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Abstract

In the digital era, table structure recognition
technology is a critical tool for processing and
analyzing large volumes of tabular data. Previ-
ous methods primarily focus on visual aspects
of table structure recovery but often fail to effec-
tively comprehend the textual semantics within
tables, particularly for descriptive textual cells.
In this paper, we introduce UniTabNet, a novel
framework for table structure parsing based on
the image-to-text model. UniTabNet employs
a “divide-and-conquer” strategy, utilizing an
image-to-text model to decouple table cells and
integrating both physical and logical decoders
to reconstruct the complete table structure. We
further enhance our framework with the Vi-
sion Guider, which directs the model’s focus
towards pertinent areas, thereby boosting pre-
diction accuracy. Additionally, we introduce
the Language Guider to refine the model’s capa-
bility to understand textual semantics in table
images. Evaluated on prominent table struc-
ture datasets such as PubTabNet, PubTables1M,
WTW, and iFLYTAB, UniTabNet achieves a
new state-of-the-art performance, demonstrat-
ing the efficacy of our approach.1

1 Introduction

In this era of knowledge and information, doc-
uments serve as crucial repositories for various
cognitive processes, including the creation of
knowledge databases, optical character recognition
(OCR), and document retrieval. Among the various
document elements, tabular structures are partic-
ularly notable. These structures distill complex
information into a concise format, playing a piv-
otal role in fields such as finance, administration,
research, and archival management (Zanibbi et al.,
2004). Table structure recognition (TSR) focuses

1https://github.com/ZZR8066/UniTabNet
*Equal contribution.
†Correspondence author. jundu@ustc.edu.cn

Figure 1: The illustration of the rich textual features in
tabular images. (a) displays the original tabular image.
(b) and (c) provide zoomed-in views of the area outlined
by the red dashed box in (a). (b) shows the prediction
result of the recent state-of-the-art table structure recog-
nition method SEMv2(Zhang et al., 2024). (c) presents
the ground truth label for table structure. The red dashed
box highlights the discrepancy between the prediction
and the ground truth label.

on converting these tabular structures into machine-
readable data, facilitating their interpretation and
utilization. Therefore, TSR as a precursor to con-
textual document understanding will be beneficial
in a wide range of applications (Siddiqui et al.,
2018; Schreiber et al., 2017).

Table images efficiently convey information
through visual clues, layout structures, and plain
text. However, most previous methods(Chi et al.,
2019; Long et al., 2021; Zhang et al., 2024) in TSR
primarily utilize visual or spatial features, neglect-
ing the textual content within each table cell. The
structures of some tables exhibit inherent ambigui-
ties when assessed solely based on visual appear-
ance, especially for wireless tables which contain
cells with descriptive content, as illustrated in Fig-
ure 1. To enhance accuracy in TSR, it is crucial
to leverage the cross-modality characteristics of
visually-rich table images by jointly modeling both
visual and textual information (Peng et al., 2022).

Recent advancements in document understand-
ing, exemplified by methods such as Donut (Kim
et al., 2022) and Pix2Struct (Lee et al., 2023), have
embraced an end-to-end image-to-text paradigm.
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These approaches leverage the Transformer archi-
tecture (Vaswani et al., 2017) during pre-training
to decode OCR results, demonstrating superior per-
ception of image content. By diminishing reliance
on traditional OCR engines, they exhibit remark-
able adaptability across diverse document under-
standing tasks, highlighting their robust ability to
comprehend text embedded in images. Despite
these advancements, the application of this frame-
work to TSR remains unexplored. While there are
related works (Nassar et al., 2022; Huang et al.,
2023) that employ this framework, they primarily
focus on reconstructing table structures from a vi-
sual perspective, without adequately addressing the
depth of textual understanding in images.

In this work, we adopt the image-to-text frame-
work and introduce a visually linguistic unified
model for TSR, named UniTabNet. This model is
built on a “divide and conquer” design philosophy,
initially using the image-to-text model to decou-
ple table cells. According to the attributes of the
table structure (Zanibbi et al., 2004), the decou-
pled cells contain two types of attributes: logical
and physical. The logical attributes cover the row
and column span information of each cell, while
the physical attributes include the bounding box
coordinates of the cells. To parse these attributes
independently, we design a logical decoder and a
physical decoder. Since table images differ signifi-
cantly from regular document images, each step of
the decoding output is grounded in a clear visual
basis, specifically visual cues from rows, columns,
and cells. Therefore, we design a Vision Guider
module, which directs the model to focus on rel-
evant areas and make more precise predictions.
Furthermore, to enhance the UniTabNet’s under-
standing of text content in images, we develop a
Language Guider. This module enables the model
to perceive the corresponding text content at each
decoding step, thereby understanding the textual
semantics within the image. Experimental results
on multiple public TSR datasets, such as PubTa-
bles1M (Smock et al., 2022), PubTabNet (Zhong
et al., 2020a), iFLYTAB (Zhang et al., 2024), and
WTW (Long et al., 2021), demonstrate that our ap-
proach achieves state-of-the-art performance, vali-
dating the effectiveness of our method. The main
contributions of this paper are as follows:

