
Findings of the Association for Computational Linguistics: EACL 2024, pages 6166–6178
November 12-16, 2024 ©2024 Association for Computational Linguistics

SCA: Selective Compression Attention for Efficiently Extending the
Context Window of Large Language Models

Huanran Zheng, Wei Zhu, Xiaoling WangB
East China Normal University, Shanghai, China

{hrzheng,wzhu}@stu.ecnu.edu.cn
xlwang@cs.ecnu.edu.cn

Abstract

Large language models (LLMs) have achieved
impressive performance across various do-
mains, but the limited context window and
the expensive computational cost of processing
long texts restrict their more comprehensive ap-
plication. In this paper, we propose Selective
Compression Attention (SCA), a general and
effective method to expand the context window
and reduce memory footprint by compressing
the KV cache of LLMs. Specifically, through
preliminary experiments, we found that the KV
cache contains many similar vectors, result-
ing in information redundancy, which can be
compressed by retaining representative vectors
and discarding others. Therefore, SCA contin-
uously selects the most distinctive vectors to
keep through a greedy algorithm, reducing in-
formation loss during compression. Extensive
experiments on various tasks verify the effec-
tiveness of our method. Compared with exist-
ing methods, SCA can significantly reduce the
impact on model performance under the same
compression ratio. Furthermore, the context
window of LLMs can be efficiently expanded
using SCA without any training, which can
even achieve better performance than specially
fine-tuned long context models.

1 Introduction

Transformer-based (Vaswani et al., 2017) large lan-
guage models (LLMs) have excellent capabilities,
which have extensively promoted the development
of various natural language processing applications
(Wolf et al., 2019; Thoppilan et al., 2022; Touvron
et al., 2023a; OpenAI, 2023) and provided a possi-
bility for artificial general intelligence. However,
due to their huge size, their deployment is very
expensive. In particular, the quadratic cost of at-
tention layers and the growing KV cache make the
overhead of LLMs unacceptable when processing
long texts, which limits the application and devel-
opment of LLMs in long context scenarios.

Full Attention StreamingLLM SCA (ours)

Figure 1: Upper plots illustrate attention maps applying
different methods. Lower plots show the distribution of
vectors retained by different attention methods after t-
SNE dimensionality reduction. The distribution of SCA
retained vectors is closer to the original distribution than
StreamingLLM, so it can keep more information.

Significant efforts have been made to improve
the efficiency and extend the context window for
LLMs. For example, some methods (Beltagy et al.,
2020; Xiao et al., 2023; Zhang et al., 2023) use a
manually set sparse attention mode to limit the
maximum size of the attention calculation win-
dow. However, they will lose valuable information,
causing the performance to decrease significantly.
There are some other methods (Wu et al., 2022;
Wang et al., 2023b) that only use the retrieved most
relevant chunks to calculate attention but still need
to keep the complete KV cache. Another works
improve efficiency by changing the model structure
(Kitaev et al., 2020; Gu and Dao, 2023). However,
such methods require retraining or fine-tuning the
model, making their application costly.

Therefore, this paper aims to propose a method
that can overcome the shortcomings of previous
approaches. Specifically,

1. It can effectively compress the KV cache and
expand the context window of LLMs.

2. It can retain most original information in the
KV cache during the compression process and

6166



reduce the impact on performance.

3. It is model-independent, plug-and-play, and
does not require training or fine-tuning.

We first conducted a preliminary experiment to ex-
plore the feasibility. Fortunately, we found that the
KV cache has many redundant vectors that could
be deleted. Specifically, the cosine similarity be-
tween many vectors in the KV cache is extremely
high. The similar vectors provide similar informa-
tion when calculating attention. Therefore, we can
compress the KV cache and retain its original in-
formation by reserving representative vectors and
removing similar redundant vectors.

Based on the preliminary experimental results,
we propose the Selective Compression Attention
(SCA) method, which can effectively compress the
KV cache, improve the efficiency of LLMs, and ex-
tend their context window. Specifically, our method
uses a greedy algorithm to select the least redun-
dant vector based on the current retained result to
reserve, ensuring that more different information
can be kept at each step during compression. When
the KV cache length reaches a given maximum
threshold, it can be compressed using the SCA
approach to provide free space, allowing LLMs
to receive more context. Moreover, unlike the re-
cently proposed AutoCompressors (Chevalier et al.,
2023), our method does not require fine-tuning and
can be easily applied to any LLMs.

To verify the effectiveness of our proposed
method, we conduct extensive experiments on dif-
ferent LLMs and datasets. On the one-shot and
zero-shot short text tasks, the performance after
using SCA to compress the KV cache is almost the
same as the original full attention, verifying that
SCA can retain most of the original information
during compression. For the long context tasks,
our method can effectively extend the LLMs’ orig-
inal context window and ensure the fluency and
accuracy of the generated results. Especially, SCA
can still achieve 100% accuracy on the passkey
retrieval task after extending the context window
size of Llama2-13B-Chat (Touvron et al., 2023b)
to 12k. Furthermore, using SCA to extend the con-
text length of Vicuna1.5-7b (Zheng et al., 2023)
to 16k can even perform better than the fine-tuned
Vicuna1.5-7b-16k on real long context tasks.

In summary, our main contributions are the fol-
lowing: (1) We analyze and verify the feasibility
of compressing the KV cache. By exploring the
similarities between vectors, the preliminary ex-

periment demonstrates that the KV cache contains
much redundant information. (2) We propose an
efficient and plug-and-play approach, which can
compress the KV cache and keep most of the origi-
nal information by retaining the representative vec-
tors. (3) We conduct extensive experiments to show
the powerful potential of our method, which can
effectively extend the context window and reduce
the memory footprint for different LLMs.

