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Abstract

Code-switching in speech, particularly between
languages that use different scripts, can poten-
tially be correctly transcribed in various forms,
including different ways of transliteration of the
embedded language into the matrix language
script. Traditional methods for measuring ac-
curacy, such as Word Error Rate (WER), are
too strict to address this challenge. In this pa-
per, we introduce PolyWER, a proposed frame-
work for evaluating speech recognition systems
to handle language-mixing. PolyWER accepts
transcriptions of code-mixed segments in differ-
ent forms, including transliterations and trans-
lations. We demonstrate the algorithms use
cases through detailed examples, and evaluate
it against human judgement. To enable the
use of this metric, we appended the annota-
tions of a publicly available Arabic-English
code-switched dataset with transliterations and
translations of code-mixed speech. We also uti-
lize these additional annotations for fine-tuning
ASR models and compare their performance
using PolyWER. In addition to our main find-
ing on PolyWER’s effectiveness, our experi-
ments show that alternative annotations could
be more effective for fine-tuning monolingual
ASR models. Our algorithm and additional
annotations can be found in our Github repo1.

1 Introduction

Code Switching (CS) refers to the common phe-
nomenon of mixing two or more languages within
a single conversation. When the language switch
happens within the same sentence or utterance, it is
called intrasentential CS. While language switches
between utterances (intersentential) are relatively
easy to detect using language identification mod-
els, intrasentential code-switching is far more chal-
lenging. In Automatic Speech Recognition (ASR),
intrasentential CS is particularly difficult to detect
and accurately transcribe. Moreover, evaluating the

1https://github.com/mbzuai-nlp/PolyWER

performance of ASR systems in the presence of CS
can be tricky due to script differences, translitera-
tion, or non-standard spelling of foreign words.

Our exploration of multilingual pre-trained ASR
models such as Whisper (Radford et al., 2023)
and Massively Multilingual Speech (MMS) (Pratap
et al., 2023b) reveals inconsistencies in CS tran-
scriptions, such as transcribing in the source script,
transliterating into the target script, or even trans-
lating into the target language. Traditional ASR
metrics, namely Word Error Rate (WER) and Char-
acter Error Rate (CER), are intolerant to such vari-
ations, which can affect the ability to accurately
compare the performance of various models. An
example of this phenomenon is presented in Ta-
ble 1, demonstrating how different models exhibit
different behaviors in transcribing code-switched
speech. In this example, WER treats both CS out-
puts as incorrect. Yet this evaluation is misleading
as both are in fact correct: the first is a translation,
the second is a verbatim transliteration.

In this work, we propose a novel variant of the
WER algorithm designed to address the shortcom-
ings outlined above. In particular, the algorithm
allows the specification of different variants for
each word in the reference transcription, including
transliteration and translation, resulting in a more
tolerant treatment of the variations in CS transcrip-
tions for languages of different scripts. For translit-
eration, we use CER to account for the nonstandard
spelling of transliterated words; for translation, we
utilize a BERT model and the cosine distance met-
ric to match possible translations. To make the
algorithm consistent with the logic of WER, which
ensures that the output is in fact a correct tran-
scription, we apply tight cutoff points for CER and
cosine distance. While the algorithm is flexible
to account for all kinds of spelling variations, we
implement it specifically for handling predictable
variations that arise in CS transcription. In light
of this flexibility to handle multiple languages, we
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refer to the algorithm as PolyWER 2.
While the proposed PolyWER algorithm pro-

vides the needed flexibility, we lack CS data sets
that include these variations in their reference an-
notations. To enable the application of this method,
we manually annotate one of the available CS
datasets to provide additional variants. Namely,
we selected the Mixat corpus (Al Ali and Al-
darmaki, 2024), which consists of ∼15 hours of
speech, roughly half of which includes Arabic-
English code-switching. The original annotations
use the Arabic and English scripts, making it easy
to identify code-switching points in the text. We
hire native speakers to provide transliterated and
translated annotations for the CS segments. Using
this data, we evaluate three large pre-trained ASR
models that support the Arabic language: Whis-
per (Radford et al., 2023), MMS (Pratap et al.,
2023b), and ArTST (Toyin et al., 2023). As re-
ported in Al Ali and Aldarmaki (2024), while these
models support the Arabic language more gener-
ally, their performance on this dataset is very poor
for two reasons: the speech is in Emirati Arabic,
which is a low-resource dialect, and these mod-
els were not trained to transcribe in this variant;
the performance degrades even more as a result of
code-switching. Yet, some observed translated and
transliterated outputs, as shown in Table 1, demon-
strate the potential of these models if fine-tuned
on the target variety. To test that, we fine-tune
each of these models on the training segment of
Mixat using the three different transcription vari-
eties, and report their performance using various
metrics. In addition, we conduct human evalua-
tions on a smaller set of examples to evaluate the
different metrics in their consistency with human
judgements. Our results indicate that PolyWER is
more consistent with human judgement when com-
pared against standard WER and CER metrics as
well as a previously proposed multi-reference WER
algorithm, especially on cases where the ASR hy-
pothesis includes a combination of code-switched
transcription and transliteration.