• We introduce UniTabNet, a unified visually
linguistic model for TSR that adheres the “di-
vide and conquer” strategy by first separating

table cells, then using both logical and physi-
cal decoders to reconstruct the table structure.

• We develop the Vision Guider module, de-
signed to direct the model’s focus towards crit-
ical areas such as rows and columns, thereby
enhancing the overall prediction accuracy.

• We enhance UniTabNet with the Language
Guider module, which enhances the model’s
ability to perceive textual content within im-
ages, thereby improving its accuracy in pre-
dicting the structure of tables rich in descrip-
tive content.

• Based on our proposed method, we achieve
state-of-the-art performance on publicly avail-
able datasets such as PubTabNet, PubTa-
bles1M, WTW and iFLYTAB.

2 Related Work

Due to the rapid development of deep learning
in documents, many deep learning-based TSR ap-
proaches have been presented. These methods can
be roughly divided into three categories: bottom-
up methods, split-and-merge based methods and
image-to-text based methods.

One group of bottom-up methods (Chi et al.,
2019; Xue et al., 2019; Liu et al., 2022) treat words
or cell contents as nodes in a graph and use graph
neural networks to predict whether each sampled
node pair belongs to the same cell, row, or column.
These methods depend on the availability of bound-
ing boxes for words or cell contents as additional
inputs, which are challenging to obtain directly
from table images. To eliminate this assumption,
another group of methods (Raja et al., 2020; Qiao
et al., 2021) has proposed directly detecting the
bounding boxes of table cells. After cell detection,
they design some rules to cluster cells into rows
and columns. However, these methods regard the
cells as bounding box, which is difficult to handle
the cells in distorted tables. Other methods (Xing
et al., 2023; Long et al., 2021) detect cells through
detecting the corner points of cells, making them
more suitable for handling distorted cells. Never-
theless, they suffer from tables containing a lot of
empty cells and wireless tables.

Split-and-merge based methods initially split a
table into basic grid pattern, followed by a merg-
ing process to reconstruct the table cells. Previ-
ous methods (Tensmeyer et al., 2019; Zhang et al.,
2022) utilize semantic segmentation (Long et al.,
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2015) for identifying rows, columns within tables
in the “split” stage. However, segmenting table
row/column separation lines in a pixel-wise man-
ner is inaccurate due to the limited receptive field,
and heuristic mask-to-line modules designed with
strong assumptions in split stage make these meth-
ods work only on tables in digital documents. To
enhance the accuracy of grid splitting in distorted
tables, RobustTabNet (Ma et al., 2023) uses a spa-
tial CNN-based separation line predictor to propa-
gate contextual information across the entire table
image in both horizontal and vertical directions.
SEMv2 (Zhang et al., 2024) formulates the table
separation line detection as the instance segmen-
tation task. The table separation line can be ac-
curately obtained by processing the table separa-
tion line mask in a row-wise/column-wise manner.
TSRFormer with SepRETR (Lin et al., 2022) for-
mulates the table separation line prediction as a
line regression problem and regresses separation
line by DETR (Carion et al., 2020), but it can’t
regress too long separation line well. TSRFormer
with DQ-DETR (Wang et al., 2023) progressively
regresses separation lines, which further enhances
localization accuracy for distorted tables.

Image-to-text based methods conceptualize the
structure of tables as sequential data (HTML
or LaTeX), utilizing an end-to-end image-to-text
paradigm to decode table structures. The EDD
model (Zhong et al., 2020a) employs an encoder-
dual-decoder architecture to generate both the log-
ical structure and the cell content. During the de-
coding phase, EDD utilizes two attention-based
recurrent neural networks; one is tasked with de-
coding the structural code of the table, while the
other decodes the content. Building on this frame-
work, TableFormer (Nassar et al., 2022) employs a
transformer-based decoder to enhance the capabili-
ties of EDD’s decoder. Additionally, it introduces
a regression decoder that predicts bounding boxes
rather than content, thus refining the focus on spa-
tial elements. Addressing the challenge of limited
local visual cues, VAST (Huang et al., 2023) re-
defines bounding box prediction as a coordinate
sequence generation task and incorporates a visual
alignment loss to achieve more accurate bounding
box outcomes.

