Table 1: Sample Size denotes the number of entries in the final corpus. Target and Ration. indicates the availability
of annotation on Target or Rationale in the dataset. For Platform, F: Facebook, Y: Youtube, G: Gab, R: Reddit, S:
Synthetic, T: Twitter. K val and K test represent the number of sampler per class drawn during development of the
training corpus and final testing, respectively. Full definitions in Table 6 and 7.

to format each post with its corresponding label,
generated explanation, definitions along with the in-
struction into blocks of an input prompt (Taori et al.,
2023). Using the described corpus, we supervised
finetune Llama 7B via LoRA techniques (technical
details specified in Appendix A.2) (Hu et al., 2021).
Then, we perform zero-shot classification using the
same template to prompt the finetuned model to
generate the explanation and label for posts drawn
from the test datasets HateCheck, HateXplain, La-
tent_Hate. We omit Implicit_Hate at this stage due
to this set’s markedly different 6-label space. For
this part, posts are drawn using K-shot sampling
(equal number of samples for each class) on the
Validation portion of the test data, based on the
values of K val shown in Table 2b.

Experiment Configurations. For the first experi-
ment, the training data is split into subsets whose
distribution between the neutral (NE) class and non-
neutral class(es) (NN) described by the following

formula: NN = R ∗NE, where R ∈ {1, 2, 3, 4}
is the ratio coefficient. We set the number of ex-
planations per sample to 2 , the smallest value
that still enables the benefit of reasoning diversity.
For the second experiment, we construct the sub-
sets by varying the degree of reasoning diversity
D ∈ {1, 2, 3, 4} of each post.
Answer Extraction. We extract the generated ex-
planation and predicted labels after their respective
tags. If the models generate multiple items from
the dataset’s label space, we select the first admis-
sible label. If no acceptable output is obtained, we
randomly select an item in the label space.

3.2.2 Insights and Augmentation

We report Llama 7B’s macro F1-scores on the vali-
dation set of each configuration in Table 2. A bal-
anced distribution between neutral and non-neutral
classes in the training corpus is beneficial, as re-
flected by the substantially high mean F1-score
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of 0.643 when R=1. On the other hand, having 3
explanations per sample (D=3) achieves the best
overall performance across 3 test sets, consistent
with Ho et al. (2023)’s findings on the benefit of
multiple reasoning paths. However, performance
markedly degrades when D=4. Our manual anal-
ysis reveals that the quality of generated outputs
deteriorates as the degree of diversity increases,
consequently affecting the performance of models
trained on this data.

Guided by these empirical findings, we augment
the training corpus by selecting approximately
1,800 extra samples from each of the 8 datasets
while preserving the 1:1 balanced ratio of neutral
to non-neutral classes. Then, we collect 3 explana-
tions per sample using the described mechanism,
resulting in a final corpus of 52,137 samples (Table
1a), hereby referred to as HateCOT.

R=1 R=2 R=3 R=4
HateCheck 0.879 0.750 0.650 0.574
HateXplain 0.534 0.533 0.495 0.528
Latent_Hate 0.516 0.473 0.456 0.408
Average 0.643 0.585 0.534 0.503

(a) Results for Ratio configurations (R)
D=1 D=2 D=3 D=4

HateCheck 0.851 0.879 0.864 0.783
HateXplain 0.549 0.534 0.597 0.607
Latent_Hate 0.480 0.516 0.477 0.465
Average 0.627 0.643 0.646 0.618

(b) Results for number of explanations per sample (D)

Table 2: Macro F1-scores for different configurations
of distribution between neutral vs. non-neutral classes
(top) and number of explanations per sample (bottom)
on validation set. Best average performance in bold.

4 Experiments on Test Sets

We perform experiments to answer 3 questions.
First, does HateCOT improve zero-shot classifica-
tion of open-sourced LLMs on unseen datasets?
Second, how much data is necessary to enable com-
petitive performance via in-domain finetuning af-
ter pretraining on HateCOT? Finally, is in-context
learning a viable alternative to finetuning?
Models In addition to Llama 7B in Section 3.2.1,
the following open-sourced models are selected.

▷ Llama 13B A larger variant of the instruction-
tuned Llama 7B with 13 billion parameters.

▷ OPT-IML Based on the original OPT (Open
Pre-trained Transformer Language Models)
(Zhang et al., 2022), this encoder-only model
contains 1.3 billion parameters and was fur-

ther trained on the Instruction MetaLearning
(IML) dataset (Iyer et al., 2022).