2 Related Work

Evaluation Metrics for Code-Switching. Most
works on code-switching in ASR still rely on stan-
dard ASR metrics like Word Error Rate (WER) and
Character Error Rate (CER). While these metrics

2poly-is Greek for ‘many’, signifying the ability of the
algorithm to treat many spelling variations; it’s also a reference
to the word ‘polyglot’.

GT Do you go back?
	¬ P@ñ ��Ó �Iª¢�̄ 	á�
mÌ'@ ú


	æªK

LAT ? 	à

�
B@ Xñª�K Éê 	̄ P@ñ ��Ó �Iª¢�̄ �I	K@ B

GT video editing ÕÎª�K@ úG. @ A
	K

@ Èñ�®K
 ÕÎ¾�JK


LIT, LAT 	á�
�JK
YK
@ ñK
YJ

	̄ ÕÎª�K


@ 	à


@ ú 	æÖ �ß


@

Table 1: Examples of ASR predictions from Whisper-
large-v2 zero-shot that include translations and translit-
erations. GT: Ground truth. LAT.: Translation. LIT.:
Transliteration

are a good approximation for performance quality,
they are too strict as they rely on a single reference
transcription. Code-swtiching introduces the possi-
bility of large variations in possible transcriptions,
leading to some newly devised metrics to address
this limitation. In Mandarin-English code-mixing
for example, Mixed Error Rate (MER) is used to
address the difference in lexical units between En-
glish and Mandarin (Vu et al., 2012). Chowdhury
et al. designed a large multilingual end-to-end ASR
model supporting monolingual (English, french),
dialectal Arabic, and code-switching content. They
analyzed the effect of inconsistent ASR output that
results in the same word being transcribed using
different writing systems on WER. They handle
this by benchmarking the code-switched (CS) ASR
results with transliterated WER, where they translit-
erate the English and French recognized tokens into
Arabic script to help disambiguate code-switching
errors introduced by the multilingual writing sys-
tems supported by ASR. They also created a sim-
ple Global Mapping File to transliterate between
these languages. Ali et al. introduced multi-
reference WER (mrWER), an evaluation method-
ology for ASR for languages without orthographic
rules. Their method uses multiple transcription
references for evaluating recognized speech. They
examine their approach with two datasets of Dialec-
tal Arabic: Egyptian and North African Arabic.
Arabic Code-Switching Datasets. With the preva-
lence of code-switching in Arabic contexts (Sabty
et al., 2020) comes the need for Arabic ASR
systems to capture this diversity. This can only
be made possible, however, through the devel-
opment of corpora that represent the number of
code-switching languages in addition to an already
complex multi-dialectal nature. One such dataset,
ArzEn (Hamed et al., 2020), contains 12 hours
of speech from 40 participants speaking in Egyp-
tian Arabic with English code-switching (and the
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Algorithm 1 PolyWER takes multiple references
representing original transcriptions, transliterations,
and translations. CER and BERT cosine distance
are used for matching transliterations and transla-
tions, respectively, using α and β as thresholds.
The algorithm can be easily modified to accommo-
date more spelling variations. The returned value,
d, can then be divided by the original transcription
length to get the final PolyWER score.
Input:

/* r: list of references;

each word in r[2] is a list */

r[0] = {r00, . . . , r0n−1} /* transcription */

r[1] = {r10, . . . , r1n−1} /* transliteration */

r[2] = {{r20}, . . . , {r2n−1}} /* translation */

h = {h0, h1, . . . , hm−1} /* hypothesis */

α /* max CER threshold */

β /* min BERT cosine threshold */

Output: d

1: Init. d of size (n+ 1)× (m+ 1)