3 Task Definition

As illustrated in Figure 2, given a table image
I ∈ RH×W×3, our objective is to enable the

Figure 2: The illustration of the table structure recogni-
tion task.

model to predict the table structure sequence S =
{si ∈ Rv | i = 1, . . . , T}, where T is the length
of the sequence and v is the the size of token vo-
cabulary, to reconstruct the table’s layout. Previ-
ous methods (Zhong et al., 2020b; Nassar et al.,
2022; Huang et al., 2023) have employed vari-
ous formats for the output table structure sequence
S, such as HTML and LaTeX. In contrast, our
approach simplifies the decoding process signif-
icantly by using only two types of tokens: <C>
and <NL>. <C> denotes a table cell, and <NL>
indicates a newline, facilitating a concise represen-
tation of the table structure. According to the at-
tributes of the table structure (Zanibbi et al., 2004),
each table cell encompasses both logical attribute
l = {lrow, lcol | lrow, lcol ∈ N+} and physical
attribute p = {pj ∈ N | j = 1, . . . , 8}. The
logical attribute l specifies the cell’s span across
rows and columns, while the physical attribute p
defines the spatial positioning of the cell within
the image. Consequently, the output of our pro-
posed model, UniTabNet, includes the structure
sequence S, along with logical attributes L ={
li ∈ R2 | i = 1, . . . , T

}
and physical attributes

P =
{
pi ∈ R8 | i = 1, . . . , T

}
, providing a com-

prehensive description of the table’s layout.

4 Methodology

As illustrated in Figure 3, UniTabNet is built upon
the Donut (Kim et al., 2022) and primarily con-
sists of a vision encoder and a text decoder, which
decodes image features to generate the table struc-
ture sequence S. To further decode the logical and
physical attributes contained within each cell, we
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Figure 3: The overall architecture of UniTabNet. It mainly consists of a vision encoder and a text decoder. Using
the text decoder’s output, the Cell Decoder decodes the physical and logical attributes of table cells. The Vision
Guider directs the model’s focus on row and column information, while the Language Guider aids in understanding
textual semantics.

additionally design a logical decoder and a physical
decoder to predict the cell attributes l and p, respec-
tively. Considering the nature of table images, we
incorporate a Vision Guider and a Language Guider
at the output of the text decoder. The Vision Guider
directs the model to focus on relevant areas during
cell decoding, while the Language Guider aids in
understanding the corresponding textual informa-
tion within the cells. Detailed descriptions of these
modules will follow.
Vision Encoder. The vision encoder converts the
table image I into a set of embeddings Z = {zi ∈
RD | i = 1, . . . , N}, where N is feature map size
and D is the dimension of the latent vectors of the
encoder. As depicted in Figure 3, we adopt the
Swin Transformer (Liu et al., 2021) as our primary
vision backbone, following the Donut, to encode I
into feature map F . Additionally, we incorporate
positional encoding (Vaswani et al., 2017) into F
to generate the final vision embeddings Z.
Text Decoder. Similar to Donut, we utilize the
BART (Lewis et al., 2020) decoder to generate
the table structure sequence S, conditioned on the
Z. Since UniTabNet is trained to predict the next
tokens like LLMs (OpenAI, 2023), it only requires
maximizing the likelihood of loss at training time.

Llm = max
T∑

i=1

logP (si |Z, s1:i ) (1)

Physical Decoder. Given the output H = {hi ∈

RD | i = 1, . . . , T} from the last layer of the
text decoder, the physical decoder decodes these
hidden states to obtain the polygon coordinates pi

in the image. To facilitate this prediction, we in-
troduce a set of 1,000 special tokens—<0>, <1>,
..., <999>—which are utilized for quantizing the
coordinates of the polygons, forming a special-
ized vocabulary Loc ∈ R1000×D. Specifically,
for each coordinate point pj in the polygon pi,
the prediction process is as follows: The corre-
sponding hidden state hi is transformed via a lin-
ear mapping to produce the h

pj
i , which serves as a

query against the vocabulary Loc. Unlike previous
method (Chen et al., 2022), which perform direct
classification over the location vocabulary, we de-
fine the final position of pj as the expected location
based on the distribution given by h

pj
i over Loc:

h
pj
i = Linear (hi) (2)

apj = softmax
(
h
pj
i Loc⊤

)
(3)