2 Related Work

Extensive research has been done on efficient infer-
ence and context window extension of LLMs.

An intuitive idea is manually setting sparse at-
tention to limit computational complexity (Belt-
agy et al., 2020; Ding et al., 2023; Han et al.,
2023). For example, StreamingLLM (Xiao et al.,
2023) only retains the most recent tokens and sev-
eral initial tokens for stable attention computation.
StreamingLLM can perform language modeling of
millions of tokens. However, it loses much original
information and cannot truly enhance LLMs’ abil-
ity to remember and use long contexts. Recently,
Han et al. (2023) proposed H2O, a heuristic KV
cache eviction policy. H2O compresses the KV
cache by evicting tokens with the smallest accumu-
lated attention score. However, the score calculated
only based on the current KV cache is one-sided,
which may cause it to discard tokens needed in the
future. Unlike the previous methods, our approach
selects the most representative vectors based on the
vector distribution of the KV cache so that more
different information can be retained, significantly
reducing the information loss during the compres-
sion process.

The second type of method retrieves the most
relevant chunk in the KV cache for the attention
calculation (Wu et al., 2022; Zhong et al., 2022;
Wang et al., 2023b; Lu et al., 2024). Although these
methods can reduce the overhead of attention cal-
culation, they still need to store the complete KV
cache. Therefore, they can not solve the problem
of the KV cache increasing linearly as the context
length increases. When the context is very long,
they need to offload the KV cache to the CPU,
increasing communication overhead between the
GPU and the CPU. In contrast, SCA can ensure
the KV cache size does not exceed a given thresh-
old, significantly reducing the memory footprint of
LLMs when processing long contexts.

Another type of work changes the model struc-

6167



Layer0 Layer7 Layer15 Layer23 Layer31

Layer0 Layer7 Layer15 Layer23 Layer31

Figure 2: Visualization of the redundancy of each token vector in Key (Upper) and Value (Lower) caches at different
layers of Llama2-7B. To facilitate visualization, we convert the 400 vector redundancy into a 20×20 matrix. The
high redundancy of a token vector indicates that there are other vectors in the cache that are very similar to it.

ture to make it more efficient (Dai et al., 2019;
Kitaev et al., 2020; Peng et al., 2023). For example,
Transformer-XL (Dai et al., 2019) uses a segment-
level recurrence mechanism to expand its receptive
field and capture longer dependencies while fixing
the attention window size. Reformer (Kitaev et al.,
2020) proposes a new attention module that uses
locality sensitive hashing attention to reduce the
computational cost from quadratic to superlinear
complexity. However, such methods require re-
training, making their deployment on LLMs costly.
In contrast, our approach is plug-and-play and can
be easily adapted to any LLMs.

3 Preliminary Experiment

In this section, we carefully explore the characteris-
tics of the KV cache in LLMs. Specifically, we con-
ducted experiments to answer two questions: (1)
Is there information redundancy in the KV cache?
(2) Can the KV cache be effectively compressed by
only retaining representative vectors?

3.1 Experimental Setup

We conducted experiments on the validation set of
PG19 (Rae et al., 2019) based on Llama2-7B and
Llama2-7B-Chat (Touvron et al., 2023b). Specif-
ically, the books in the PG19 validation set are
truncated from the right, allowing LLMs to encode
fixed-length contexts and obtain their correspond-
ing KV cache. Then, we measure the degree of
information redundancy by the cosine similarity
between different vectors in the KV cache. Similar
key and value vectors have similar meanings in the
latent space, and the information they provide in
attention calculations is also similar. Therefore, we

Context length Llama2-7B Llama2-7B-Chat

200 0.89/0.67 0.88/0.64
400 0.89/0.69 0.88/0.66
800 0.89/0.70 0.88/0.67
1600 0.89/0.71 0.88/0.67
3200 0.88/0.72 0.88/0.69

Table 1: Redundancy of Key/Value cache of different
context lengths in Llama2-7B and Llama2-7B-Chat.

designed an information redundancy metric based
on cosine similarity between vectors:

redundancy =

∑n
i=1 redundancyi

n
redundancyi = max (sim (wi, w̸=i))

(1)

where n represents the number of vectors in the
matrix W . Since Llama2 uses RoPE (Su et al.,
2021) positional encoding, when calculating the
redundancy of the key matrix, we first add position
information to it to make it consistent with the form
of attention calculation. Furthermore, considering
the tokens’ integrity, we calculate the cosine sim-
ilarity after concatenating the vectors of all heads
for each token. Finally, we average the redundancy
of all layers to measure the overall redundancy of
the KV cache generated by the LLMs.

3.2 Experimental Results
The main experimental results are shown in Table 1.
As we can see, the KV cache generated by LLMs
has apparent information redundancy, whether the
key or value matrix. Specifically, the average re-
dundancy of the key matrix is between 0.88-0.89,
and the average redundancy of the value matrix is
between 0.64-0.72, which shows that most of the

6168



Algorithm 1 SCA

1: Input: K ∈ Rn×d, V ∈ Rn×d, m
2: Initialize: R = [n], D = [1, 2, ..., n-1]
3: K

′
= Relative_Position(K)

4: SimK , SimV = Cos_Sim(K
′
), Cos_Sim(V )

5: for i = 1 to m do
6: Calculate AddK and AddV based on SimK

and SimV respectively
7: t = argmin

j∈D
(AddK(kj) + AddV (vj))

8: R, D = R.append(t), D.remove(t)
9: end for

10: R = R.sort()
11: Return K[R], V [R]

token vectors in the matrix have other vectors that
are very similar to them. In addition, as the length
increases, the redundancy of the KV cache will also
increase, especially for the value matrix. This ex-
perimental result provides us with the possibility to
compress the KV cache by retaining representative
token vectors and deleting redundant vectors.