▷ Flan-T5-L Chung et al. (2024) further
instruction-finetuned the encoder-decoder T5
family of models (Raffel et al., 2020). We use
the Large version of 780 million parameters.

▷ COT-T5-XL A variant of the Flan-T5-XL
(3 billion parameters), this model is further
finetuned on the CoT dataset, a collection of
1.8 million samples augmented with chain-of-
thought-style explanations (Kim et al., 2023).

4.1 Zero-shot Classification
We prompt the models to perform classification
with no in-context examples via 2 modes: No Ex-
planation, where the model directly predicts the
label for the input, and With Explanation, where a
justification is required before the predicted label.
We finetune the base models using only HateCOT
and evaluate their performance on the 4 test sets as
in Section 3.2.2 (more details in Appendix A.2).

From results presented in Figure 2a, the smaller
models Flan-T5-L and OPT-IML are unable to gen-
erate explanations when prompted. In contrast,
their scaled-up counterparts could follow instruc-
tions at all settings. Asking base (off-the-shelve)
models to generate an explanation before the la-
bel results in observable boost to Llama models on
HateCheck and HateXPlain, but actually hampers
performance on Latent_Hate and its derivative Im-
plicit_Hate, which are notably challenging due to
its covert nature (ElSherief et al., 2021).
Model Choice Matters Pretraining on HateCOT
unanimously enables all models to generate ex-
planations. While smaller models receive no ob-
servable boost, larger models (COT-T5-XL, Llama
7B, Llama 13B) are considerably enhanced com-
pared to their base counterparts. With the ex-
ception of HateXplain, the HateCOT-pretrained
version of COT-T5-XL attains an increment in F1
scores of 7.6% on HateXplain and 9.5% on La-
tent_Hate over the base counterpart without ex-
planations. Similarly, Llama 7B observes 23.9%,
25.6%, 10% increment on HateCheck, HateXplain
and Latent_Hate, respectively. These statistics
are 27.9%, 118.5%, and 10.2% for Llama 13B.
Notably, all models yield non-competitive perfor-
mance on Implicit_Hate.

The reduced performance of HateCOT-
pretrained models compared to their base
counterparts without explanations (e.g.: Flan-T5-L
and OPT-IML on almost all test sets) is in line
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with literature as COT-style prompting tends to
favor larger models (Wei et al., 2022; Wang et al.,
2024; Suzgun et al., 2023). Even the reduced
F1 scores of COT-T5-XL on HateXPlain and
Implicit_Hate is consistent with this model’s
suboptimal performance relative to its larger
variants, as showcased in Kim et al. (2023).
These results serve as an empirical reference for
researchers to select the appropriate model size for
their respective task.

4.2 In-Domain Finetuning

We further finetune COT-T5-XL, Llama 7B, Llama
13B using data from the training portions of the
test datasets, including Implicit_Hate. To simu-
late low-resource settings, we choose 256 samples
uniformly at random from each class, then aug-
ment them with explanations as described in Sec-
tion 3.1. Both the Base and Pretrained versions of
the models are then finetuned using various K-shot
∈ {32, 64, 128, 256} training data from this pool.

In Figure 2b, the general superiority of finetun-
ing models after HateCOT over their base coun-
terpart indicates enhanced generalizability with
limited in-domain data. However, too little train-
ing data (K≤64) may impair models’ performance
compared to the zero-shot setting, likely a result of
attempting to optimize a large number of parame-
ters on limited signals. Stable gains are attained at
K=128, and at K=256, significant boost over the
non-finetuned zero-shot results are observed.

Interestingly, decoder-only models (Llama) con-
siderably outperform encoder-decoder COT-T5-XL
on the 2 and 3-way classification tasks, yet the
reverse is observed for the nuanced 6-way Im-
plicit_Hate. On this task, only COT-T5-XL con-
sistently scales with the increment in training data
to reach the max F1 score of 0.56, while Llama
models plateau at sub-0.3 range even at K=256.

We further select the best performing model at
K=256 for each dataset and finetune their Base
versions with the entire training data and no ex-
planations no definition. In Figure 2b and Table
3, in-domain finetuning after HateCOT achieves
competitive results even with only a fraction of
the full training data. Furthermore, prompting for
explanations enables Llama 13B and COT-T5-XL
to attain performance that surpasses using the full
training data on Latent_Hate and Implicit_Hate.