E (pj) =
999∑

i=0

i · apji (4)

The polygon regression loss is defined as follows:

Lpoly =
1

8

8∑

j=1

(
E(pj)− p∗j

)2 (5)
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where p∗j denotes the ground truth label.
Logical Decoder. The logical decoder predicts the
rowspan and colspan information L for table cells
based on the output H from the final hidden state
of the text decoder. To illustrate, for predicting the
rowspan information lrow within li, the hidden state
hi is first mapped through a matrix transformation
to a vector hlrow

i . The hlrow
i then serves as a query,

computing the dot product with entries in the vo-
cabulary Loc, resulting in a score vector alrow . The
rowspan information lrow is then determined by lo-
cating the index of the maximum value in the score
vector alrow .

hlrow
i = Linear (hi) (6)

alrow = hlrow
i Loc⊤ (7)

lrow = argmax
(
alrow

)
(8)

Given the extreme imbalance in the distribution of
rowspan and colspan across cells, we optimize our
model using sigmoid focal loss (Lin et al., 2017).
The span prediction loss for the logical decoder is
defined as follows:

Lspan = Lf

(
alrow , l∗row

)
+ Lf

(
alcol , l∗col

)
(9)

where Lf represents the sigmoid focal loss func-
tion. The vectors l∗row and l∗col are one-hot repre-
sentations of the ground truth span information for
rowspan and colspan, respectively.
Vision Guider. Unlike conventional document im-
ages, table images exhibit significant interdepen-
dencies among cells within the same row, column,
or cell block. To enhance the model’s ability to
accurately capture these details during the decod-
ing process, we develop the Vision Guider. This
mechanism enables the model to focus more on the
row and column information for each cell during
decoding. Specifically, to capture the same row
visual cues, we input the last layer’s output hi of
the decoder into a matrix mapping to generate vec-
tor hrow

i . The vector hrow
i , serving as the query, is

then used to fetch attention scores arow from the
visual embedding Z ∈ RN×D. A similar approach
is adopted for the same column information acol.

hrow
i = Linear (hi) (10)

arow = hrow
i Z⊤ (11)

The loss function for the Vision Guider is defined
as:

Lvis = Lf (a
row, g∗

row) + Lf

(
acol, g∗

col
)

(12)

where Lf denotes the sigmoid focal loss function,
and g∗

row and g∗
col represent the row and column

mask maps, respectively.
Language Guider. Tables present data relation-
ships in an exceedingly concise format. Beyond
the prevalent numerical tables, there are also de-
scriptive table images. To accurately recognize
these descriptive tables, it is imperative that the
model comprehends the content within the table to
make more precise structural predictions. To this
end, we introduce the Language Guider, which di-
rects the model to understand the textual semantic
information in the table. As illustrated in Figure 4,
during the training phase, in addition to the essen-
tial Table Structure Recognition (TSR) task, we
design an additional task named Table Read (TR),
which prompts the model to sequentially output the
content within table images, thereby enhancing the
model’s understanding of the text in the images. To
ensure that the tokens in TSR possess text compre-
hension abilities similar to those in TR, we align
the tokens from both tasks. Specifically, suppose
a token <C> in TSR produces an output hi at the
decoder’s last layer; we first map hi to h

lang
i using

a matrix mapping. The corresponding token for
<C> in TR, represented as h[n:m] at the decoder’s
last layer, is then subject to mean pooling to pro-
duce h∗

lang. Subsequently, a mean squared-error
(MSE) loss is applied between h

lang
i and h∗

lang, thus
endowing TSR tokens with substantial text percep-
tion capabilities.

h
lang
i = Linear (hi) (13)

h∗
lang = Mean

(
h[n:m]

)
(14)

Llang = MSE
(
h

lang
i ,h∗

lang

)
(15)

5 Implementation Details

Our methodology employs the following hyperpa-
rameters: The longest side of the image is resized
to 1600 while maintaining the original aspect ratio.
The downsampling factor of the visual backbone is
set to 32. The dimension D of the feature is set to
1024. The decoders consist of a stack of 4 identical
layers, and the number of multi-heads is set to 16.
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Figure 4: The illustration of the task design.