For a more fine-grained analysis, we visualized
the redundancy of each token vector in the KV
cache at different layers of Llama2-7B when the
input context length is 400. As shown in Figure
2, most of the token vectors have high redundancy,
indicating that there are other vectors in the matrix
that are very similar to them. These results further
demonstrate that we can effectively compress the
KV cache and maintain the original information by
selecting one representative from the set of similar
vectors to retain. Furthermore, we find that the first
token vector of the KV cache in the first and last
layers does not have other similar vectors, indicat-
ing that it has unique information. This observation
provides another explanation for StreamingLLM
and LM-Infinite (Han et al., 2023) methods, i.e., if
the initial tokens are discarded, their unique infor-
mation will be lost, resulting in a sharp decline in
the performance of the model.

4 Method

This section details the proposed approach. First,
we present the problem definition in 4.1, then in-
troduce the design ideas of our method in 4.2, and
give the implementation details in 4.3.

4.1 Problem Definition

Through the preliminary experiment, we found that
the KV cache of LLMs has a lot of redundant in-

formation, and it can be effectively compressed by
retaining representative tokens and discarding other
redundant vectors. In this way, we can improve the
computational efficiency and extend the context
window for LLMs.

Therefore, the problem we want to solve can
be defined as a matrix compression task. Specifi-
cally, given the matrix W = (w1, w2, . . . , wn), it
contains n vectors. Our goal is to select m vec-
tors from these n vectors to retain and delete other
vectors, thereby obtaining the compressed matrix
W ∗ = (w∗

1, w
∗
2, . . . , w

∗
m). In addition, we require

that the minimum amount of information is lost
during the compression process. The information
amount of the compressed matrix W ∗ is inversely
proportional to the redundancy. The lower the re-
dundancy, the more information W ∗ contains, and
the less information is lost during the compression
process. Consequently, our final goal is to propose
a method that can compress W into W ∗ and ensure
that the redundancy of W ∗ is minimal.

4.2 Selective Compression Attention
Determining the best selection strategy with the
lowest redundancy presents a combinatorial chal-
lenge, which makes it difficult to find the optimal
solution in a reasonable time. Therefore, we use
a greedy algorithm to effectively obtain the local
optimal selection result for matrix compression.

Based on the principle of greedy algorithm,
we divide the original problem into multiple sub-
problems and obtain the final result through multi-
step calculation. At each step, we select one vec-
tor to retain, thereby obtaining the final result
through m steps. Specifically, for step t, know-
ing W ∗

t−1 = (w∗
1, w

∗
2, . . . , w

∗
t−1), our goal is to

select one of the unretained vectors from W to add
to W ∗

t−1 and ensure that the redundancy of the re-
sulting W ∗

t matrix is minimal. According to the
redundancy metric in Equation (1), the change in
redundancy of W ∗

t compared to W ∗
t−1 after adding

w∗
t consists of two parts. First, adding w∗

t may
cause the most similar vector of each vector in
W ∗

t−1 to change, resulting in their redundancy in-
creases:

Add1 =
t−1∑

i=1

max (0, sim (w∗
i , w

∗
t )− redundancyi)

Second, the redundancy caused by the similarity
between w∗

t itself and the retained vectors:

Add2 = max (sim (w∗
t , w

∗
<t))

6169



Therefore, to ensure local optimality, for each step,
we select the vector that leads to the smallest in-
crease in the redundancy value of the two parts
to retain (Add = Add1 + Add2). The main idea
of our method is to preserve vectors with different
meanings as much as possible so that the vector dis-
tribution of the compressed matrix can be similar
to that before, thus reducing the loss of information
(Figure 1). Furthermore, because the Add values
of all candidate vectors can be calculated in par-
allel, the time required for each step is very short,
ensuring the efficiency of our method.

4.3 Implementation Details

The implementation of Selective Compression At-
tention is summarized in Algorithm 1. For the KV
cache compression, we have several important de-
tails to consider.

First, because LLMs generally pay more atten-
tion to the most recent tokens (Xiao et al., 2023;
Han et al., 2023; Zhang et al., 2023), we retain
the most recent one or more tokens during initial-
ization to ensure that the most recent important
information is not lost (Line 2 of Algorithm 1).

Second, most existing LLMs use relative posi-
tion encoding (Zeng et al., 2022; Touvron et al.,
2023b; Biderman et al., 2023; Team, 2023; Zheng
et al., 2023). Therefore, we will first add position
information to the key matrix and then calculate its
similarity (Lines 3-4) to ensure that it is consistent
with the attention calculation process.

Third, since the vectors in the key and value
matrices correspond to each other, their selection
results must also be the same. Otherwise, the atten-
tion calculation results will seriously deviate from
the original results. Therefore, in each step, we will
consider the redundancy of key and value matrices
together to make the selection (Lines 7-8).

Our method only focuses on the KV cache,
which is general and can be applied to any LLMs.
Moreover, our method does not require any training
and is plug-and-play, thus significantly reducing
the difficulty and cost of its deployment.

5 Experiments

In this section, we conduct extensive experiments
to verify the effectiveness of our proposed method.
Specifically, we first verify whether using SCA to
compress the KV cache affects the performance
of the LLMs in Section 5.1. Then, we verify the
context window extension capability of our method

Method IMDB RACE AG News Cosmos QA Avg.