2: for i = 1 to n+ 1 do
3: d[i, 0]← i

4: end for
5: for j = 1 to m+ 1 do
6: d[0, j]← j

7: end for
8: for i = 0 to n do
9: for j = 0 to m do

/* original transcription*/

10: if r[0][i] == h[j] then
11: cost← 0

/* transliteration */

12: else if r[1][i] and CER(r[1][i], h[j]) ≤ α then
13: cost←CER(r[1][i], h[j])
14: else
15: cost← 1

16: end if
/* Translation */

17: costtr ← 1

18: if cost > 0 and r[2][i] then
/* find closest word in reference */

19: best_sim = max(cos(w, h[j]) for w in r[2][i]

20: if best_sim ≥ β then
/* convert to distance */

21: costtr ← 1− best_sim
22: end if
23: bestd ← min(d[i, j], d[i+ 1, j], d[i, j + 1])

24: costtr ← bestd + costtr
25: end if

/* optimal path */

26: CSUB ← d[i, j] +min(cost, costtr)

27: CINS ← d[i+ 1, j] + 1

28: CDEL ← d[i, j + 1] + 1

29: d[i+ 1, j + 1]← min(CSUB, CINS, CDEL)

30: end for
31: end for
32: Return d

Figure 1: Illustration of the best path in the matrix d for
a toy example. The rows and columns correspond to the
references and hypothesis, respectively. For brevity, the
first row and column of the matrix (used for initializa-
tion) are not shown.

occasional French word). Mubarak et al. (2021)
introduce QASR, a multi-dialectal speech corpus
comprising of 2,000 hours of news speech across
11,092 speakers. It contains 6,000 CS segments of
Arabic, French and English although it only rep-
resents 0.4% of the dataset. Mixat (Al Ali and
Aldarmaki, 2024) is another Arabic CS dataset
featuring the Emirati dialect with English mix-
ing. Around 15 hours of podcast recordings are
included and 36% of the transcriptions contain
code-switching. TunSwitch CS (Abdallah et al.,
2024) is a Tunisian dialect dataset with English and
French code-mixing thatcarries over 153 hours of
unlabeled speech in addition to 10 labeled hours.

3 PolyWER

3.1 Approach

In light of the inconsistent behavior of ASR sys-
tems when it comes to language-mixing, we pro-
pose a tri-tier approach where edit distance is cal-
culated between words in the hypothesis and three
references for each word in the embedded language:
original, transliterated, and translated, and the low-
est cost is selected. The different costs are com-
puted as follows:
Substitution cost: We perform a traditional com-
parison between the hypothesis word wh and ref-
erence word wr where the cost CSUB given our
dynamic programming matrix d is expressed as:

x =

{
0 wh == wr

1 otherwise
(1)
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CSUB = d[i− 1, j − 1] + x (2)

Transliteration cost: Since transliteration lacks
standardized orthography, we are conscious of pos-
sible fluctuations in the spelling between the ref-
erence and prediction for the same word. We thus
use CER instead of exact word match to introduce
more lenience in the comparison. We set a hyper-
parameter α as a threshold for maximum accepted
CER. We express the transliteration cost CLIT as:

y =

{
CER(wr, wh) CER <= α

1 otherwise
(3)

CLIT = d[i− 1, j − 1] + y (4)

Translation cost: Since equivalent translations can
differ in size, we compute the cosine similarity be-
tween the BERT embeddings (Devlin et al., 2019)
of the hypothesis word wh and all the reference
words wr1:n in the translated section. Similarly to
the transliteration, we set a hyper-parameter β as
a threshold for the minimum acceptable similarity
value. The cost CLAT is expressed as the comple-
ment of the highest cosine similarity:

cosmax = max
wri∈section

cos(BERT(wh), BERT(wri))

(5)

z =

{
1− cosmax cosmax >= β

1 otherwise
(6)

CLAT = min(d[i−1, j], d[i, j−1], d[i−1, j−1])+z
(7)

In equation (7), note that we consider all possi-
ble paths, including ones that in regular WER are
considered deletions or insertions. The reason is
that translations could be aligned between two se-
quences of varying length, so a diagonal transition
(corresponding to matches or substitutions only)
would limit this possibility of many-to-one and
one-to-many translation.
Final cost: The final cost at each cell in the matrix
d is the minimum of the proposed new costs and
the traditional insertion and deletion costs:

d[i, j] = min(CDEL, CINS, CSUB, CLIT, CLAT) (8)

The complete algorithm is described in Algo-
rithm 1, and Figure 1 shows a toy example with the
resultant lowest-cost PolyWER alignment.