Training. To train UniTabNet, we design three
training tasks as depicted in Figure 4. These tasks
aim to enable the model to comprehensively per-
ceive tabular images. Specifically, the training pro-
cess is divided into two phases. Initially, during
the pre-training phase, we use a synthetic dataset
comprising 1.4 million Chinese and English en-
tries from SynthDog (Kim et al., 2022), along with
the training set from PubTables1M (Smock et al.,
2022). After pre-training, the model is fine-tuned
on specialized datasets dedicated to table struc-
ture recognition. We fine-tune UniTabNet using
the Adam (Kingma and Ba, 2015) optimizer with
the learning rate of 5 × 10−5.The learning rate is
linearly warmed up over the first 10% steps then
linearly decayed. The training is conducted on
8 Telsa A40 48GB GPUs. The model is trained
for 100 epochs on the iFLYTAB (Zhang et al.,
2024) and WTW (Long et al., 2021) datasets, and
for 10 epochs on the PubTables1M and PubTab-
Net (Zhong et al., 2020b) datasets.

In the overall loss of UniTabNet, there are pri-
marily two categories: regression losses (Lpoly,
Llang) and classification losses (Llm, Lspan, Lvis).
Given the significant scale differences among these
losses, it is necessary to adjust their coefficients.
Inspired by (Kendall et al., 2018) , we optimize the
model by maximising the Gaussian likelihood with
homoscedastic uncertainty.

Ltotal =
5∑

k=1

1

2σ2
k

Lk + log
(
1 + σ2

k

)
(16)

The σ is a learnable factor that adaptively adjusts
the weight ratios among these losses. Lk repre-
sents the five losses mentioned above.
Inference. During the inference phase, we feed
the <tsr> token into UniTabNet and utilize a greedy

Table 1: Comparison on PubTables1M

Type Method GriTS-Top GriTS-Loc

Bottom-up Faster RCNN 86.16 72.11
DETR 98.45 97.81

Image-to-
Text

VAST 99.22 94.99
Ours 99.43 95.37

search algorithm to decode the table structure se-
quence S. Relying on the hidden states H from the
last layer of the decoder, we can decode the physi-
cal P and logical L information corresponding to
each cell. This allows for the complete reconstruc-
tion of the table structure.

6 Experiments

6.1 Datasets and Evaluation Metrics

To fully demonstrate the effectiveness of the
UniTabNet, we conduct experiments across four
datasets. Firstly, for single-scene electronic doc-
ument table images, we select two representative
datasets, PubTabNet (Zhong et al., 2020b) and Pub-
Tables1M (Smock et al., 2022), for evaluation. We
assess these datasets using the TEDS-Struct (Zhong
et al., 2020b) and GriTS (Smock et al., 2023) met-
rics to ensure comprehensive and comparative re-
sults. For complex scene table images, we chose
the WTW (Long et al., 2021) and iFLYTAB (Zhang
et al., 2024) datasets for evaluation, employing the
F1-Measure (Hurst, 2003) and TEDS-Struct met-
rics to quantify the model’s performance. Notably,
we also extract a subset from the iFLYTAB vali-
dation set, termed iFLYTAB-DP, which comprises
322 descriptive table images. For more details on
the datasets and evaluation metrics, please refer to
the Appendix A.1.

6.2 Results

In this section, we evaluate the effectiveness of
UniTabNet from three different perspectives. More
details are provided in the Appendix A.2.
Results from Electronic Document. As shown in
Table 1, compared to Image-to-Text approaches,
our method has achieved a new state-of-the-art
level. Although the bottom-up method (Carion
et al., 2020) performs better on the GriTS-Loc met-
ric, this is due to their use of the bounding box of
the content within the cell to adjust the predicted
bounding box of the cell. As illustrated in Table 2,
UniTabNet also performs comparably to the current
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Table 2: Comparison with SOTA methods across different datasets. Bold indicates the best result.

Type Method PubTabNet WTW iFLYTAB

TEDS-Struct P R F1 TEDS-Struct

Bottom-up
Cycle-CenterNet (Long et al.,
2021)

- 93.3 91.5 92.4 -

LORE (Xing et al., 2023) - 94.5 95.9 95.1 -
LGPMA (Qiao et al., 2021) 96.70 - - - -

Split-and-
merge

SEM (Zhang et al., 2022) 96.30 - - - 75.9
RobustTabNet (Ma et al.,
2023)

97.00 - - - -

TSRFormer (Lin et al., 2022) 97.50 93.7 93.2 93.4 -
SEMv2 (Zhang et al., 2024) 97.50 93.8 93.4 93.6 92.0
TRUST (Guo et al., 2022) 97.10 - - - -
SEMv3 (Qin et al., 2024) 97.50 94.8 95.4 95.1 93.2

Image-to-
Text

EDD (Zhong et al., 2020b) 89.90 - - - -
TableFromer (Nassar et al.,
2022)

96.75 - - - -

VAST (Huang et al., 2023) 97.23 - - - -
Ours 97.50 95.6 94.7 95.1 94.0

advanced methods on the PubTabNet dataset.

