
Findings of the Association for Computational Linguistics: EACL 2024, pages 5967–5974
November 12-16, 2024 ©2024 Association for Computational Linguistics

Toolken+: Improving LLM Tool Usage with Reranking and a Reject Option

Konstantin Yakovlev1*, Sergey Nikolenko2,3, Andrey Bout4*

1HSE University, Moscow, Russia
2ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia,

3St. Petersburg Department of the Steklov Institute of Mathematics, Russia,
4Yandex, Moscow, Russia

Correspondence: kdyakovlev@hse.ru, sergey@logic.pdmi.ras.ru, andrey-bout@yandex-team.ru

Abstract

The recently proposed ToolkenGPT tool learn-
ing paradigm demonstrates promising perfor-
mance but suffers from two major issues: first,
it cannot benefit from tool documentation, and
second, it often makes mistakes in whether to
use a tool at all. We introduce Toolken+ that
mitigates the first problem by reranking top k
tools selected by ToolkenGPT and the second
problem with a special “Reject” option such
that the model will generate a vocabulary token
if “Reject” is ranked first. We demonstrate the
effectiveness of Toolken+ on multistep numeri-
cal reasoning and tool selection tasks.

1 Introduction

Recently, large language models (LLM) have been
extended by allowing access to external tools
such as symbolic computation engines (Gou et al.,
2023b), databases that serve as external mem-
ory (Mu et al., 2023), and others (Schick et al.,
2023; Qin et al., 2023). Tool learning paradigms
can be broadly divided into (1) supervised fine-
tuning to leverage tools (Schick et al., 2023), which
works well but lacks flexibility and cannot general-
ize to unseen tools, and (2) in-context learning (Lu
et al., 2023), where demonstrations are provided in
the prompt; this method is very easy to extend and
generalize but often bumps against inherent con-
text length limitations of LLMs (Tay et al., 2021).
ToolkenGPT (Hao et al., 2023) aims to have the
best of both worlds: each tool is represented by
a special token called toolken that has a trainable
embedding and extends the vocabulary. Once a
toolken has been predicted, the model switches
into “tool mode” where it uses in-context examples
to fill in the tool’s arguments, calls it, sends the
results back to text, and returns to language mod-
eling mode. Toolkens require very few parameters
(toolken embeddings) to be trained while keeping

* Work was done while at Huawei Noah’s Ark Lab

add

Question: James writes a 3-page letter to 2
different friends twice a week. How many

pages does he write a year?

Answer: He writes each friend
multiply(3, 2) = 6 pages ...

Suppose you have access to the following tools:
 1) multiply; documentation with examples: ...
 2) search_engine; documentation with examples: ...
 3) subtract; documentation with examples: ...
Question: James writes each friend ...
Answer: He writes each friend ...

search_engine

subtract

one

two

three

Tokens

rejectmultiply

search_engine subtract
Top-3

Reranking

Invoke "multiply"

paug

multiply

Figure 1: Toolken+ sample operation.

LLM weights frozen, and there is no limit on the
amount of data to train these parameters.

In this work, we extend ToolkenGPT with two
novel features that aim to fix two important issues.
First, ToolkenGPT cannot use tool documentation
known to be helpful for LLMs (Hsieh et al., 2023);
we will show that ToolkenGPT is often unsure
which tool to use, and documentation could help
decide this. To this end, we introduce a copy of
toolken embeddings that rerank retrieved tools, i.e.,
take top-k tool candidates, prepend the prompt with
their documentations, and ask the LLM to choose
the most relevant tool. Second, ToolkenGPT often
makes mistakes in judging when to use tools, call-
ing them too often. To alleviate this, we introduce
an extra REJ (“Reject”) “tool” that switches back to
text generation without invoking any tools. REJ is
provided as an option for the reranking mechanism
introduced above. The entire operation of Toolken+
is illustrated in Figure 1.

Overall, we aim to minimize false positive errors
for tool invocations and tool misclassification rate
for ToolkenGPT. This significantly improves the
model’s robustness, allowing for developing more
trusted LLM agents that can have access to a wider
variety of tools. A general tool usage paradigm for

5967

mailto:kdyakovlev@hse.ru
mailto:sergey@logic.pdmi.ras.ru
mailto:andrey-bout@yandex-team.ru

LLMs (Yang et al., 2023; Huang et al., 2023b) has
four stages: whether to use a tool, which tool to
use, infilling the arguments, and dealing with the
tool’s output. Our methods improve the first and
second stages of this process. Moreover, we pro-
vide a formal justification for the toolken training
algorithm based on variational inference. We evalu-
ate our results on the GSM8K (Cobbe et al., 2021),
MetaTool (Huang et al., 2023b), and VirtualHome
(Puig et al., 2018) datasets, showing significant
improvements.