4.3 In-context Learning

As an alternative to in-domain finetuning, we in-
vestigate the models’ performance using in-context
learning (ICL), when a number of complete exam-
ples are provided as part of the input prompt. We
select 1 sample from each class in the training data
of each dataset, then obtain its the associated ex-
planation from GPT-3.5-Turbo. The sets of post,
explanation and label are arranged in the same for-
mat in the same template shown in Figure 5. We
run inference for classification results over 5 seeds,
which also randomly permutes their order.

Figure 2c shows the mean, minimum and maxi-
mum values of macro F1 scores over the seeds for
the base, HateCOT-pretrained only (Pretrained),
and in-domain finetuned (K=256) versions of
Llama 7B and Llama 13B. COT-T5-XL regularly
generates overly repetitive outputs, and thus omit-
ted. The range of F1 scores is large regardless of
settings, an observation in line with the variance
of in-context learning in literature (Lu et al., 2022;
Dong et al., 2022). Unsurprisingly, base models’
performances tend to be inferior to their finetuned
counterpart. Interestingly, the max F1 scores of
finetuned models with ICL are not appreciably bet-
ter than those in the zero-shot counterparts (Fig-
ure 2b). In contrast, except for Llama 7B on Ha-
teXplain, the best scores of pretrained models ap-
proach those of the finetuned models–particularly
for Llama 13B.

This finding suggests another advantage of pre-
training on HateCOT: boosting performance via
ICL without additional in-domain finetuning, an
area that has attracted growing attention (Min et al.,
2021; Wang et al., 2023b; Ye et al., 2023b). Nev-
ertheless, there exists the trade-off: ICL examples
with explanations extend significantly the context
length, and ICL inferencing takes considerably
more time compared to zero-shot, making the latter
more resource-efficient overall.

4.4 Assessment and Recommendations

From empirical observations, we make the follow-
ing recommendations to construct a cost-efficient
pipeline for classifier on novel domains:

▷ The most consistent benefit of HateCOT is
its capacity to enable data-efficient in-domain
finetuning following pretraining.

▷ Practitioners should choose models of suf-
ficient number of parameters for the task.
Larger instruction-tuned LLMs appear to
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(a) Macro F1 scores of LLMs in zero-shot setting using 3 configurations. Base refers to out-of-the-box models, +HateCOT
denotes their pretrained counterpart on our dataset. FT5L: Flan-T5-L, CT5XL: COT-T5-XL. Results for Base Flan-T5-L and
OPTIML models for With Explanation settings omitted to reflect their inability to generate explanation according to the prompt.

(b) Macro F1 scores for models in zero-shot setting with explanation after K-shot in-domain finetuning at various values of K.
Dashed line represents finetuned base models, solid line represents models pre-trained on HateCOT, then in-domain finetuned.
For each dataset, the horizontal dashed line represents the base version of the best performing model at K=256 which is finetuned
using the entire training data without any rationale for comparison, denoted as Best model (Full data, No. exp).

(c) Min, max and mean of macro F1 scores for Llama 7B and Llama 13B over 5 seed using in-context learning. Pretrained denotes
models finetuned on HateCOT only. Finetuned denotes ICL performed on models that have been both HateCOT-pretrained then
K=256 shot in-domain finetuned.

Figure 2: Performance resutls of LLMs on test sets in various settings.

Dataset Best Model
@K=256

F1
@K=256

F1 Base
+ Full F1 % Data Size

@K=256
Data Size

Full Data %

HateCheck LLAMA 13B 0.95 0.99 96% 512 1,864 27%
HateXplain LLAMA 13B 0.64 0.72 89% 768 12,088 6%
Latent_Hate LLAMA 13B 0.66 0.64 103% 768 11,460 7%
Implicit_Hate COT-T5-XL 0.56 0.38 147% 1,536 2,707 57%

Table 3: Comparison of performance metrics for the best performing models finetuned using K=256 in-domain post
HateCOT vs. finetuned on the full training set and no explanation nor definition. F1% denotes the percentage of
macro F1 score of the K=256 finetuned model over that of the model trained on full data. Similarly, Data % denotes
the percentage of data size used by the K=256 regimen over the full data.

more effectively capitalize on HateCOT pre-
training regimen before in-domain finetuning.