Results from Complex Scenarios. As shown in
Table 2, to demonstrate the robustness of UniTab-
Net in visual scenarios, we conduct experiments
on the WTW and iFLYTAB datasets. On the
WTW dataset, our method exhibits high preci-
sion but lower recall, primarily constrained by the
maximum decoding length of the model. There-
fore, compared to other non-autoregressive meth-
ods (Bottom-up and Split-and-merge), it achieves
lower recall but comparable overall F1 scores with
current methods. On the iFLYTAB dataset, UniTab-
Net achieves a new state-of-the-art performance.

Results from Descriptive Tables. To demonstrate
the effectiveness of UniTabNet in addressing de-
scriptive tables, as shown in Table 3, we com-
pare UniTabNet with the previously state-of-the-art
SEMv3 (Qin et al., 2024) on the iFLYTAB-DP
dataset. SEMv3 is a purely visual approach for re-
constructing table structures. However, iFLYTAB-
DP contains a large number of tables with descrip-
tive cells, requiring the model to understand the tex-
tual information within to make accurate structural
predictions. The comparison shows that UniTabNet
significantly outperforms SEMv3 in this scenario.

Table 3: Results of the TEDS-Struct evaluation for the
UniTabNet model on the iFLYTAB and iFLYTAB-DB
datasets. “UL” denotes “Use of Uncertainty in Likeli-
hood Optimization” as detailed in Eq. 16. “VG” indi-
cates the inclusion of a vision guider, and “LG” signifies
the use of a language guider. “D1” and “D2” correspond
to the performance metrics on the iFLYTAB validation
set and iFLYTAB-DP set, respectively.

System UL VG LG D1 D2

SEMv3 - - - 93.2 82.6
T1 ✗ ✗ ✗ 92.4 82.9
T2 ✓ ✗ ✗ 93.2 83.3
T3 ✓ ✓ ✗ 93.7 83.6
T4 ✓ ✓ ✓ 94.0 84.9

6.3 Ablation Study

As shown in Table 3, to demonstrate the effective-
ness of each module within the model, we design
systems T1 through T4, which were evaluated on
both iFLYTAB and iFLYTAB-DP datasets.
The Effectiveness of Loss Design. During the en-
tire training process of UniTabNet, the primary
losses include regression loss and classification
loss, which differ significantly in scale. Inspired
by (Kendall et al., 2018), we optimize the model
by maximizing the Gaussian likelihood with ho-
moscedastic uncertainty, as described in Eq. 16.
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Figure 5: The illustration of the Vision Guider and Language Guider. Panels (a) and (b) compare the attention
distributions within the decoding cells (regions indicated by red dashed boxes) for systems T2 and T3, respectively.
Panels (c) and (d) display the comparative structural prediction results on iFLYTAB-DP for systems T3 and T4.
The red dashed boxes highlight the regions where the predictions differ between the two systems, with system T4
accurately predicting in these areas.

Comparing systems T1 and T2 demonstrates the
effectiveness of this loss design.
The Effectiveness of Vision Guider. Table images
are distinct from conventional document images, as
each table cell provides unique visual cues linked
to the corresponding row or column. In UniTabNet,
we incorporate a Vision Guider at the final decoder
layer to steer the model’s focus towards pertinent
visual segments of the table image. Figure 5 il-
lustrates the cross-attention mechanisms (averaged
across the heads of the final layer) during the decod-
ing stages of systems T2 and T3. The visualizations
reveal that T3 more effectively concentrates on the
regions pertaining to table cells throughout the de-
coding process. Furthermore, as shown in Table 3,
T3 outperforms T2, demonstrating the effective-
ness of the Vision Guider.
The Effectiveness of Language Guider. Most
previous methods for table structure recognition
focus on reconstructing the table structure from a
visual perspective. However, for tables rich in de-
scriptive content, relying solely on visual cues can
introduce ambiguities. In UniTabNet, we integrate
a Language Guider into the final layer of the de-
coder, enhancing the model’s capability to interpret
the semantic content of the text. Figure 5 displays
the prediction results for systems T3 and T4 on
the iFLYTAB-DP dataset, illustrating that T4 effec-
tively mitigates visual ambiguities and improves
text comprehension. Furthermore, as demonstrated
in Table 3, T4 significantly outperforms T3 on the
iFLYTAB-DP dataset, highlighting the effective-
ness of the Language Guider.