Thus, our contributions are as follows: (1) solu-
tions to issues associated with the first two stages
of the tool usage process for LLMs; (2) a theoret-
ically grounded training procedure for the intro-
duced toolken embeddings; (3) an empirical eval-
uation study supporting the efficiency of our ap-
proach. Below, Section 2 compares our approach
with recent related work, Section 3 introduces our
modifications and formal justification for training
and inference, Section 4 presents experimental re-
sults, and Section 5 concludes the paper.

2 Related Work

Quantifying the uncertainty of LLMs. Recently,
Zhang et al. (2023) introduced a tuning method to
teach LLMs to refrain from answering the ques-
tion if the LLM is not sure in its answer, reducing
hallucinations and improving uncertainty estima-
tion. In contrast to this study, our approach does
not require any fine-tuning of the LLM, instead we
learn an embedding corresponding to the rejection
tool. In another line of research, Diao et al. (2023)
proposed active prompting focusing on finding the
best task-specific prompt. In this work, we focus
on task-independent prompts.

Natural language feedback. Huang et al.
(2023a) suggested the idea to use LLM feedback
as training inputs, using the generated rationale-
augmented answers to fine-tune the model. To
alleviate incorrect reasoning steps with tool usage,
Paul et al. (2023) suggested to generate natural
language feedback from a critic model learned sep-
arately. Note that although this work also addresses
the issue of using incorrect operations in the Math
World Problem task, it requires to train a critic
model.

Overall, our approach adheres to the paradigm
of prompted refiners as shown in (Madaan et al.,
2023; Shinn et al., 2023; Gou et al., 2023a), where
the same frozen model is used for reasoning and

providing feedback. Our method does not invoke
the tools themselves and does not work with their
outputs, only produces special tokens for tool invo-
cation. In a recent work, An et al. (2024) also used
model mistake correction to improve the quality
of solving math problems. However, their sug-
gested approach relied on GPT-4 output and, again,
needed to fine-tune the model.

Chain of thought reasoning. Chain of thought
prompting was originally introduced by Wei et al.
(2023); Zhou et al. (2022) to enhance the abil-
ity of large language models to perform complex
reasoning. Kojima et al. (2022) showed that a
LLM is a good zero-shot reasoner with a simple
prompt before each answer. To further improve
reasoning skills, Wang et al. (2022) introduced self-
consistency decoding that reranks the generated
rationales by taking a majority vote over the final
numerical answers. Similarly, our approach also
benefits from reranking that can use additional in-
formation such as tool documentation.

Recently, Zelikman et al. (2022) proposed a boot-
strapping technique that was able to improve the
performance on reasoning tasks even without a
massive rationale dataset. In their approach, the
model is repeatedly fine-tuned on a dataset of self-
generated rationales; our approach is similar to this
one since bootstrapping is used to train the intro-
duced toolkens but we do not need to tune the LLM
weights.

Tool-augmented language models. One direc-
tion for augmenting LLMs with external tools is
fine-tuning for tool use (Qin et al., 2023; Liang
et al., 2023; Schick et al., 2023; Patil et al., 2023);
these methods achieve excellent performance but
suffer from poor adaptability to unseen tools and
high computational requirements to fine-tune the
LLM.

Another paradigm learns tool use in context,
from documentation and/or demonstrations added
to the LLM input (Lu et al., 2023; Paranjape et al.,
2023; Shen et al., 2023); these approaches do not
require fine-tuning and can learn a new tool given
a handful of demonstrations but suffer from per-
formance degradation because of limited context
length.

In this work, we propose an improvement for the
Toolken paradigm recently proposed by Hao et al.
(2023) that aims to take the best of both worlds.
It introduces learnable tool embeddings (toolkens)
trained on a dataset of tool use examples while
keeping the weights of the LLM frozen; it also

5968

leverages in-context learning to fill in tool argu-
ments.

