
Findings of the Association for Computational Linguistics: EACL 2024, pages 6192–6222
November 12-16, 2024 ©2024 Association for Computational Linguistics

Beyond Lines and Circles: Unveiling the Geometric Reasoning Gap in
Large Language Models

Spyridon Mouselinos
University of Warsaw

s.mouselinos@uw.edu.pl

Mateusz Malinowski*

Moonvalley AI
mateusz@moonvalley.ai

Henryk Michalewski*

Google DeepMind
University of Warsaw
henrykm@google.com

Figure 1—Drawing inspirations from the Ancient Greek Academy, we divide the reasoning pipeline into three stages. From
left to right: The current geometric construction task is broken down into the image, its task description, and available tools.
Our framework employs four LLM-based agents, each prompted with a specific role and task. A collaborative multi-round
discussion is conducted where the geometric construction is effectively solved, reflecting the Academy’s collective approach
towards problem-solving and reasoning.

Abstract

Large Language Models (LLMs) demonstrate
ever-increasing abilities in mathematical and
algorithmic tasks, yet their geometric reasoning
skills are underexplored. We investigate LLMs’
abilities in constructive geometric problem-
solving, – one of the most fundamental steps
in developing human mathematical reasoning,
revealing notable challenges in this domain.
LLMs exhibit biases in variable names, strug-
gle with 2D spatial relationships and plan-
ning, and hallucinate object placements. To
this end, we introduce a framework that en-
hances LLMs’ reasoning potential through a
multi-agent system conducting internal dia-
logue. This work underscores LLMs’ limita-
tions in geometric reasoning and improves their

*Equal Contribution

capabilities through self-correction, collabora-
tion, and diverse role specializations.

1 Introduction
Recent advancements in Large Language Mod-
els (LLMs) are groundbreaking, demonstrating in-
creasing proficiency in complex mathematical and
algorithmic tasks. Despite this, LLMs still face sig-
nificant challenges in constructive geometry, a field
fundamental to human mathematical reasoning in-
volving tool usage, planning, and spatial reasoning.

Our investigation in this domain reveals several
intriguing aspects. In instruction following, LLMs
often exhibit a bias towards the style of the ex-
amples rather than focusing on the reasoning nec-
essary for solving these problems. Furthermore,
LLMs capable in maths do not necessarily show

6192

proficiency in geometrical problems, suggesting
that algebraic reasoning does not directly translate
to spatial and tool-based problem-solving. Another
observation is that the choice of variable names in
geometric constructions can affect the length and
quality of the solutions, pointing to a potential bias
where variable names carry unintended semantic
weight. Moreover, despite being provided with
visual aids, multimodal LLMs such as GPT4-V
demonstrate difficulties interpreting 2D spatial re-
lationships. They can identify objects in a scene
but struggle to integrate them into a coherent plan
involving tools or steps.

We propose a framework to overcome these chal-
lenges. Our solution includes appropriate renaming
to mitigate naming biases and an adaptive prompt
selection mechanism to focus the LLM on relevant
information, avoiding overload. The model builds
on past geometric tasks, enhancing its reasoning
and context awareness. A critical factor in our
approach is using simulacra-based conversational
agents (Park et al., 2023) with specialized roles,
some acting as reasoners while others as solvers or
tool users. This cross-domain dialogue leverages
the strengths of each agent type and fosters a more
effective problem-solving approach than traditional
role-playing methods.

Contributions. The main contributions of our
work can be summarized in three points:
First, we are the first to provide an extensive analy-
sis of the state-of-the-art leading LLMs’ surprising
difficulties in solving fundamental constructive ge-
ometric problems, highlighting a critical gap in
their reasoning capabilities.
Second, we introduce three methods that assist
LLMs in overcoming current limitations in the ge-
ometry domain. Our dynamic prompting mecha-
nism builds on previous interactions instead of un-
informative static prompts, our variable renaming
technique neutralizes biases from variable name
conventions, and our scene description prompt en-
hances LLMs’ abilities to understand and manipu-
late spatial relationships.
Third, we present a novel simulacra-based system
that leverages role and domain differentiation to
integrate tool usage, instruction following, and col-
laborative problem-solving. This system surpasses
non-collaborative methods and standard simulacra
variants, demonstrating adaptability and promis-
ing results across various mathematical domains
beyond geometry.

2 Related Work

Our approach is inspired by various research direc-
tions, briefly described here.