Full 91.6 35.4 76.0 35.4 59.6

Stream 80.2 32.0 66.8 34.0 53.3
Sparse 50.6 15.4 70.8 20.6 39.6
H2O 90.0 34.8 71.8 33.2 57.5
SCA 90.0 35.4 75.8 34.8 59.0

Table 2: The performance of different compression
methods on Llama2-7B. We compress the KV cache
to 50% of its original length and then predict the re-
sults. The average context lengths of the four datasets
are 1048, 462, 367, and 184 tokens.

based on a variety of tasks, including language
modeling tasks (Seciton 5.2), passkey retrieval
tasks (Section 5.3), and real long context tasks
in the L-Eval benchmark (Section 5.4). Finally,
we conduct fine-grained ablation experiments in
Section 5.5 to further analyze our approach.

We use a single NVIDIA RTX A6000 48GB
GPU for experiments. During inference, we use
the greedy search for LLMs to generate results.
We mainly compare several advanced baselines,
including:

• StreamingLLM (Xiao et al., 2023): when the
KV cache’s length reaches the threshold, the
most recent and first four tokens are retained.

• Sparse Attention: uses a stride of 2 to retain
tokens in the KV cache. If multiple compres-
sions are performed, its effect is similar to the
Dilated Attention (Ding et al., 2023).

• H2O (Zhang et al., 2023): retains most recent
tokens and the tokens with higher accumu-
lated attention scores in the KV cache.

Considering the token’s integrity, SCA is per-
formed in units of tokens during compression.
Specifically, we concatenate the vectors of all atten-
tion heads in the KV cache to construct the token
vector for SCA. Moreover, based on the experi-
mental results in Section 5.5, we only use the SCA
algorithm for the last layer and let all layers share
the selection results to further improve efficiency.

5.1 The Impact of Compression
Setting We selected four commonly used natural
language processing datasets: IMDB (Maas et al.,
2011), RACE (Lai et al., 2017), AG News (Zhang
et al., 2015), and Cosmos QA (Huang et al., 2019),
including sentiment classification, reading compre-
hension and text classification tasks, and conducted
experiments based on Llama2-7B. For each dataset,

6170



Model Method PG19 ArXiv
4k 8k 16k 32k 64k 4k 8k 16k 32 k 64k

Llama2-7B

Full 6.5 165.6 >103 OOM OOM 3.8 100.9 >103 OOM OOM
Local 6.5 171.9 947.6 >103 >103 3.8 132.1 681.4 >103 >103

Stream 6.5 6.8 6.9 7.0 7.1 3.8 3.6 3.3 3.1 3.0
Sparse 6.5 7.0 7.0 7.1 7.2 3.8 3.6 3.4 3.1 3.1
H2O 6.5 6.8 7.0 7.3 7.7 3.8 3.5 3.3 3.1 3.1
SCA 6.5 6.7 6.9 7.0 7.1 3.8 3.5 3.3 3.1 3.0

Llama2-7B-Chat

Full 6.5 204.4 >103 OOM OOM 3.8 180.9 >103 OOM OOM
Local 8.6 343.1 >103 >103 >103 5.2 226.1 947.0 >103 >103

Stream 8.6 9.0 9.2 9.4 9.5 5.2 4.8 4.5 4.2 4.1
Sparse 8.6 9.0 9.3 9.6 9.9 5.2 4.8 4.5 4.2 4.1
H2O 8.6 8.9 9.2 9.9 11.4 5.2 4.8 4.5 4.2 4.1
SCA 8.6 8.8 9.0 9.2 9.4 5.2 4.7 4.4 4.1 4.0

Table 3: Perplexity on PG19 and ArXiv of Llama2-7B and Llama2-7B-Chat with different compression methods.
"Local" means only the most recent token is retained during compression. "OOM" means out-of-memory.

we randomly sample 500 instances from their test
sets. Because the KV cache of few-shot in-context
learning naturally has a lot of redundant informa-
tion, it is simple to compress. Therefore, we try to
reduce the number of demonstrations to increase
the compression difficulty. Specifically, we adopt
the one-shot for IMDB and AG News, and the
zero-shot for RACE and Cosmos QA. For all com-
pression methods, we set the compression ratio to
50%. For H2O and SCA, we first let them keep
the 25% target retention number of the most recent
tokens and then select 75% from the remaining
tokens. Finally, we use accuracy to evaluate the
model performance.

Results We show the evaluation results in Table
2. As we can see, the performance of Sparse At-
tention is the worst, which shows that the method
based on fixed stride loses much original informa-
tion during the compression process. The perfor-
mance of Stream and H2O is better than Sparse
Attention, but they still lead to a significant de-
crease in the model’s accuracy on some datasets.
In contrast, SCA can achieve competitive perfor-
mance with Full Attention (without compression)
on all datasets, which shows that it can retain most
of the original information during compression, al-
lowing the model to still make correct predictions.
More experimental results are shown in Appendix
A, and our method can perform well under different
compression ratios.

5.2 Performance on Language Modeling

Setting Excellent language modeling capability
is essential for LLM to complete various tasks. We

use the PG19 test set (Rae et al., 2019) and ArXiv
corpora of RedPajama (Computer, 2023) to eval-
uate the language modeling ability of LLMs with
different length contexts. For Arxiv, we randomly
sample 100 samples for testing. We filter samples
whose length is less than the required length and
truncate content that exceeds the given length. To
extend the context window of LLMs, whenever
the length of the KV cache reaches 4000, we use
a compression method to compress it to 2000 so
that the model can accept new texts. For H2O and
SCA, we make them keep the 128 most recent to-
kens first1. Similar to previous work (Xiao et al.,
2023; Ding et al., 2023; Zhang et al., 2023), we use
perplexity (PPL) to measure the language modeling
ability of the model.