3 Method

ToolkenGPT. ToolkenGPT introduces an embed-
ding for each tool concatenated with the language
modeling head. Formally, the embedding matrix
WV ∈ R|V|×d, where V is the original vocabu-
lary of tokens and d is the latent dimension, is
extended with a matrix WT ∈ R|T |×d for a set
of tools T = {t1, . . . , t|T |}, and the next token
probability for the augmented LLM is calculated as
paug (xi|x<i) = softmax ([WV ,WT]hi−1). In-
ference is divided into two interleaving stages: rea-
soning mode, where the model generates a ratio-
nale using paug (xi|x<i), and tool mode, where it
infills tool arguments given a prompt with usage
examples. Thus, WT are learned by solving

min
WT

∑
X∈D

∑|X|

i=1
− log paug (xi+1|x≤i) . (1)

Toolken+. First, we extend the tool set as T ′ =
T ∪{REJ}, where REJ is a special tool responsible
for switching back to reasoning mode. Second,
instead of taking the best proposed tool we take
the retrieved subset of top k tools Tk ⊆ T ′ and ask
the model to choose one. The proposed Toolken+
model takes the previously generated sequence and
top k tools retrieved by ToolkenGPT Tk as input
and is asked to generate a tool from Tk ∪ {REJ}.
Formally, Toolken+ produces prank (xi|x<i, Tk) =
softmax (WT ′hi−1 +m (Tk)), where m (Tk) ∈
R|T ′| is the mask vector with m (Tk)t = 0 for
t ∈ Tk ∪ {REJ} and −∞ otherwise. Toolken+’s
inference procedure is shown in Algorithm 1.

Approximate inference. The next token proba-
bilities in Algorithm 1 are given by

p (xi+1|x≤i) = Jxi+1 ∈ VK (paug (xi+1|x≤i)

+ paug (T |x≤i) prank (REJ|x≤i, Tk) pLLM (xi+1|x≤i))

+ Jxi+1 ∈ T K paug (T |x≤i) prank (xi+1|x≤i, Tk) ,

where J·K is the indicator. For a dataset D =
{Xn}Nn=1, tool embeddings are found by solving

min
WT ,WT ′

∑
X∈D

∑|X|

i=1
− log p (xi+1|x≤i) , (2)

which is non-differentiable w.r.t. WT , so we opti-
mize the original ToolkenGPT model with its own
criterion (1) and then optimize (2) w.r.t. WT ′ only.
Problem (2), however, suffers from computational
instabilities caused by the product of model proba-
bilities in p (xi+1|x≤i), so we propose to optimize
a computationally stable upper bound instead.

Algorithm 1: Toolken+ inference
Data: pLLM (xi|x<i), paug (xi|x<i),

prank (xi|x<i, Tk), user query q
Result: Rationale x1:n (with a user query)
x← q, i← |q|;
while xi ̸= EOS do

x
(0)
i+1 ∼ paug (·|x≤i);

if x(0)
i+1 ∈ T then
Tk ← TopkTools(paug (·|x≤i));
x
(1)
i+1 ∼ prank (·|x≤i, Tk);

if x(1)
i+1 = REJ then xi+1 ∼ pLLM (·|x≤i)

else xi+1 ← x
(1)
i+1 ;

else
xi+1 ← x

(0)
i+1;

i← i+ 1;

Proposition 1 (Naive upper bound). The following
is a computationally stable upper bound of (2), up
to an additive constant independent of WT ′:

∑
X∈D

∑|X|

i=1
(− Jxi+1 ∈ VK log prank (REJ|x≤i, Tk)

− Jxi+1 ∈ T K log prank (xi+1|x≤i, Tk)) . (3)

Proof. We transform (omitting Tk for brevity)

log p (xi+1|x≤i) = log p (xi+1|x≤i) (Jxi+1 ∈ VK+
+ Jxi+1 ∈ T K) ≥ Jxi+1 ∈ VK (log prank (REJ|x≤i)+

+ log paug (T |x≤i) + log pLLM (xi+1|x≤i))+

+Jxi+1 ∈ T K (log paug (T |x≤i)+log prank (xi+1|x≤i)),

where the inequality holds because paug (xi+1|x≤i)
is always nonnegative, and then obtain (3) by re-
moving the terms independent of WT ′ .