7 Conclusion

In this paper, we present UniTabNet, a novel table
structure recognition model leveraging the image-
to-text paradigm, consisting of a vision encoder
and a text decoder. UniTabNet employs a “divide-
and-conquer” strategy to initially separate table
cells, then uses physical and logical decoders to
reconstruct cell polygon and span information. To
improve visual focus and textual understanding
within cells, we integrate a Vision Guider and a
Language Guider in the text decoder. Compre-
hensive experiments conducted on publicly avail-
able datasets, including PubTables1M, PubTabNet,
WTW, and iFLYTAB, demonstrate that UniTab-
Net achieves state-of-the-art performance in table
structure recognition.

8 Limitations

Although UniTabNet has significantly streamlined
the structure sequence of table outputs to only in-
clude two tokens: <C> and <NL>, its inference
efficiency decreases as the number of table cells
increases. Furthermore, due to limitations on max-
imum decoding length, UniTabNet exhibits rela-
tively lower recall rates for table images with a
large number of cells. Moreover, unlike the split-
and-merge approach which utilizes a carefully de-
signed merge module to handle a variety of table
grid structures, UniTabNet employs classification
to predict the span of rows and columns. This ap-
proach renders UniTabNet ineffective at dealing
with previously unseen spans.
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A Appendix

A.1 Datasets and Evaluation Metrics
As shown in Table 4, we summarize the datasets
used during our experiments, along with the evalu-
ation metrics employed to assess our model’s per-
formance on each dataset. We will detail each of
these in the subsequent sections.
PubTabNet. PubTabNet is a large-scale table
recognition dataset. PubTabNet annotates each ta-
ble image with information about both the struc-
ture of table and the text content with position of
each non-empty table cell. All tables are also axis-
aligned and collected from scientific articles. The
authors also proposed a new Tree-Edit-Distance-
based Similarity (TEDS) metric for table recogni-
tion task, which can identify both table structure
recognition and OCR errors. TEDS measures the
similarity of the tree structure of tables. While us-
ing the TEDS metric, we need to present tables as a
tree structure in the HTML format. Finally, TEDS
between two trees is computed as:

TEDS(Ta, Tb) = 1− EditDist(Ta, Tb)

max(|Ta|, |Tb|)
(17)

where Ta and Tb are the tree structure of tables in
the HTML formats. EditDist represents the tree-
edit distance, and |T | is the number of nodes in
T . Since taking OCR errors into account may lead
to an unfair comparison due to the different OCR
models used by various TSR methods, we also
employ a modified version of TEDS, called TEDS-
Struct. The TEDS-Struct assesses the accuracy of
table structure recognition, while disregarding the
specific outcomes generated by OCR.
PubTables1M. Both the PubTables1M and Pub-
TabNet datasets are sourced from the PubMed Cen-
tral Open Access (PMCOA) database. The primary
distinction between the two lies in the richness of
annotation provided by PubTables1M. This dataset
includes detailed annotations for projected row
headers and bounding boxes for all rows, columns,
and cells, encompassing even the blank cells. Ad-
ditionally, it introduces a novel canonicalization
procedure aimed at correcting oversegmentation.
The purpose of this procedure is to ensure that each
table is presented with a unique and unambiguous
structural interpretation. To contrast our method
with others, we evaluated it using the GriTS met-
ric on this dataset. The recently proposed GriTS
metric (Smock et al., 2023) directly compares pre-
dicted tables with the ground truth in matrix form

and can be interpreted as an F-score reflecting the
accuracy of predicted cells. Exact match accuracy
is assessed by the percentage of tables for which all
cells, including blank cells, are perfectly matched.