▷ Instead of devoting resources to curate sub-
stantial training data, practitioners could focus
on obtaining high quality annotations for rep-
resentative rationales, and augment them into

explanations using their LLM of choice. Al-
ternatively, practitioners may choose to curate
the explanations organically to achieve cer-
tain desired thematic qualities. This process
may be iterated until targeted performance is
reached according to some guiding metrics
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with acceptable quality of explanation.

5 Quality of Explanations

In addition to the enhanced classification prowess,
we investigate whether pretraining on HateCOT
also improves the quality of explanation LLMs.
To this end, the following 2 human quality assur-
ance (QA) experiments are conducted. In QA 1,
we assess if human annotators prefer the explana-
tions generated by the base or HateCOT-pretrained
LLMs (COT-T5-XL, Llama 7B, Llama 13B). In QA
2, we perform in-domain K-shot finetuning on the
aforementioned models and examine how anno-
tators evaluate their generated explanations. An
additional assessment of Target Identification is
presented in Appendix A.6.

5.1 QA 1: Base vs. Pretrained
From the outputs of the test sets generated by the 3
LLMs, we select 50 samples uniformly at random
whose explanations from the Base and HateCOT-
pretrained versions agree on the predicted label, for
a total of 150 samples and 300 explanations. We
then recruit 13 annotators from the crowdsource
platform Amazon Mechanical Turk and solicit their
annotation on these explanations (Appendix A.5).
Using the template in Figure 6, we ask the annota-
tors to indicate their preferred explanation that bet-
ter suits the purpose of content moderation based
on fluency, soundness and the alignment with the
definition of the chosen label. Each post is anno-
tated by 5 humans, resulting in 750 annotations.

In Table 4, we observe that the raw frequency
count for explanations generated by the HateCOT-
pretrained models exceed their base version’s. Sim-
ilarly, even when tallying by majority vote–where
the explanation is chosen by at least 3 out of 5
annotators–preference for those generated by the
Pretrained models still prevails. We note that the
preference margin is smaller for Llama 13B Pre-
trained, likely due to this model’s already strong
generative capabilities.

5.2 QA 2: Inter-model Comparison
Inspired by Wang et al. (2023a); Lin et al. (2023);
Yang et al. (2023), we assess the quality of expla-
nations generated by finetuned models (K=256) on
the following criteria:

▷ Persuasiveness: how convincingly the expla-
nation justifies its chosen label for the post.

▷ Soundness: how valid and logical is the ex-
planation with respect to the label’s definition.

Human (Frequency Count) Human (Majority Vote)

Model Base Pretrained Base Pretrained

COT-T5-XL 62 (24.8%) 188 (75.2%) 6 (12%) 44 (88%)
Llama 7B 109 (43.6%) 141 (56.4%) 19 (38%) 31 (62%)
Llama 13B 114 (45.6%) 136 (54.4%) 22 (44%) 28 (56%)

Table 4: Comparison of Base and Pretrained models
in Human Evaluation. Frequency Count : count per
annotation; Majority Vote indicates aggregate count by
the version is preferred by at least 3 out of 5 annotators.

Figure 3: Heatmap for the average rating of explanations
by finetuned Model (x-axis) and Dataset (y-axis) on 3
criteria from 1 (least) to 5 (very). Overall indicates
average scores aggregated over all datasets. Triplets of
scores italicized and in bold are those whose p-value <
0.05 by one-way ANOVA test that compare ratings of
3 models across the dataset on that row. Italicized-only
scores indicate marginal significance (p-value ≈ 0.07).

For this QA task, we recruit 6 annotators also
from Amazon Mechanical Turk (Appendix A.5).
Using the template in Figure 7, we collect their nu-
merical ratings on a scale from 1 (least) to 5 (very)
on these criteria for 50 posts per model per dataset,
for a total of 600 annotations. Figure 3 displays the
mean ratings for each model-dataset pair, as well
as Overall scores averaged across all datasets. The
average Ovearall ratings for both Persuasiveness
and Soudness are above 3.2 out of 5, indicating
generally positive reception by human evaluators.
Interestingly, there exists a degree of correlation
between the models’ better classification perfor-
mance (Figure 2b) and higher mean ratings on each
dataset, a useful artifact to calibrate models. These
ratings may serve as benchmarks for future works.