Prompt Engineering The advanced reasoning
abilities of multi-billion-parameter LLMs (Ope-
nAI, 2023; Google, 2023; Chowdhery et al., 2022;
Brown et al., 2020) have transformed prompt engi-
neering into sophisticated interactions for eliciting
detailed responses. Works like (Wei et al., 2022;
Kojima et al., 2022; Zhang et al., 2023b) use in-
termediate reasoning steps in prompts, improving
performance in arithmetic and symbolic reason-
ing tasks. Diverging from hand-crafted prompts,
(Reynolds and McDonell, 2021; Zhou et al., 2023c;
Shin et al., 2020) propose automated prompt gener-
ation methods, exhibiting better results in reason-
ing tasks. In multi-agent scenarios, (Li et al., 2023)
introduce Inception Prompting, enabling collabora-
tive environments under role assignment. Recently,
(Hao et al., 2023; Xie et al., 2023; Yao et al., 2023a)
use tree-search and self-evaluation for exploration
and strategic lookahead, while (Yao et al., 2023b)
unifies planning and acting, prompting models to
generate reasoning traces and actions.

Simulacra - Conversational Agents The con-
cept of ’Agents’ as entities exhibiting emergent
intelligence through collective interaction was
introduced by (Minsky, 1986). This idea has
been extensively applied in reinforcement learn-
ing (Sukhbaatar et al., 2016; Havrylov and Titov,
2017; Dafoe et al., 2020; Bard et al., 2020; Sheng
et al., 2020; Hosseini-Asl et al., 2020; Du et al.,
2021). LLMs are considered potential agents due
to their global knowledge and conversational skills
(Huang et al., 2022; Andreas, 2022; Lo et al., 2023).
(Park et al., 2022) demonstrated LLMs’ effective-
ness in complex social scenarios. Recent works
(Li et al., 2023; Hong et al., 2023; Qian et al.,
2023) systematize the concept of simulacra, provid-
ing frameworks for effective communication. (Wu
et al., 2023; Chen et al., 2023; Lin et al., 2023;
Zhou et al., 2023b) add functionalities like visual-
ization and dynamic agent generation, while (Wang
et al., 2023) introduce a benchmark for fine-grained
role-playing, suggesting training on role-specific
contexts.

Geometric problems While mathematics and
algorithms remain predominant in reasoning chal-
lenges, the exploration of geometry has been lim-
ited. Key datasets (Seo et al., 2015; Chen et al.,
2022; Zhang et al., 2023a; Lu et al., 2021) fea-

6193

ture multiple-choice formats with annotated dia-
grams. Common approaches convert problems
into relational sets in a domain-specific language
(DSL) or as formal structural clauses, with reason-
ing executed by a symbolic solver or a DSL-trained
model. The recent and parallel work, AlphaGeom-
etry (Trinh et al., 2024), achieved impressive re-
sults on IMO-level geometry problems, using an
LLM trained on synthetic DSL data to interface a
theorem-proof engine where reasoning is delegated.
That level of competence is possible as geometry is
complete and decidable (Tarski, 1959). Contrary to
that, we define all the necessary modules that gener-
ate and verify hypotheses using open-ended LLMs,
showing how to improve their geometric abilities
without changing their weights. In constructive
geometry, tasks require planning, reasoning, and
tool usage, drawing inspiration from (Macke et al.,
2021; Wong et al., 2022). These works focus on Eu-
clidea (Euclidea; PyEuclidea), a dataset with pro-
gressively challenging geometric problems. Our
work proposes an alternative to symbolic solvers
and tree-based search algorithms, enhancing LLMs’
reasoning capabilities in this domain.

3 Preliminaries
In this section, we present the datasets, models,
metrics, and definitions central to our framework.

Euclidea Our primary benchmark is the geome-
try game Euclidea (Euclidea), an online construc-
tion challenge with eight geometric tools and pro-
gressively complex problems. We use the Python
version (PyEuclidea), which includes ninety-eight
challenges across ten levels and a custom API for
solution verification. We also compile a natural
language version of the Euclidea dataset, including
solutions from https://euclidea.fandom.com/
wiki/Euclidea_Wiki, which we will make acces-
sible for future research.

Euclid’s Elements We train open-source LLMs
on Euclid’s Elements, the seminal work on geom-
etry. It presents fundamental axioms and tools,
progressively synthesizing more complex tools
through constructions. Exposure to Elements
aligns LLMs with geometry tasks, theoretically
containing the knowledge to solve the challenges.
We use the English translation of Euclid’s Elements
(Fitzpatrick, 2007-2008) found here.