Bound (3) is differentiable but still computationally
hard: it requires |X| forward passes to find the loss
for a single data point, retrieving top k tools for ev-
ery i. Therefore, we propose a simplified objective
that uses only i where ToolkenGPT erroneously
predicts a toolken instead of a regular token:

min
WT ′

∑

X∈D

|X|∑

i=1

(
− Jxi+1 ∈ T K log prank (xi+1|x≤i, Tk)

−
s

xi+1 ∈ V
argmax pt ∈ T

{
log prank (REJ|x≤i, Tk)

)
. (4)

We train Toolken+ with (4) to correct the errors of
ToolkenGPT or rescore its outputs. Objective (4)
is not guaranteed to be an upper bound of (1) but
can be viewed as an approximation via hard nega-
tive mining (“hard” prefixes x≤i are those where
ToolkenGPT incorrectly predicts tool use).

5969

Dataset Learning rate Epochs

GSM8K 10−4 5
MetaTool 10−4 1-3
VirtualHome 10−3 5-10

Table 1: Hyperparameters used for training ToolkenGPT
and Toolken+.

4 Experiments

Datasets and setup. We evaluate Toolken+ on
three datasets. GSM8K (Cobbe et al., 2021) is a
parallel dataset of math problems and their ratio-
nales. We use the multistep reasoning task with
four arithmetic operations as tools, removing equa-
tions from the rationales except for intermediate re-
sults (e.g., “Weng earns 12/60 = 0.2 per minute” be-
comes “Weng earns 0.2 per minute”) to make tool
selection harder. MetaTool (Huang et al., 2023b)
is a parallel dataset of user queries and tools with
their descriptions; we use all available tools for
tool selection. VirtualHome (Puig et al., 2018) is
a dataset of complex household activities repre-
sented by plans, sequences of verb-object expres-
sions where verbs and objects are external tools.
Following Hao et al. (2023), we split it into a train-
ing set of 247 tasks and a test set of 50 tasks, using
25 verbs and 32 objects in total. Hyperparameter
values and detailed experimental settings are re-
ported in the Appendix: Prompts for Toolken+. We
use open source LLMs: Llama2-7B, Llama2-7B-
chat (Touvron et al., 2023a,b), Vicuna-7B, Vicuna-
13B (Chiang et al., 2023).

The hyperparameters used to train all our models
are reported in Table 1. Overall, we used one data
point per parameters update and used the same
hyperparameters for ToolkenGPT and Toolken+
regardless of the LLM. All models were trained
using the Adam optimizer (Kingma and Ba, 2014).

For MetaTool, we took single-tool data that con-
tains about 20K samples. We split it into a test
split of 2K examples and two folds of about 9K
examples each. To construct the training split
for the GSM8K dataset, we removed all equa-
tions except for intermediate results. Moreover,
we also performed the same procedure with re-
leased prompts for reasoning mode and tool mode
of ToolkenGPT (Hao et al., 2023). Additionally,
for the rejection mechanism of Toolken+ we used
the processed prompt of the reasoning mode of
ToolkenGPT. For VirtualHome, we follow the setup
of ToolkenGPT (Hao et al., 2023) with the only

LLM Tool model MetaTool GSM8K VirtualHome
Rec@1 Match Strict Relaxed

Vicuna- 4-shot - 16.2 0.04 0.2
7B ToolkenGPT 0.623 16.9 0.62 0.72

Toolken+ 0.643 18.8 0.48 0.74

Vicuna- 4-shot - 17.8 0.16 0.30
13B ToolkenGPT 0.646 18.4 0.34 0.54

Toolken+ 0.662 19.1 0.58 0.66

Llama2- 4-shot - 12.7 0.08 0.24
7B-chat ToolkenGPT 0.642 11.7 0.44 0.66

Toolken+ 0.692 12.8 0.56 0.66

Llama2- 4-shot - 10.3 0.18 0.26
13B-chat ToolkenGPT 0.704 8.8 0.18 0.20

Toolken+ 0.733 9.6 0.54 0.58

Table 2: Experimental results on the MetaTool, GSM8K,
and VirtualHome datasets.

difference that we split the training data into two
folds. Toolken+ reranks top-3 retrieved objects by
ToolkenGPT listed in ascending order by relevance.
The prompts used for Toolken+ are shown in the
Appendix.