6 Conclusion

We show empirically that our HateCOT dataset con-
siderably enhances offensive speech detection even
with limited training data while producing high-
quality explanations. We invite future research to
explore other benefits of LLM-augmented data and
extend them to other related low-resource areas.
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Limitations

We first acknowledge that our work is restricted
to English corpora, a common limitation among
literature on offensive speech (Yin and Zubiaga,
2021; Poletto et al., 2021). However, our approach
sets a proof-of-concept for researchers to construct
similar corpus in other languages by leveraging ex-
isting resources. Furthermore, our developmental
pipeline is considerably more data-efficient than
conventional approaches (Section 4.1, 4.2), poten-
tially lowering the barrier of entry for practition-
ers without access to abundant resources. There-
fore, this work invites further expansion on mul-
tilingual datasets, particularly to develop corpora
with clearly defined definitions to facilitate synergy
with other research.

Second, due to computational limitations, we
could not perform experiments on larger open-
source models. With the development of newer,
more powerful models, it is reasonable to expect
their performance to further improve though the
use of this dataset of our corpus, as demonstrated
by our empirical results.

Finally, we recognize the risk of propagating im-
plicit biases that LLMs are known to carry (Cheng
et al., 2023; Gupta et al., 2023). However, we note
that the approach of using LLMs (GPT-3.5-Turbo
in this paper) to bridge the logical gaps in original
rationales has been shown to produce outputs less
prone to logical failures (Yang et al., 2023). Biases
in Pretrained Language Models have been attract-
ing much attention in the research community. We
invite further works to consider our approach to
reduce hallucinations and biases in text generation.
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A Appendix

A.1 Data Pre-Processing

The datasets used in this work are released by their respective authors for research purpose. Aware of
the risk of containing confidential in social media data, we anonymize posts during the curation process
by replacing user handles with the string ’<user>’. Our many layers of randomization provides further
protection with respect to privacy.

A.2 Technical Specification

A.2.1 Inferencing
We used OpenAI’s API to access the publicly available version of GPT-3.5 in November 2023, and GPT-4
in January 2024. To obtain explanations from the former (as described in 3.2.2), we choose temperature
among candidates {0.3, 0.5, 0.7} and settle on the last value during inference. This value is selected based
on literature and multiple iterations of qualitative analysis of outputs (Yang et al., 2023; Kim et al., 2023).
For GPT-4 and other open-source models, we use greedy decoding.

A.2.2 Finetuning
To train models, we employ both full supervise finetuning (FLAN-T5-Large, OPT-IML) and LoRA
parameter-efficient techniques (all other models). LoRA models set to 8-bit quantization using the
BitsandByes library. Training FLAN-T5-Large, OPT-IML, LLAMA 7B models was done on 2 Nvidia
RTX A6000 GPUs, whereas COT-T5-XL, Llama 13B used 4 GPUs. Hyperparameters for the following
candidates are tuned on the validation set of sampling K=64 shots from the leftover training samples by
optimizing macro F1-score metric. Options in bold indicate final chosen values among multiple across all
models to finetune on HateCOT.

• Learning rate: {5e-5, 1e-4, 3e-4}
• Training Epochs: {1, 2, 3}
• LoRA Rank: {16, 32, 64} (alpha=rank*2)
• LoRA Target Modules: {Q, V}
• Batch size: 2
• Gradient Accumulation Step: 2

For in-domain K-shot finetuning, the values above remain the same except for the following variations in
Learning Rates, which is set to 1e-4 for HateCheck, HateXplain, Latent_Hate, and 3e-4 otherwise.

A.3 Variants of Prompt Template for Explanation

The 8 datasets introduced in Section 3.1 may not always have annotations on all required fields; thus, we
modify the first sentence in the Instruction block in Figure 5 with the following variants when appropriate:

• Only Target is available: ’Provide a brief paragraph to explain step-by-step how the post targets the
specified group or entity, and how that leads to the specified Label based on the given Definitions.’

• Both Target and Rationale are available: ’By elaborating on the provided Annotation, provide a brief
paragraph to explain step-by-step how the post targets the specified group or entity, and how that
leads to the specified Label based on the given Definitions.’