Models In our setup, we examine the perfor-
mance of seven LLMs. LLamaV2 (Touvron et al.,
2023) shows an impressive performance in reason-
ing, maths, and coding. We test its 7B and 13B vari-

ants. Additionally, we include Mistral (Jiang et al.,
2023) and its fine-tuned variant Zephyr (Tunstall
et al., 2023), two 7B LLMs with performance com-
parable to larger checkpoints of other open-source
LLMs. MetaMath (Yu et al., 2023) specializes
in mathematical and algebraic reasoning, achiev-
ing state-of-the-art results on the Math (Hendrycks
et al., 2021) and GSM8k (Cobbe et al., 2021) chal-
lenges among all open-source LLMs. We test two
variants: the LlamaV2-13B and the Mistral-7B.
We also include OpenAI’s ChatGPT and GPT-4
for their superior performance in reasoning and
problem-solving tasks. Finally, GPT-4’s visual-
language capabilities enable us to assess the role of
visual inputs in solving geometric challenges.

Performance metrics In constructive geometry,
multiple reasoning paths can lead to a correct re-
sult. In some cases, even reordering the steps of a
solution without harming its correctness is possible.
Instead of requiring an exact match to the ground
truth, we use the pass@k metric (Kulal et al., 2019),
which measures the existence of a correct comple-
tion among k independent generations. We adopt
an updated unbiased version proposed in (Chen
et al., 2021). We validate generated solutions using
the Euclidea Python API, presenting the average of
ten runs with different seeds. We choose sampling
temperatures of 0.2 / 0.6 for pass@1 / pass@50
during generation, after hyperparameter search.

4 Method

This section introduces the components of our pro-
posed framework, each addressing the limitations
of LLMs in solving geometrical problems.

4.1 Prompting for Geometric Reasoning

For each geometric challenge, we prompt our
LLMs with a description of the available tools,
their expected operation, and task requirements.
We employ a few-shot setup to enhance our mod-
els’ accuracy and reduce erroneous interpretations
of tool functionalities. Specifically, we maintain
a memory bank of previously encountered prob-
lems and select the most relevant ones for each new
task. This approach, called Adaptive-Shot, ensures
consistent exposure to intricate problems and di-
verse tools, fostering nuanced and context-aware
reasoning. Our mechanism employs a Sentence
Transformer to compare the similarity between the
current level’s description and available tools and
those of all other levels. After filtering out low-
similarity candidates, the remaining examples are

6194

https://euclidea.fandom.com/wiki/Euclidea_Wiki
https://euclidea.fandom.com/wiki/Euclidea_Wiki
https://farside.ph.utexas.edu/books/Euclid/Elements.pdf

presented back to the model, which is tasked to
identify the top five most valuable examples, inte-
grating them into the final few-shot prompt.

Figure 2—The Adaptive few-shot mechanism: Given the
problem Construct a 30-degree angle given a ray, we initially
filter our knowledge base for similar examples. Then we either
rank and return the top five most similar results as our prompt
- Adaptive-Shot (ST) or prompt the LLM to filter them out
by itself - Adaptive-Shot (Self). Our proposed method guides
the model by building upon similar or useful demonstrations,
leading to increased performance.

Our method refines the model’s understanding
of geometric concepts and enhances its ability to
effectively apply this knowledge to new and more
complex problems. For further examples, we refer
the reader to the Appendix Section D.

4.2 From Single Models To Simulacra

In the following stage, inspired by various studies
(Li et al., 2023; Park et al., 2022), we employ a
multi-agent setup, extending its application into
new territories. Our methodology innovatively in-
troduces agents differentiated not merely by their
persona but also by their distinct functional roles
within the problem-solving process, pioneering the
disentanglement of reasoning from planning or tool
usage. The first agent set, which we refer to as the
natural language solver SNL, generates rationales
for approaching the problem in natural language.
The geometric tool solver SGT interprets these ra-
tionales and converts them to a series of steps using
exclusively the available geometric tools.

The second set, called validators, is instrumental
in assessing the proposed rationales and geometric
tool steps, thus introducing a new layer of roles.
Like solvers, validators receive domain-specific
prompts, distinguishing them as natural language
or geometric tool agents. However, unlike solvers

who use the adaptive-shot mechanism, validators
are prompted with propositions from Euclid’s Ele-
ments and a static collection of incorrect examples
alongside their rectifications. Depending on their
domain, these are expressed in natural language
or geometric tool steps. They engage in dialogue
with solvers, providing feedback through up to five
rounds of interaction. Validators approve or recom-
mend modifications to the solver’s steps, prompting
refinements.