Tool selection. In MetaTool, the task is to re-
trieve a single tool given a query, so there is no
need to use the proposed REJ tool, and we use this
task to validate the idea of reranking ToolkenGPT’s
outputs in isolation. Thus, we remove the first term
from the loss function (4). We split the training set
into two folds, train ToolkenGPT on the first fold,
and train Toolken+ on the second fold given the
top 5 outputs of ToolkenGPT. We compare both
models on a held-out set and report Recall@1 in
Table 2. There is no few-shot version for MetaTool
since 200 tool descriptions do not fit into a prompt.
We see that Toolken+ significantly improves the
results across all considered LLMs.

Multistep reasoning. In the GSM8K dataset,
the task is to generate a numerical answer to a
question using the four basic arithmetic operations
as tools. Here we demonstrate that the rejection
mechanism improves the resulting accuracy even
in isolation, so in this setup k = 1. We again split
the data into two folds, train ToolkenGPT on one
fold, collect the errors made on the second fold and
train Toolken+ with an extended set of tools. Note
that since k = 1 the inference speed for the two
models is virtually identical. Table 2 reports exact
match results and shows that while both tool mod-
els improve over the vanilla LLM prompted with 4
samples from the training set, Toolken+ provides
additional performance improvements.

Embodied plan generation. In the VirtualHome

5970

Tool Recall Latency
model k @1 @3 @5

ToolkenGPT 1 0.623 0.762 0.814 1.0x
Toolken+ 3 0.661 0.762 0.762 2.6x

5 0.652 0.780 0.814 3.0x
7 0.653 0.775 0.822 3.3x

10 0.637 0.802 0.843 4.1x

Table 3: Ablation study on k, Vicuna-7B base model.

Question: Harry slept 9 hours last night. His friend James
slept only 2/3 of what Harry slept. How many more hours did
Harry sleep than James? Answer: 3
ToolkenGPT: Harry slept ’<multiply>(9,2/3) = 6’ hours less
than James slept. James slept ’<divide>(9,2/3) = 13.5’ hours
(2/3 of 9) and Harry slept ’<add>(9,6) = 15’ hours (9 - 6 = 3).
So Harry slept 15 hours and James slept 13.5 hours. #### 15
Toolken+: Harry slept ’<multiply>(9,2/3) = 6’ hours less than
James slept. James slept ’<reject>’2/3 of what Harry slept, so
he slept 2/3 * 9 = 6 hours. Harry slept 9 hours, so he slept 9 -
6 = 3 hours more than James. #### 3

Question: Geb is 10 less than half the age of Haley. If Haley
is 26 years old, how old is Geb? Answer: 3
ToolkenGPT: Half the age of Haley is ’<divide>(26,2) = 13’
years. So Geb is ’<add>(10,13) = 23’ years old. #### 23
Toolken+: Half the age of Haley is ’<divide>(26,2) = 13’
years. So Geb is <reject>10 less than that, which means he is
’<subtract>(13,10) = 3’ years old. #### 3

Table 4: Case study on GSM8K and Vicuna-7B.

dataset, the task is to generate a sequence of actions
given a question. We follow the setup of the tool
selection task but now generate a contiguous se-
quence of actions, setting k = 3 for Toolken+ and
running Toolken+ only on actions that correspond
to an object. We compare the proposed approach
with ToolkenGPT and report the success rate and
its relaxed version (share of plans that pass through
a target state) in Table 2; we see that Toolken+
consistently improves over ToolkenGPT.

Ablation study. In the ablation study, we eval-
uate how performance depends on the number of
tools to be reranked by Toolken+. Table 3 shows
the results evaluated on the MetaTool dataset with
the Vicuna-7B base model; we prepend tool de-
scriptions in the order ranked by ToolkenGPT. We
see that performance reaches its optimal value at
k = 3 and degrades with increasing k.

Case study. Table 4 illustrates the difference in
reasoning between ToolkenGPT and Toolken+ with
specific examples from GSM8K (we used Vicuna-
7B). The reported examples show how the rejection
mechanism can allow to prevent the LLM from
confusing arithmetic operations calls, which would
otherwise lead to an incorrect answer.

5 Conclusion

In this work, we have proposed an improvement for
the ToolkenGPT approach of learning special token
embeddings that adds a reject option and a rerank-
ing mechanism for tool selection. Our approach
significantly improves the results via in-context
learning while still keeping LLM weights frozen
and learning only toolken embeddings.

The considered approach is an important step
towards improving the robustness of AI agents and
user-facing tools based on modern LLMs. Better
tool use not only makes the tool usage results more
robust but also has a potential to reduce hallucina-
tions and make LLM answers more trustworthy by
allowing an LLM to reliably run external tools to
verify its answer; this is a very important consider-
ation in practical usage.