Results As shown in Table 3, the PPL increases
significantly when the input text length exceeds
the LLM’s context window size. By keeping the
most recent tokens (Local), the memory footprint
will not exceed the maximum as the context length
increases, but it destroys the language modeling
ability of LLMs. In contrast, other compression
methods can keep PPL within an acceptable range
after expanding the context window. In particular,
our proposed SCA can achieve the lowest PPL in
most cases, which can maintain LLMs’ powerful
language modeling ability even when the context
window size is expanded 16×.

As we can see from the experimental results, it is
relatively easy to make LLMs implement long text
language modeling through compression. However,
being able to perform language modeling does not

1If not specified below, this setting is used by default.

6171



0

10

20

30

40

50

60

70

80

90

100

4000 5000 6000 7000 8000 9000 10000 11000 12000

A
cc

u
ra

cy

Context Length

Full Stream Sparse H2O SCA

(a) Performance of different methods on Llama2-7B-Chat.

0

10

20

30

40

50

60

70

80

90

100

4000 5000 6000 7000 8000 9000 10000 11000 12000

A
cc

u
ra

cy

Context Length

Full Stream Sparse H2O SCA

(b) Performance of different methods on Llama2-13B-Chat.

Figure 3: Passkey retrieval accuracy of two LLMs with different extended context window sizes. For different test
lengths, we randomly generate 100 test samples for evaluation.

mean that LLMs can capture and exploit content in
long texts (Xiao et al., 2023). Therefore, we further
explore our method’s effectiveness through other
more complex tasks.

5.3 Performance on Passkey Retrieval Task

Setting Passkey retrieval (Mohtashami and Jaggi,
2023) is a synthetic task that requires LLMs to
retrieve a simple passkey (a five-digit random num-
ber) from a long meaningless text sequence. This
task randomly inserts the passkey into any posi-
tion of the input context, which can test whether
LLMs can be aware of and use information from
different positions in the input context. We conduct
experiments based on two LLMs of different sizes,
Llama2-7B-Chat and Llama2-13B-Chat, to verify
whether our method can find and retain valuable
information during compression.

Results The experimental results are shown in
Figure 3. It can be seen that when the input text
length is 4k, both LLMs can achieve 100% accu-
racy, indicating they have strong passkey retrieval
capabilities. However, when the length exceeds the
context window size, the retrieval accuracy drops
sharply to 0%. Moreover, even if the context win-
dow is expanded by existing methods, the accuracy
still drops significantly for long texts. These results
show that although the previous approaches can
achieve language modeling for long texts, they can-
not effectively discover and retain valuable infor-
mation, resulting in the information corresponding
to the passkey being deleted during compression.

In contrast, SCA can maintain high retrieval ac-
curacy under extended context length. Especially
on Llama-13B-Chat, even if the extended length is
three times the original context window size, SCA
can still achieve 100% accuracy. This verifies the

effectiveness of SCA, which uses the distribution of
token vectors in the KV cache as the principle for
selection, allowing it to retain valuable information
and still perform well after compression.

5.4 Performance on Real Long Context Tasks

Setting Language modeling and passkey retrieval
tasks still cannot comprehensively reflect LLMs’
long context capabilities. Therefore, to further ver-
ify the effectiveness of our method, we conducted
experiments on the long context evaluation bench-
mark L-Eval (An et al., 2023). Since the evaluation
of open-ended tasks has fairness issues and the
closed-ended tasks can better reflect unbiased re-
sults, we only use L-Eval’s closed-ended tasks to
evaluate the model’s performance, which includes
various question styles such as multiple choice
questions (Coursera, QuALITY, TOFEL), math
problems (GSM), code understanding (CodeU),
and true or false questions (SFiction). The evalua-
tion metric used for these tasks is accuracy. Differ-
ent from the previous setting, we extend the LLMs
context window by compressing the KV cache
length from 4000 to 3000. We use various meth-
ods to expand Llama2-7B-Chat and Vicuna1.5-7B
(Zheng et al., 2023) with a 4k original window size
to 8k and 16k and evaluate their performance.

Results As shown in Table 4, the performance of
using StreamingLLM and H2O to extend the con-
text window is even worse than the original LLMs,
which means they lose much information after mul-
tiple compression, so they cannot truly expand the
context window for LLMs. In particular, although
H2O has little impact on the accuracy when com-
pressing short text tasks, its performance on real
long text tasks is poor, especially on Vicuna1.5-7B.
These results show that the method based on atten-

6172



Model Tokens Coursera GSM QuALITY TOFEL CodeU SFiction Avg.

Llama2-7B-Chat 4k 32.4 29.0 37.6 53.2 1.1 60.1 35.6
+ Stream 16k 23.0 18.0 30.7 53.2 1.1 53.9 30.0
+ H2O 16k 32.1 14.0 35.1 53.2 1.1 58.6 32.4
+ SCA 8k 36.6 31.0 37.6 57.2 2.2 62.5 37.9
+ SCA 16k 38.5 31.0 37.6 57.2 2.2 64.1 38.4

Longchat1.5-7B-32k 32k 33.0 18.0 37.6 39.8 3.3 57.0 31.5

Vicuna1.5-7B 4k 36.2 19.0 38.1 51.3 3.3 56.3 34.0
+ Stream 16k 35.6 22.0 35.6 46.8 1.1 61.7 33.8
+ H2O 16k 28.2 1.0 28.2 18.8 0.0 46.1 20.4
+ SCA 8k 40.0 24.0 39.6 53.2 4.4 66.4 37.9
+ SCA 16k 39.0 24.0 39.1 53.2 4.4 69.5 38.2

Vicuna1.5-7B-16k 16k 38.7 19.0 39.6 55.4 5.5 60.2 36.4

Table 4: Performance of different methods on closed-ended tasks of L-Eval benchmark. Tokens denotes the
maximum input length. The input context is truncated from the right according to the given maximum length.