3.2 Detailed Example

Given a segment that contains code-switching, we
have three references rCS, rLIT, and rLAT such as:
rCS: ñë ú
ÎË@ A

�ÓAÖ �ß different ¨ñ 	�ñÓ ú

	̄ Õæ


�®�J�Ó A 	K

@

thermodynamics laws

rLIT: ñë ú
ÎË@ A
�ÓAÖ �ß �I	KQ 	®K
X ¨ñ 	�ñÓ ú


	̄ Õæ

�®�J�Ó A 	K


@

	PñË �ºJ
ÓA 	JK
 @XñÓQ�
�K
rLAT: ñë ú
ÎË@ A

�ÓAÖ �ß 	Ê�J	m× ¨ñ 	�ñÓ ú

	̄ Õæ


�®�J�Ó A 	K

@

�éK
P@QmÌ'@ �HAJ
ÓA 	JK
YË@ 	á�
 	K @ñ�̄

Before we start computing the edit distance, an
alignment of the references is required for two rea-
sons: (1) the reference length is used for one of
the dimensions of the d matrix, but rLAT’s length
can differ from the other two references; and (2) a
one-to-one mapping is required between the words
in rCS and the equivalent words in rLIT and rLAT.
Assume that segments in the embedded language
are identified in the references. Given ni words in
a code-switched segment i in rCS and mi words in
the corresponding translated section i in rLAT, we
group all mi words and duplicate them ni times as
shown in Table 2.

Let h be a model’s hypothesis:

h: ñë ú
ÎË@ A
�ÓAÖ �ß 	Ê�J	m× ¨ñ 	�ñÓ ú


	̄ Õæ

�®�J�Ó A 	K


@

�ºJ
ÓA 	JK
 @XñÓQ�
�JË @ 	á�
 	K @ñ�̄

The hypothesis in this example, which is true in
meaning to the audio, contains a mix of translitera-
tions (marked in blue) and translations (marked in
purple). While the first four words in h will match
exactly with rCS, h[4] will be compared against the
other references. Assuming we set α to 0.25 and β
to 0.85, the CER between h[4] ( 	Ê�J	m×) and rLIT[4]

( �I	KQ 	®K
X) will be too high to pass the α threshold

but the cosine similarity between h[4] and rLAT[4]
will be 0 since the words are identical. Similarly,
and despite the last two words in h both corre-
sponding to a single code-switching section in the
audio, 	á�
 	K @ñ�̄ will match rLAT and �ºJ
ÓA 	JK
 @XñÓQ�
�JË @
will match rLIT.

4 Dataset

4.1 Mixat

The Mixat dataset (Al Ali and Aldarmaki, 2024) is
an ASR dataset in Emirati dialect code-switched
with English. The data was collected from two pod-
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Ref. 0 1 2 3 4 5 6 7 8 9

rCS A 	K

@ Õæ


�®�J�Ó ú

	̄ ¨ñ 	�ñÓ different A �ÓAÖ �ß ú
ÎË @ ñë thermodynamics laws

rLIT A 	K

@ Õæ


�®�J�Ó ú

	̄ ¨ñ 	�ñÓ �I	KQ 	®K
X A �ÓAÖ �ß ú
ÎË @ ñë �ºJ
ÓA 	JK
 @XñÓQ�
�K 	PñË

rLAT A 	K

@ Õæ


�®�J�Ó ú

	̄ ¨ñ 	�ñÓ 	Ê�J	m× A �ÓAÖ �ß ú
ÎË @ ñë �éK
P@QmÌ'@ �HAJ
ÓA 	JK
YË@ 	á�
 	K @ñ�̄ �éK
P@QmÌ'@ �HAJ
ÓA 	JK
YË@ 	á�
 	K @ñ�̄

Table 2: Visual representation of the alignment of rTR, rLIT, and rLAT that the PolyWER algorithm expects.

rCS ú
æ
��ËAë 	¬Q«


@ �I	J» A 	K


@ , éK
 @YJ. Ë @ 	áÓ [My passion was architecture]

rLIT ú
æ
��ËAë 	¬Q«


@ �I	J» A 	K


@ , éK
 @YJ. Ë @ 	áÓ [Pñ ����ºJ
��J
»P


@ 	P@ð 	àñ ��AK. ø
 AÓ]

rLAT ú
æ
��ËAë 	¬Q«


@ �I	J» A 	K


@ , éK
 @YJ. Ë @ 	áÓ [ �éK
PAÒªÖÏ @ �é�Y	JêË @ ñë ù


	® 	ª �� 	àA¿]

Table 3: Example transcription from the Mixat dataset,
in addition to our added transliterated and translated
versions.

casts where each one represents a split. The train
split contains interviews across different episodes
between a host and a new guest, and the test split
consists of a monologue from a single speaker. The
dataset contains approximately 15 hours of speech
with 36% of the transcriptions including English
code-switching. The Arabic and code-switched
parts of the speech were transcribed in Arabic script
and latin letters, respectively.