In future work, we hope to extend the Toolken+
approach to other external tools and/or agents to
further expand the capabilities of modern LLMs.

6 Limitations

One important limitation of this work is that the
LLM used for Toolken+ should be aware of the
tools retrieved by ToolkenGPT in the sense that
its tool retrieval accuracy should be sufficiently
high. The LLM also should be able to improve the
ranking of these tools by reading their descriptions:
Toolken+ relies on the accuracy of this reranking
but it is out of our hands. Another limitation is
that Toolken+ has only been evaluated on a limited
number of tasks. To make the results more con-
vincing, the framework should be tested on a wide
range of tool-learning tasks and datasets.

Acknowledgements

This work was supported by a grant for research
centers in the field of artificial intelligence, pro-
vided by the Analytical Center for the Govern-
ment of the Russian Federation in accordance
with the subsidy agreement (agreement identifier
000000D730321P5Q0002) and the agreement with
the Ivannikov Institute for System Programming of
the Russian Academy of Sciences dated November
2, 2021 No. 70-2021-00142.

References
Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,

Jian-Guang Lou, and Weizhu Chen. 2024. Learning
from mistakes makes llm better reasoner.

5971

http://arxiv.org/abs/2310.20689
http://arxiv.org/abs/2310.20689

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2023a.
Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023b. Tora: A tool-integrated reasoning
agent for mathematical problem solving.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
arXiv preprint arXiv:2305.11554.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023a. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1051–1068, Singa-
pore. Association for Computational Linguistics.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023b. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,

Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Yongyu Mu, Abudurexiti Reheman, Zhiquan Cao,
Yuchun Fan, Bei Li, Yinqiao Li, Tong Xiao, Chun-
liang Zhang, and Jingbo Zhu. 2023. Augmenting
large language model translators via translation mem-
ories. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 10287–10299,
Toronto, Canada. Association for Computational Lin-
guistics.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

5972

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2302.12246
http://arxiv.org/abs/2302.12246
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.findings-acl.653
https://doi.org/10.18653/v1/2023.findings-acl.653
https://doi.org/10.18653/v1/2023.findings-acl.653
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
arXiv preprint arXiv:2305.18752.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Hanning Zhang, Shizhe Diao, Yong Lin, Yi R Fung,
Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji,
and Tong Zhang. 2023. R-tuning: Teaching large
language models to refuse unknown questions. arXiv
preprint arXiv:2311.09677.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Appendix: Prompts for Toolken+
Prompt for Vicuna-7B and Vicuna-13B:
[System]
Below is the instruction that describes a task.
Write a response using the API tools that
appropriately completes the request.
Your output should follow this format:
Action: API call

[Question]
[QUESTION]

[The Start of Assistant's Answer]
Action:

Prompt for Llama2-7B-chat and Llama2-13B-chat
<<SYS>>
Below is the instruction that describes a task.
Write a response using the API tools that
appropriately completes the request.
Your output should follow this format:
Action: API call
<</SYS>>

[INST]
[QUESTION]
[/INST]
Action:

Prompt for Vicuna-7B and Vicuna-13B:
[System]
Suppose you have access to
the following API tools:
1. tool name: [NAME],
tool description: [DESCRIPTION],
example question: [EXAMPLE].
....
Below is the instruction that describes a task.
Write a response using the API tools that
appropriately completes the request.
Your output should follow this format:
Action:

[User Question]
[QUESTION]

[The Start of Assistant's Answer]
Action: $

Prompt for Llama2-7B-chat and Llama2-13B-
chat:
<<SYS>>
Suppose you have access to
the following API tools:
1. tool name: [NAME],

5973

https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

tool description: [DESCRIPTION],
example question: [EXAMPLE].
....
Below is the instruction that describes a task.
Write a response using the API tools that
appropriately completes the request.
Your output should follow this format:

Action: API call
<</SYS>>

[INST]
[QUESTION]
[/INST]
Action:

Empirically we found that the tools selected by
ToolkenGPT should appear in descending order of
relevance.
Task 1:
...
Task 4:
I am in [ROOM]. The objects I can manipulate
are [OBJECTS].
Goal:
[GOAL]
Hint:
[HINT]
Plan:
Which of the objects: <obj1>, <obj2>, <obj3>
is best to continue the plan?
[PLAN]

5974