30

35

40

45

50

55

60

1 2 4 8 16 32

A
cc

u
ra

cy

Number of adjacent shared layers

short text tasks long text tasks

Figure 4: Average accuracy on short and long text tasks
using different sharing strategies. Setting the number of
adjacent shared layers to 32 indicates that the selection
result is calculated only based on the KV cache of the
last layer and shared with all layers for compression.

tion scores to select important tokens can not apply
to long texts because the current accumulated atten-
tion scores cannot reflect its importance for distant
future predictions.

In contrast, using SCA to extend the context
window can achieve better performance than the
original LLMs. Specifically, expanding the con-
text window size of the two LLMs to 16k can im-
prove the accuracy by 2.8 and 4.2, respectively.
Moreover, even compared with two specially fine-
tuned long context LLMs, Longchat1.5-7B-32k
(Dacheng Li and et al., 2023) and Vicuna1.5-7B-
16k, our method still performs better. These experi-
mental results show that compared with previous
methods, by retaining more different representative
vectors, SCA can keep enough original information
in the KV cache even after multiple compressions,
thereby ensuring excellent performance. More ex-
perimental results of various LLMs on the L-Eval
benchmark are shown in Appendix B.

5.5 Ablation Experiments
Setting Although SCA can compress the KV
caches of all layers in parallel, calculating the selec-
tion results for each layer requires many computing
resources. Therefore, we test the performance of
sharing the selection results between adjacent lay-
ers on the short text tasks in Section 5.1 and the
long text tasks in Section 5.4. Specifically, we set
6 different sharing strategies for Llama2-7B and
Llama2-7B-Chat and evaluate their performance.

Results As shown in Figure 4, different sharing
strategies have little impact on performance. We
believe this is because the vector relationship of
the KV caches in most layers is similar, i.e., if two
tokens’ vectors are similar in the last layer, their
vectors in other layers are also likely to be similar.
Therefore, we share selection results in all layers
to improve efficiency. More analysis experiments
are presented in Appendix C.

6 Conclusion

In this paper, we first explore the characteristics
of the KV cache and verify the feasibility of com-
pressing it by retaining representative vectors and
discarding others. Based on these experimental
results, we propose a general and plug-and-play
method called SCA, which adopts a greedy algo-
rithm to minimize the information loss during the
compression process. Extensive experiments on
various tasks demonstrate the effectiveness of our
approach, which can compress the KV cache with
little impact on the model performance. Further-
more, SCA can easily and efficiently expand the
context window of LLMs, and its performance is
even better than the fine-tuned long context LLMs.

6173



7 Limitations

Although we conduct experiments on various long
text tasks, it still has limitations and cannot compre-
hensively evaluate the performance of LLMs after
expanding the context window. How to effectively
and accurately evaluate LLMs’ long context han-
dling capability remains an open question. In the
future, we will explore better evaluation methods
to verify the effectiveness of our approach.

In addition, our proposed method is general, but
in this paper, we only focus on its performance on
large language models. Recently, multimodal large
language models (Zhu et al., 2023; Liu et al., 2023;
OpenAI, 2023) have attracted widespread attention
from researchers. Since they need to receive in-
put from different modalities, they require a larger
context window. In the future, we will further ex-
plore the performance of SCA on multimodal large
language models.

Acknowledgements

This work was supported by National Key R&D
Program of China (No. 2021YFC3340700), NSFC
grant (No. 62136002), Ministry of Education Re-
search Joint Fund Project (8091B042239), Shang-
hai Knowledge Service Platform Project (No.
ZF1213), and Shanghai Trusted Industry Internet
Software Collaborative Innovation Center.

References
Chen An, Shansan Gong, Ming Zhong, Mukai Li, Jun

Zhang, Lingpeng Kong, and Xipeng Qiu. 2023. L-
eval: Instituting standardized evaluation for long con-
text language models. ArXiv, abs/2307.11088.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. ArXiv,
abs/2004.05150.

Stella Biderman, Hailey Schoelkopf, Quentin G. An-
thony, and et al. 2023. Pythia: A suite for analyzing
large language models across training and scaling.
ArXiv, abs/2304.01373.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. ArXiv, abs/2305.14788.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset.

Anze Xie Dacheng Li, Rulin Shao and et al. 2023. How
long can open-source llms truly promise on context
length?

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond
a fixed-length context. In Annual Meeting of the
Association for Computational Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher R’e. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
ArXiv, abs/2205.14135.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
Longnet: Scaling transformers to 1, 000, 000, 000
tokens. ArXiv, abs/2307.02486.

Team GLM, Aohan Zeng, Bin Xu, and et al. 2024. Chat-
glm: A family of large language models from glm-
130b to glm-4 all tools. Preprint, arXiv:2406.12793.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. ArXiv,
abs/2312.00752.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. ArXiv, abs/2308.16137.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading com-
prehension with contextual commonsense reasoning.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. ArXiv,
abs/2001.04451.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. ArXiv,
abs/2304.08485.

Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2024. Longheads:
Multi-head attention is secretly a long context pro-
cessor. ArXiv, abs/2402.10685.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

6174

https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:215737171
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:258865249
https://api.semanticscholar.org/CorpusID:258865249
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:259341682
https://api.semanticscholar.org/CorpusID:259341682
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:261339508
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:209315300
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://api.semanticscholar.org/CorpusID:258179774
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
https://api.semanticscholar.org/CorpusID:267740432
http://www.aclweb.org/anthology/P11-1015


Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-
mark attention: Random-access infinite context
length for transformers. ArXiv, abs/2305.16300.