4.2 Expanding on Annotations

Since PolyWER relies on different types of tran-
scriptions that are not all available in Mixat or any
other CS dataset, we created two additional copies
of the ground-truth labels and replaced the code-
switched sections with transliterations in one copy
and translations in the other. We hired a native Emi-
rati speaker to complete these annotations. With
the translations and transliterations being in Arabic
script, we made use of the square brackets [ ] to
delimit the boundaries of the code-switched speech
sections. A sample sentence from Mixat and our
added transcriptions are presented in Table 3. In
addition to the additional transcription, the anno-
tator found many errors in the original reference
transcriptions and corrected them. The final annota-
tions include corrected references that can be used
to benchmark future evaluations on Mixat.

5 Experimental Settings

To effectively test our algorithm, we select three
different ASR models and generate predictions on
the Mixat dataset under various settings.

5.1 Models

Whisper: Whisper (Radford et al., 2022) is a
multi-task speech-to-text system trained in a super-
vised manner across many languages and tasks, in-
cluding speech transcription and translation. Whis-
per can be used off-the-shelf by providing the
language id (e.g. arabic) and the task (e.g.
transcribe) for inference. We used the latest
whisper version whisper-lg-v3 for optimal perfor-
mance.

MMS: The Massively Multilingual Speech
(MMS) is a multilingual speech-to-text technol-
ogy spanning thousands of languages (Pratap et al.,
2023a). MMS was pre-trained in a supervised man-
ner for ASR across different languages, and the
language id can be specified for inference. They
use language adapters to optimize the model for
different languages.

ArTST: Arabic Text and Speech Transformer
(Toyin et al., 2023) is a pre-trained Arabic text and
speech transformer, designed with a focus on the
Arabic language, and was pre-trained on a thousand
hours of Modern Standard Arabic. Unlike Whisper
and MMS, ArTST is not a multilingual model, and
is not likely to recognize English, but it has been
shown to achieve state-of-the-art performance on
Arabic ASR and other speech classification tasks,
and was show to have some dialectal coverage.

5.2 ASR settings

For zero-shot experiments, we simply used the
pre-trained models without modification, following
standard tokenization and normalization schemes
specified for each model. For fine-tuning experi-
ments, we conducted experiments using the three
types of annotations we have: (1) fine-tuning on
original transcriptions with code-switched Arabic
and English scripts, (2) fine-tuning on the translit-
erated transcriptions, and (3) fine-tuning using the
translated transcriptions. For evaluation, we use the
corresponding type of labeling for standard metrics
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a b c(0.5f + 0.5m) c ∗ f c ∗m
Pr(a, b) Sp(a, b) Pr(a, b) Sp(a, b) Pr(a, b) Sp(a, b)

1 - Human WER 0.649 0.633 0.627 0.612 0.647 0.637
1 - Human CER 0.816 0.821 0.829 0.828 0.776 0.793
1 - Human PolyWER 0.810 0.791 0.789 0.766 0.802 0.793
1 - Human PolyWERf 0.836 0.821 0.826 0.809 0.817 0.810
1 - Human mrWER (Ali et al., 2015) 0.831 0.814 0.815 0.794 0.817 0.810
Human BLEU 0.231 0.477 0.221 0.407 0.233 0.527
Human BERTScore (F1) 0.829 0.818 0.811 0.798 0.817 0.813

Table 4: Pearson correlation (Pr) and Spearman rank correlation (Sp) of different ASR metrics against human scores
r (or 1− r for error metrics) across three configurations. c: completeness. f : faithfulness. m: meaning.

a b
c(0.5f + 0.5m) c ∗ f c ∗m

Pr(a, b) Sp(a, b) Pr(a, b) Sp(a, b) Pr(a, b) Sp(a, b)

1 - Human PolyWER 67.21 57.59 63.93 56.68 66.46 55.15
1 - Human PolyWERf 82.55 77.91 78.95 76.47 81.16 75.08
1 - Human mrWER 80.18 74.52 78.25 75.51 77.09 68.46

Table 5: Pearson correlation (Pr) and Spearman rank correlation (Sp) of different ASR metrics against human scores
calculated only for the zero-shot setting.

like WER/CER or BERT; for PolyWER, we use all
three reference transcriptions in all cases.