WTW. WTW dataset comprises 10,970 training
images and 3,611 testing images, collected from
wild and complex scenes. This dataset is specifi-
cally tailored to wired tabular objects and provides
annotated information including tabular cell coor-
dinates, and row/column data. We utilize the F1-
Measure to evaluate our method on this dataset. To
apply the F1-Measure, it is essential to detect the
adjacency relationships among the table cells. The
F1-Measure calculates the percentage of correctly
detected pairs of adjacent cells, where both cells are
accurately segmented and identified as neighbors.
When evaluating on the WTW dataset, we employ
the cell adjacency relationship metric (Göbel et al.,
2012), a variant of the F1-Measure. This metric
aligns a ground truth cell with a predicted cell based
on the Intersection over Union (IoU) criterion. For
our assessments, we set the IoU threshold at 0.6.

iFLYTAB. The iFLYTAB dataset comprises
12,104 training samples and 5,187 testing samples.
It offers comprehensive annotations for each table
image, including physical coordinates and struc-
tural information. This dataset not only includes
axis-aligned digital documents but also images cap-
tured by cameras, which present more challenges
due to complex backgrounds and non-rigid image
deformations. For evaluating our method on this
dataset, we employ the official TEDS-Struct met-
ric†. Specifically, during the evaluation process on
iFLYTAB, we assign a distinctive marker to each
text line, which signifies its individual content.

iFLYTAB-DP. To more precisely evaluate our
model’s performance on descriptive table images,
we select 322 images from the iFLYTAB valida-
tion dataset, as shown in Figure 6. To minimize the
influence of visual cues such as table lines, which
could assist the model’s predictions, we specifically
chose images of wireless tables. Our selection cri-
teria primarily focuses on the presence of extensive
textual descriptions within the cells. Additionally,
we have contacted the authors of iFLYTAB, and
they have agreed to make this subset of the dataset
available on the official website soon†.

†https://github.com/ZZR8066/SEMv2
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Table 4: The overview of datasets and respective metrics.

Datasets Digital Camera-captured Num Metric

Wired Wireless Wired Wireless

PubTabNet (Zhong
et al., 2020b)

✓ ✓ ✗ ✗ 568,000 TEDS-Struct

PubTables1M (Smock
et al., 2022)

✓ ✓ ✗ ✗ 948,000 GriTS

WTW (Long et al.,
2021)

✓ ✗ ✓ ✗ 14,581 F1-Measure

iFLYTAB (Zhang
et al., 2024)

✓ ✓ ✓ ✓ 17,291 TEDS-Struct

iFLYTAB-DP ✗ ✓ ✗ ✓ 322 TEDS-Struct

Figure 6: Some examples of the iFLYTAB-DP dataset.

A.2 Results

In this section, we explain the issue of the rela-
tively low recall rate exhibited by UniTabNet due
to the limitation imposed by the maximum decod-
ing length. As illustrated in Figure 7, we select
some table images from the WTW dataset that con-
tain a large number of cells. Due to the maximum
decoding length constraint set at 500, this limita-
tion significantly impacts the model’s recall perfor-
mance. However, as shown in Table 2, UniTabNet
achieves relatively high precision. When consid-
ering both precision and recall, UniTabNet’s per-
formance on the WTW dataset is comparable to
current methods.

Additionally, as depicted in Figure 8, we visu-
alize the row and column information learned by
UniTabNet through the Vision Guider. The Vision
Guider enables UniTabNet to focus more effec-
tively on cell-related areas during the cell decoding
process, as demonstrated in Figure 5.

Finally, Figure 9 presents the prediction results
of UniTabNet on the experimental datasets used.
The model effectively processes both both simple
and complex scenarios of table images. Notably,
the cell polygons detected by UniTabNet in the
PubTabNet dataset significantly differ from those
in other datasets. This discrepancy arises because
we directly use the official cell bounding box anno-
tations provided, without any postprocessing.
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Figure 7: The illustration of the maximum decoding length limitation in UniTabNet. The samples are from the
WTW dataset. The “PT” label in the top right corner of the image denotes the predicted results by UniTabNet, while
“GT” indicates the ground truth structure of the table. Areas missed by the model due to the maximum decoding
length limitation are highlighted with red dashed boxes.

Figure 8: The illustration of row and column information learned by the Vision Guider. Panel (a) is from the
PubTables1M dataset, and (b) is from the iFLYTAB dataset. The red dashed boxes highlight the area of the table cell
currently being decoded. The green mask indicates the row and column information of the table cell as predicted by
UniTabNet.

Figure 9: The prediction results of UniTabNet across different datasets. The blue boxes in the images represent the
cell polygons decoded by UniTabNet. Panels (a) to (c) show predictions for the PubTabNet dataset, (d) to (f) for the
PubTables1M dataset, (g) to (i) for the WTW dataset, and (j) to (l) for the iFLYTAB dataset.
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