A.4 Quality Review of Sample Explanations

Elaborating on the criteria outlined in Section 3.1, we review the quality of the generated explanation by
GPT-3.5-Turbo on the following items:

• Grammatically correct
• Succinct in their justification of the chosen label.
• Persuasive and logical in their reasoning for the chosen label

We discard explanations that are too verbose, and/or not choosing the label already provided by human
annotation (fortunately, this scenario happens rarely, likely due to the presence of existing rationales
guiding the extra generated outputs). We also remove explanations that conjure incorrect and/or irrelevant
facts to the context to discourage hallucination and encourage a high degree of pertinent to the target post.
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Dataset COT-T5-XL Llama 7B Llama 13B

HateCheck 94.5 % 96.5 % 93.5 %
HateXplain 71.0 % 74.0 % 74.0 %
Latent_Hate 50.5 % 51.0 % 44.5 %

Table 5: Percentage out of 200 samples per dataset, where explanations correctly identify at least 1 of the targets
listed by human annotators by each model.

A.5 Human Annotation for QA Experiment
A.5.1 QA 1
With approved IRB, we recruit 13 crowdsource workers using the Amazon Mechanical Turk platform to
annotate 50 samples per model, for a total of 150 data points for the task described in Section 5.1. The
annotators was paid a fair wage at $15 per hour, and forewarned about the nature of the task. Annotators
must be fluent English speakers. We also limit each annotator to no more than 100 posts (60% of the total
150 samples per model) to maintain diversity of opinions. We observe that preference for explanations
generated by Pretrained models remains consistent with GPT-4’s.

The demographic breakdown of the 13 annotators are described below:

• Gender: Female (8), Male (5)

• Age: 18-29 (2), 30-39 (4), 40-49 (4), 50+ (3)

• Education: High School (2), 2-year college (5), 4-year college (4), Master’s or Higher (2)

A.5.2 QA 2
For this experiment, each annotation task consists of the explanations generated by 3 models are grouped
by the sample. This division resutls in 200 tasks. 6 Amazon Mechanical Turk workers are recruited, with
similar qualification criteria as described above.

The demographic breakdown of the 6 annotators are described below:

• Gender: Female (3), Male (3)

• Age: 18-29 (1), 30-39 (2), 40-49 (3)

• Education: 2-year college (2), 4-year college (4)

A.6 QA 3: Target Identification
We investigate the in-domain finetuned models’ capabilities to identify the target of the sentiments
expressed by the post. We also randomly select 200 samples from each dataset that have the Target
variable annotated by humans, then ask GPT-4 to judge whether the explanations from the models mention
at least one of the listed targeted groups using the template in Figure 8. Note that we encourage GPT-4 to
consider potential variance of expression and not restrict to exact matches.

Table 5 shows the percentage of accuracy on this task. Similar levels of descending performances
are observed in the presented order of test datasets. However, this observation may be an artifact of the
differences between the annotations targets among datasets: HateCheck has a limited number of discrete
categories while Latent_hate contains multiple combinations of free-text labels. We urge practitioners to
consider this factor while curating training data if target identification is desired.
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Dataset Definition

Salminen et al.,
2018

Neutral : A post that is not offensive to any group of people. Hateful: An offensive post,
motivated, in whole or part, by the writer’s bias against an aspect of a group of people.

Qian et al., 2019 Not Hate : Does not contain any attack on people based on protected characteristics. Hate:
Contains direct attack on people based on protected characteristics such as race, ethnicity,
national origin, religious affiliation, sexual orientation, caste, sex, gender, gender identity, and
serious disease or disability.

Sap et al., 2020 Not Offensive : not offensive to anyone. Offensive : denotes the overall rudeness, disrespect,
or toxicity of a post. whether a post could be considered offensive to anyone.

Vidgen et al., 2021a Neutral: Content that does not fall into other categories, usually entirely unrelated to abuse,
hate, prejudice, or intolerance. Identity Directed Abuse: Content that directs abuse at an
identity, which relates to fundamental aspects of individuals’ social position, community and
self-representation. An identity includes but is not limited to religion, race, ethnicity, gender,
sexuality and sexual preferences, immigration status, nationality, ableness, physical appearance
and class. Affiliation Directed Abuse : Content that directs abuse at people who have a voluntary
affiliation with a profession, membership, association, ideology, or other well-defined group or
collective. Person Directed Abuse : Content that directs abuse at an identifiable person.