5.3 Human Evaluation Methodology

We conducted human evaluations to validate
the various evaluation metrics on code-switched
speech recognition. We extracted ASR predictions
from six different systems for 40 randomly selected
code-switched utterances from the Mixat test set.
Three native Arabic speakers participated in the
human evaluation. Each annotator was presented
with a speech audio, and a list of ASR transcrip-
tions. They were tasked with ranking each output
on three separate dimensions: completeness (c),
faithfulness (f ), and meaning (m). The ranking
was done on a sliding discrete scale from 1 to 6.
We re-scaled the values to be in the range [0-1] be-
fore combining the ranking for each transcription
using the following formula:

r = c(0.5f + 0.5m) (9)

where we give equal importance to faithfulness and
meaning, with completeness acting as a gate that
penalizes incomplete predictions. We also compare
the metrics with c ∗ f and c ∗m to evaluate sepa-
rately how each metric correlates with faithfulness
and meaning.

5.4 PolyWER Settings
PolyWER includes hyperparameters that change
its behavior. The hyperparameter α denotes the
maximum accepted CER score for transliterations,
β denotes the minimum accepted cosine similar-
ity between translations. We use α = .25 and
β = .85 in our main experiments. Our BERT
model of choice in our evaluation is CAMeL-Lab’s
bert-base-arabic-camelbert-da3.

PolyWERf : Setting β to a value larger than 1
means that PolyWER will not accept translations
as correct. We refer to this variant that only ac-
cepts original transcriptions and transliterations as
PolyWERf , where f stands for faithfulness.

6 Results

6.1 Human Evaluation Results
We report the average human ratio score, and the
inter-annotator agreement in terms of Inter-Class
Correlation Coefficient (ICC) in Table 6. Agree-
ment between annotators ranges from 0.631 to
0.951, with the ArTST model being the most dif-
ficult to rate. In Table 7, we report the average
human ratio (r) on the subset used for human eval-
uation, in comparison with various metrics on the
same set.

3https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-da
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System Fine -tuning Avg. Ratio % ICC

Whisper
Zero-shot 61.62 0.951
Transcription 89.57 0.867

MMS
Zero-shot 34.18 0.739
Transcription 56.93 0.845

ArTST
Zero-shot 38.52 0.689
Transcription 46.42 0.631

Table 6: Human evaluation score (average ratio) and
inter-annotator agreement in terms of interclass correla-
tion coefficient (ICC), for each system used in human
evaluation. Ratio: c(0.5f + 0.5m)

Discussion: We notice from Table 7 that the rank-
ing of the systems for PolyWER aligns with the
human evaluation ranking with the exception of
ArTST FT. We can see from Table 6 that this model
has the lowest inter-annotator agreement, which
prompted us to scrutinize its predictions and the
resulting PolyWER scores. The utterances that
did not align with the human consensus turned out
to follow the same pattern: a large number of er-
rors and a much larger number of words. Due to
how error-based metrics compute their scores, such
cases result in a low error rate, which does not cor-
respond to the way a human would rate the same
prediction. For instance, a 40-word sentence with
10 errors would result in a 25% error rate, while
human annotators from our observations seem to
penalize a prediction by at least half of the overall
score when faced with such a high number of errors
(i.e. the number of words for a human does not hold
the same importance as it does for an error-based
metric). Despite this problem affecting WERs and
mrWERs, these metrics benefit from their stricter
approach (e.g. penalizing transliterations), which
so happens to align with human judgement (albeit
for different reasons).

Correlation on Zero-Shot models: PolyWERf

stands out as the most consistent metric across vari-
ous human evaluation configurations, either achiev-
ing the highest correlation or being a close second
(as seen in Table 4). The other two metrics that
also perform well across multiple configurations
are CER and mrWER. We notice that CER’s high
alignment can be attributed to its flexibility with
different spellings of the dialectal parts of the ut-
terance (e.g. ÕºË ú 	æÖ �ß@ vs ÕºËA 	JÖ �ß @). Other metrics
are more rigid on this front and don’t account for