OpenAI. 2023. Gpt-4 technical report.

Bo Peng, Eric Alcaide, Quentin G. Anthony, and et al.
2023. Rwkv: Reinventing rnns for the transformer
era. In Conference on Empirical Methods in Natural
Language Processing.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
and Timothy P. Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. ArXiv,
abs/1911.05507.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. ArXiv, abs/2104.09864.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, and
et al. 2022. Lamda: Language models for dialog
applications. ArXiv, abs/2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, and
et al. 2023a. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin R. Stone, and et al.
2023b. Llama 2: Open foundation and fine-tuned
chat models. ArXiv, abs/2307.09288.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspec-
tive for understanding in-context learning. ArXiv,
abs/2305.14160.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023b.
Augmenting language models with long-term mem-
ory. ArXiv, abs/2306.07174.

Thomas Wolf, Lysandre Debut, Victor Sanh, and et al.
2019. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771.

Yuhuai Wu, Markus Norman Rabe, DeLesley S.
Hutchins, and Christian Szegedy. 2022. Memorizing
transformers. ArXiv, abs/2203.08913.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient stream-
ing language models with attention sinks. ArXiv,
abs/2309.17453.

Ai Ming Yang, Bin Xiao, Bingning Wang, and et al.
2023. Baichuan 2: Open large-scale language mod-
els. ArXiv, abs/2309.10305.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian-
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2o:
Heavy-hitter oracle for efficient generative inference
of large language models. ArXiv, abs/2306.14048.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv, abs/2306.05685.

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train-
ing language models with memory augmentation.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
5657–5673, Abu Dhabi, United Arab Emirates.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. ArXiv, abs/2304.10592.

6175

https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:258887482
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:207930593
https://api.semanticscholar.org/CorpusID:207930593
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:246063428
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:258841117
https://api.semanticscholar.org/CorpusID:259137816
https://api.semanticscholar.org/CorpusID:259137816
https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:247519194
https://api.semanticscholar.org/CorpusID:247519194
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:261951743
https://api.semanticscholar.org/CorpusID:261951743
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930
https://api.semanticscholar.org/CorpusID:258291930


60

65

70

75

80

85

90

95

20% 30% 40% 50% 60% 70%

A
a

cc
u

ra
cy

Compression ratio

IMDB

Full

Stream

H2O

SCA
29

30

31

32

33

34

35

36

20% 30% 40% 50% 60% 70%

A
ac

cu
ra

cy

Compression ratio

RACE

Full

Stream

H2O

SCA
60

62

64

66

68

70

72

74

76

78

20% 30% 40% 50% 60% 70%

A
ac

cu
ra

cy

Compression ratio

AG News

Full

Stream

H2O

SCA
26

28

30

32

34

36

38

20% 30% 40% 50% 60% 70%

A
a

cc
u

ra
cy

Compression ratio

Cosmos QA

Full

Stream

H2O

SCA

Figure 5: Performance of different methods on four short text tasks (IMDB, RACE, AG News, Cosmos QA) based
on different compression ratios. The higher the compression ratio, the less KV cache is retained. Full represents the
original model performance with full KV cache.

A More Experimental Results on Short
Text Tasks

Besides the 50% compression ratio, we further
tested the performance of Llama2-7B with different
compression ratios on four short text tasks in Sec-
tion 5.1. As shown in Figure 5, the model’s perfor-
mance decreases as the compression ratio increases.
However, even when the compression ratio is set
to 70%, SCA can still achieve relatively high accu-
racy. In particular, on IMDB and RACE datasets,
SCA only needs to retain 30% of the KV cache to
achieve a higher accuracy than Stream retaining
60%. This result further illustrates the effective-
ness of our proposed selection strategy, which can
significantly reduce information loss during com-
pression. Furthermore, SCA can perform better
than the original model in some cases. We believe
this may be because SCA discards some redundant
noise in the KV cache, allowing the model to make
better predictions. In addition, although H2O can
achieve competitive performance with SCA, it is
only suitable for short text tasks. On long text tasks
(Section 5.3 and 5.4), its performance is signifi-
cantly worse than our method.

B More Experimental Results on L-Eval

To verify the generality of our proposed method,
we also tested it on a broader range of LLMs,
such as Baichuan2-7B-Chat (Yang et al., 2023) and
Chatglm2-6B (GLM et al., 2024). The experimen-
tal results are shown in the Table 5. As we can see,
our approach can achieve excellent performance on
different LLMs. In addition, similar to the results
on Llama2-7B-Chat and Vicuna1.5-7B, we found
that H2O performs much better on Llama2-13B-
Chat than on Vicuna1.5-13B. This result shows
that H2O’s KV cache eviction policy has limita-
tions and is unsuitable for some LLMs. In contrast,
our method can improve the performance of the
different LLMs on long text tasks, which shows

that compressing the KV cache based on its vector
distribution is more versatile than other methods.

C Analysis

C.1 The Efficiency of SCA

We conduct experiments to compare the efficiency
of using our method to expand the context window
(Vicuna1.5-7B+SCA) with the fine-tuned long con-
text LLM (Vicuna1.5-7B-16k) during inference.
Specifically, based on the PG19 test set, we let
both models generate 1000 new tokens based on
the context of 15000 length. During inference, we
use Flash Attention (Dao et al., 2022) and set the
batch size to 1. We measure model efficiency using
average latency and memory footprint.