Vidgen et al., 2021b Derogation : content which explicitly attacks, demonizes, demeans or insults a group. Animosity
: content which expresses abuse against a group in an implicit or subtle manner. Threatening
: content which expresses intention to, support for, or encourages inflicting harm on a group,
or identified members of the group. Support For Hateful Entities : content which explicitly
glorifies, justifies or supports hateful actions, events, organizations, tropes and individuals
collectively, entities. Dehumanization : content which perceives or treats people as less than
human. Not Hate : content that falls into none of the other categories.

Basile et al., 2019 Hate Speech : language that is used to expresses hatred towards a targeted group or is intended
to be derogatory, to humiliate,or to insult the members of the group. may also be language that
threatens or incites violence. Offensive Language : may contain offensive terms but targets
disadvantaged social groups in a manner that is potentially harmful to them. Neither : language
that does not all into either of the other categories.

Hartvigsen et al.,
2022

Benign: Text that is not harmful nor offensive to anyone. Toxic: Text that could be seen as
harmful to anyone, may contain offensive, rude humor, insults, personal attacks, profanity,
aggression, may refer to targeted group with harmful intent that is expressed in stereotypes or
lewd manners

Toraman et al., 2022 Hate : target, incite violence against, threaten, or call for physical damage for an individual or a
group of people because of some identifying trait or characteristic. Offensive : humiliate, taunt,
discriminate, or insult an individual or a group of people in any form, including textual. Normal
: does not fall into any of the other categories.

Table 6: Labels and definitions of 8 datasets used to synthesize training corpus. Definitions are lifted directly from
their original works, with exceptions of minor adjustment for stylistic consistency.
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Dataset Definition
HateCheck Non-hateful: Language that does not contain any abusive sentiment targeted at a protected

group. Hateful: Abuse that is targeted at a protected group or at its members being a part of that
group. Protected groups include age, disability, gender identity, familial status, pregnancy, race,
national or ethnic origins, religion, sex or sexual orientation.

HateXplain Normal : neither hate speech nor offensive. Hate Speech : language which attacks, demeans,
offends, threatens, or insults a group based on race, ethnic origin, religion, disability, gender, age,
sexual orientation, or other traits. it is not the presence of certain words that makes the text hate
speech, rather you should look the context the word is used in the text. Offensive Language :
usage of rude, hurtful, derogatory, obscene or insulting language to upset or embarrass people.

Latent_Hate Not Hate : speech or actions that do not involve any form of hatred, prejudice, or discrimination
toward individuals or groups based on their characteristics. Explicit Hate: openly expressed,
direct forms of hatred and prejudice toward individuals or groups based on their characteristics.
Implicit Hate: coded or indirect language that disparages a person or group on the basis of
protected characteristics like race, gender, and cultural identity.

Implicit_hate White Grievance : includes frustration over a minority groups perceived privilege and casting
majority groups as the real victims of racism. This language is linked to extremist behavior and
support for violence. Incitement To Violence : includes flaunting in group unity and power
or elevating known hate groups and ideologies. Inferiority Language : implies one group or
individual is inferior to another, and it can include dehumanization, denial of a person’s humanity
, and toxic language that compares the target with disease, insects, animals . Related to assaults
on human dignity, dominance, and declarations of superiority of the in group. Irony : refers
to the use of sarcasm , humor, and satire to attack or demean a protected class or individual.
Stereotypes And Misinformation : associate a protected class with negative attributes such as
crime, or terrorism. includes misinformation that feeds stereotypes and vice versa, like holocaust
denial and other forms of historical negationism. Threatening And Intimidation : conveys
a speaker’s commitment to a target’s pain, injury, damage, loss or violation of rights, threats
related to implicit violation of rights and freedoms, removal of opportunities, and more subtle
forms of intimidation.

Table 7: Labels and definitions for 4 test datasets.
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(a) Example from Toraman et al. (2022)

(b) Example from Salminen et al. (2018)

(c) Example from Sap et al. (2020)

Figure 4: Examples drawn from our training corpora showing their native Post, Target and Rationale, along
with the corresponding GPT-3.5-Turbo-enhanced explanations. Due to their nature as fragmented annotations,
verbatim Rationales are not serviceable explanation, but can serve as guiding signals that leverage GPT’s generative
capabilities to construct legible passages with detailed justifications.
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Figure 5: Template used to prompt LLM for classification inference.

Figure 6: Template for QA Experiment 1. In this example, EXP_A is preferred.
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Figure 7: Template for QA Experiment 2.

Figure 8: Template for QA Experiment 3.
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