Model
Whisper MMS ArTST

Zero FT Zero FT Zero FT

Avg. Ratio % ↑ 61.6 89.6 34.2 56.9 38.5 46.4
WER % ↓ 72.6 57.1 89.3 74.9 82.5 76.0
CER % ↓ 38.1 16.7 50.4 28.8 43.8 30.7
PolyWER % ↓ 37.1 16.8 69.3 49.6 54.3 42.8
PolyWERf % ↓ 41.4 16.8 70.1 49.7 56.1 42.9
mrWER % ↓ 38.2 15.4 70.2 40.3 54.7 40.6
BLEU ↑ 42.3 69.9 7.8 27.7 22.4 37.9
BERTScore ↑ 81.3 90.1 77.5 88.4 83.3 78.9

Table 7: Evaluation scores on the human evaluation sub-
set across different metrics in comparison with human
ratio. Ratio: c(0.5f + 0.5m)

the variability that is inherent to dialects that lack
a standardized orthography. mrWER comes close
to PolyWER on configurations that favor mean-
ing, but falls short on predictions that combine
transcription and transliteration (which are both
faithful references), such as the ones showcased in
Table 9. This leads us to compute the correlation on
the zero-shot systems only (which are more likely
to generate a combination of reference types, and
are more accurate representations of models in the
wild); for these models, we notice a bigger dispar-
ity between the two metrics in terms of correlation
with human judgement (Table 5).

PolyWER Hyperparameters: We experimented
with varying the hyperparameters α and β. The
results are shown in Table 8. Note that increasing
the tolerance of CER with the α hyperparameter
results in improved correlation, whereas increasing
the tolerance for translation does not. Upon closer
inspection, we find that the BERT model used to
evaluate the similarity for translations is generally
unreliable.

α β Spearman Pearson

0.15

0.85

0.749 0.726
0.20 0.794 0.776
0.25 0.810 0.791
0.30 0.812 0.793
0.35 0.813 0.794

0.25

0.75 0.813 0.795
0.80 0.813 0.793
0.85 0.810 0.791
0.90 0.813 0.795
0.95 0.811 0.794

Table 8: Spearman and Pearson correlations on different
values of α and β on the human evaluation subset.
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Reference Prediction

my financial situation �éJ
ËAÖÏ @ ú

�GAJ
k 	á« Õ»Q�. 	m�'. Basically my financial situation �éJ
ËAÖÏ @ ú


�GAJ
k 	á« Õ»Q�. 	m�'. ú
Î¾J
��
K.
	àðQm��' B you don’t mix in with the crowd ñ�J 	K @

B @YK. @ cocktail Õ»PAÔ«

@

	à@ @ðPQm��' B you don’t mix in with the crowd ñ�J 	K @
B @YK. @ ÉJ
�J»ñ» Õ»PAÔ«

whatever yoga ø
 ñ�

@ ð


@ YK
YmÌ'@ ÉJ
 ��


@ gymÈ@ Q�
�


@

whatever i do
whatever A 	«ñK
 whatever ø
 ñ�@ð

�èYK
YmÌ'@ É ��@ Ñm.Ì'@ Q�
�@
I do

ritualÈ@ @ 	Yëð ritual every morning ø
 Y
	J« A 	K


@

it’s just positive one
it’s Èñ ����QË@ @ 	Yëð every morning Èñ ����P ø
 Y

	J« A 	K

@

just a positive one
��k ��. accessible ð


@ 	á�
»Q�� ��ÒÊË ¡�® 	̄ �HA�®ÊmÌ'@ ø
 Aë

	àñº�JK.
subscribers on apple podcastsÈ@

��. accessible ð

@ 	á�
»Q�� ��ÒÊË ¡�® 	̄ �HA�®ÊmÌ'@ ø
 Aë

	àñº�JK. ð
on apple podcasts 	PQ�. K
 @Qº��.�Ë@ ��k

Table 9: Examples from the test set where PolyWER correlates with human judgement better than other metrics.
Transliterations are shown in red.