The experimental results are shown in the Fig-
ure 6. Expanding the context window through our
approach can achieve more efficient inference than
the fine-tuned model regarding inference speed and
memory footprint. In particular, our SCA method
can reduce memory usage by 54.8% compared to
the Full Attention of Vicuna1.5-7B-16k, making
it possible to use LLMs for long text tasks in low
computing resource scenarios. Furthermore, we
explore the trade-offs between latency, memory us-
age, and model performance under different com-
pression ratios. As shown in Figure 7, our method
has strong flexibility and can effectively control the
performance and efficiency of the LLMs by setting
different compression ratios.

C.2 Redundancy at Different Layers of LLMs

In preliminary experiments (Section 3), we show
the average redundancy of KV caches in all lay-
ers of LLMs but lack a fine-grained analysis of
each layer. Therefore, we conducted experiments
to explore the redundancy of different layers in
Llama2-7B and Llama2-7B-Chat.

As shown in Figure 8, the redundancy change
trends of the two LLMs are almost the same.

6176



Model Tokens Coursera GSM QuALITY TOFEL CodeU SFiction Avg.

Llama2-13B-Chat 4k 36.1 39.0 41.1 62.8 1.1 52.3 38.7
+ Stream 16k 28.5 32.0 36.6 58.4 2.2 54.7 35.4
+ H2O 16k 38.1 36.0 38.6 59.5 0.0 53.1 37.6
+ SCA 16k 38.4 39.0 41.6 63.6 2.2 56.3 40.2

Vicuna1.5-13B 4k 39.4 36.0 47.0 65.8 3.3 57.0 41.4
+ Stream 16k 35.2 22.0 29.2 53.2 3.3 58.6 33.6
+ H2O 16k 24.6 1.0 32.2 21.6 1.1 43.0 20.6
+ SCA 16k 43.9 37.0 48.0 66.9 3.3 61.7 43.5

Vicuna1.5-13B-16k 16k 40.7 36.0 54.0 68.4 0.0 61.7 43.5

Baichuan2-7B-Chat 4k 42.4 28.0 43.1 45.4 3.3 61.7 37.3
+ SCA 32k 46.9 30.0 42.6 49.4 7.8 66.4 40.5

Chatglm2-6B 8k 42.0 16.0 45.0 52.4 2.2 53.9 35.3
+ SCA 32k 46.7 19.0 45.0 52.4 3.3 56.3 37.1

Table 5: Performance of different methods on closed-ended tasks of L-Eval benchmark based on various LLMs.
Vicuna1.5-13B-16k is a version specially fine-tuned based on long text data.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

10

20

30

40

50

60

70

80

Vicuna1.5-7B-16k Vicuna1.5-7B+SCA

M
em

or
y 

fo
ot

p
ri

n
t 

(M
B

)

L
at

en
cy

 (
S

)

Latency Memory footprint

Figure 6: The average latency (s) and memory footprint
(MB) of Vicuna1.5-7B-16k and Vicuna1.5-7B+SCA on
the PG19 test set. We ask the models to generate 1000
new tokens based on the 15000 length context.

Specifically, the redundancy difference at differ-
ent layers is slight for the key matrix. We believe
this may be because the position information added
to the key matrix affects its vector distribution,
making its redundancy value stable. For the value
matrix, its redundancy is very large in the initial
layer but decreases significantly after several layers,
which suggests that LLMs can aggregate and com-
press information in their shallow layers (Wang
et al., 2023a). After the 6th layer, its redundancy
becomes stable and no longer changes drastically.

C.3 The Impact of Different Selection
Strategies

To verify the superiority of the SCA selection strat-
egy, we compared other different variants. Similar
to Section 5.5, we tested the performance of differ-
ent selection strategies on short and long text tasks.
The different selection strategies include:

Pe
rp
le
xi
ty

Latency(s)
10

10.5

11

11.5

12

30 40 50 60 70 80

Figure 7: The trade-offs between latency, memory us-
age, and model performance (perplexity) under different
compression ratios. The size of the data point represents
the memory usage. The point in the lower right corner
indicates Full Attention of Vicuna1.5-7B-16k.

• Based on Key/Value: the selection is made
based solely on the redundancy of the key or
value matrix.

• Max redundancy: retain the token vector that
most increases redundancy at each step. We
force it to keep the initial tokens to ensure that
it can perform language modeling.

• Based on layer n: selection result is calculated
based on the layer n and shared with all layers

The experimental results are shown in Table 6.
As we can see, SCA can achieve better performance
than other variants. First, not considering the redun-
dancy of key and value matrices in the KV cache

6177



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ed

u
n

d
an

cy

Layer

Llama2-7B Key Llama2-7B Value Llama2-7B-Chat Key Llama2-7B-Chat Value

Figure 8: Redundancy of KV cache at different layers of Llama2-7B and Llama2-7B-Chat when the input context
length is 3200. We add position information to the key matrix before calculating the redundancy.

Strategy Short tasks Long tasks

SCA 59.0 38.4

Based on Key 58.5 37.2
Based on Value 58.0 36.9
Max redundancy 46.2 30.6

Based on layer 0 57.4 37.5
Based on layer 12 57.7 36.9
Based on layer 24 58.0 37.7

Table 6: The performance of different selection strate-
gies on short and long text tasks.

together will lead to performance degradation. Sec-
ond, retaining results with high redundancy will
cause a sharp drop in accuracy because a large
amount of useful information is removed during
the compression process. These results further ver-
ify that our selection strategy is motivated and rea-
sonable. Finally, the performance gap between
the selection results calculated based on different
layers of LLMs is small, but using the last layer
has the best effect. We believe this is because the
KV caches in deeper layers have a more signifi-
cant impact on the prediction results of LLMs. The
selection result calculated based on the last layer
using the SCA algorithm can retain more informa-
tion in the deep layer than calculated based on other
layers, even if the relationships between vectors of
the KV caches in most layers are similar.

6178