Model Tr. Sett. Test Split PolyWER PolyWERf WER CER

Whisper

Zero-Shot All 27.79 28.99 29.92 16.70
CS 33.12 35.35 37.07 23.78

Transcription All 24.61 23.81 24.83 13.64
CS 26.68 26.80 27.06 15.17

Transliteration All 26.48 28.02 33.06 22.53
CS 30.96 34.39 38.85 27.88

Translation All 26.08 29.05 32.55 22.46
CS 34.63 36.54 38.65 28.30

MMS

Zero-Shot All 60.19 60.43 61.28 24.92
CS 63.78 64.22 65.75 30.31

Transcription All 47.53 47.63 47.79 20.55
CS 51.02 51.21 51.46 22.99

Transliteration All 45.08 45.21 47.25 21.55
CS 47.33 47.59 51.33 26.71

Translation All 46.02 46.52 47.08 20.66
CS 49.22 50.15 51.17 25.55

ArTST

Zero-Shot All 38.12 38.32 39.23 17.13
CS 42.62 42.99 44.63 22.23

Transcription All 26.36 26.44 26.70 11.32
CS 30.87 31.03 31.49 14.19

Transliteration All 25.69 25.82 28.16 13.99
CS 29.63 29.86 34.19 19.58

Translation All 27.31 27.97 28.53 14.28
CS 32.52 33.74 34.75 19.93

Table 10: Results of the ASR systems fine-tuned on the three different settings. We report WER, CER and our metric
PolyWER. Tr. Sett.: Training Setting. TR: Fine-tuned on Original Transcription. LIT: Fine-tuned on transliteration.
LAT: Fine-tuned on translation.
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7 ASR fine-tuning & evaluation

In this section, we report the final performance of
the various systems trained on Mixat training set
(part 1), and evaluated on Mixat testing set (part 2)
using PolyWER and other metrics. For each model,
we evaluate three variants:

1. Zero-shot performance without fine-tuning.

2. Fine-tuning on the original transcriptions.

3. Fine-tuning on transliterated annotations.

4. Fine-tuning on translated annotations.

The models are evaluated on the same type of an-
notation when WER, CER, or BERTScore is used.
For PolyWER, all three annotations are used as ref-
erences. The results are shown in Table 10. We find
that all models improve with fine-tuning. However,
depending on the metric used, MMS and ArTST
may perform better when trained on the transliter-
ated or original set. For example, PolyWER ranks
the models trained on the transliterated set higher,
whereas WER and CER favor the model trained
on the original set. On Whisper, all metrics rank
the model trained on the original set (with a mix
of Arabic and Latin scripts) higher than the other
alternatives. This difference in performance trends
may be attributed to the inductive bias in Whisper,
which already produces high-quality transcriptions
and transliterations in zero-shot settings, and can
transcribe in both languages, whereas ArTST is a
mono-lingual model with limited pre-training on
English.

8 Conclusion

In this paper, we introduced PolyWER, a holistic
evaluation framework for code-switching in speech
recognition. The algorithm accepts multiple refer-
ences, including original transcriptions, translitera-
tions, and translations. Using special annotations
to identify code-switched segments in references,
PolyWER applies suitable metrics for the translit-
erated (CER) and translated segments to maximize
flexibility without compromising its integrity as an
error metric. To that end, tight thresholds are ap-
plied for accepting transliterations based on CER
and translations based on BERT cosine similarity.
Our evaluation against human judgement shows
that a variant of PolyWER correlates well with hu-
man scores by balancing faithfulness and meaning

preservation. At the same time, it maintains fine-
grained discriminative ability, unlike automatic ma-
chine translation metrics like WER or BERTScore
that are biased towards strict faithfulness or se-
mantic similarity, respectively. The algorithm is
flexible as it incorporates hyperparameters to ad-
just depending on the desired feature. We find that,
using the Arabic BERT model used in our evalua-
tion, including translation in the evaluation results
in inferior performance. Manual inspection reveals
that the semantic similarity scores between Arabic
and English in this model are unreliable, so further
analysis is needed to demonstrate the potential of
including translations with a more reliable cross-
lingual similarity model. Our implementation of
PolyWER, alongside the additional annotations for
Mixat, are publicly available for research.

Limitations

This work is limited by the scarcity of datasets
for code-switched ASR, and in particular by the
requirement of having multiple references of the
specified kind. While we manually annotated one
dataset and validated its use for the purposes out-
lined in the paper, it remains a limitation that only
one language-pair was evaluated. We also found
the dataset to contain several inaccurate references.
We corrected this on the test set to have accu-
rate evaluations, but the problem persists on the
train set, which affects the fine-tuned models. Fur-
thermore, the human evaluation scheme devised
for measuring the validity of the various metrics
may have its own limitations. For instance, we
noted large inter-annotator agreement scores for
some models. This indicates that even human
judgement scores for may not be reliable. Upon
close inspection, we also noticed the unreliabil-
ity of the BERT model used for translations. Fi-
nally, while it was outside of the scope of this
paper, we believe it would be worthwhile to ex-
plore multiple transcription layers (e.g. equivalent
spellings/transliterations).
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