Figure 1 shows the interaction between agents:
The natural language solver suggests a solu-
tion plan, refined by the natural language validator

. This plan is then converted into tool steps by

the geometric tool solver and validated by the

geometric tool validator .

4.3 Enhancing Spatial Awareness

Building on the collaborative dynamic between
solvers and validators, we identified a significant
limitation in their ability to conceptualize spatial re-
lationships in geometric problems. This issue man-
ifests through actions like attempting to connect
non-aligned points with a straight line or assuming
unverified relationships between objects.

Figure 3—VRP extraction using GPT-4V: An auxiliary
prompt with the problem question and an initial state image is
presented to GPT-4V, which returns a list of Points, Objects,
and their Relations as bullet points. This information is then
added to the overall agent prompt.

To address this, we introduce an auxiliary
Vision-Language Large Model (VLLM), specifi-

6195

cally GPT4-V, for its superior performance and
ease of use to enhance scene comprehension. The
VLLM is used not as the primary reasoner but
as a scene analysis tool. It is prompted with an
image-problem pair and asked to describe the ge-
ometric elements, their interrelations, and spatial
orientations. This description, the Visual Relations
Prompt (VRP), is added to each agent’s prompt.
The VRP disentangles spatial recognition from ge-
ometric problem-solving, reducing the need for re-
current interactions with visual extractors. It is both
cost-efficient and flexible, enabling models without
innate visual capabilities to utilize the VRP and
enhance their decision-making abilities. Illustrated
examples of the VRP can be found in Appendix
Section G.

4.4 Mitigating Naming Biases

LLMs can adopt social biases from humans (Wal-
lace et al., 2019; Liang et al., 2021), or be nega-
tively affected by language bias in their reasoning
process (Lin et al., 2020; Mouselinos et al., 2023).
We observe a similar bias in the terminology used
for geometric entities. For instance, when con-
structing a target named ’E’ in contexts with ’A,’
’B,’ and ’C,’ models often create an intermediate
’D’ before proceeding to ’E,’ leading to unneces-
sary complexity. Likewise, choosing a target vari-
able earlier in the alphabetical sequence than the
required minimum steps to solve the problem can
introduce faulty rationales (e.g., choosing ’C’ as
the target of a five-step solution can lead to early
stopping on an intermediate generated ’C’ point,
abruptly ending the construction).

Thus, we propose a simple strategy to address
this issue: substituting the target variable with ’X,’
a universal symbol for unknowns in mathematics.
This strategy encourages models to seek the most
direct solutions, as demonstrated in Figure 4.

5 Experiments
We present a comprehensive performance analysis
on the Euclidea dataset in Table 1. Our results
encompass three testing setups:

In Few-shot, models are prompted with the task,
tool descriptions, and five solved examples using
geometric tools.

In Finetuned, all open-source models are fine-
tuned using Euclid’s "Elements" to acquire foun-
dational knowledge. Aside from tutorial levels,
Euclidea challenges do not directly overlap with
"Elements" problems. We use the same setup for

testing as in Few-shot.
Simulacra refers to our proposed multi-agent

framework, equipped with an adaptive few-shot
mechanism, visual relations prompting, and vari-
able renaming.

Initially, all models performed modestly in our
few-shot experimental setup, with noticeable im-
provements after fine-tuning. This outcome aligns
with our expectation that familiarity with standard
mathematical and reasoning scenarios does not en-
sure proficiency in constructive geometry tasks.
We posit that fine-tuning with Euclid’s "Elements"
represents the upper limit of improvement achiev-
able by open-source models, constrained by the
dataset’s size. MetaMath-Mistral 7B is the most
promising among the open-source options, which
we further examine with our multi-agent setup. Our
results reveal a significant performance boost in
larger models (ChatGPT / GPT4) and, notably, in
MetaMath-Mistral 7B, under our proposed frame-
work, surpassing the few-shot ChatGPT in perfor-
mance. This finding underscores the adaptability
and effectiveness of our approach across a spec-
trum of model sizes.

We also compare against two prior studies on
the Euclidea dataset. The model by (Macke et al.,
2021) combines a Masked-RCNN detector with
an iterative deep search algorithm, using the Eu-
clidea API to verify each step until a solution is

Figure 4—Visualized GPT-4 reasoning paths for the problem:
"Find a point [Target] that is equidistant from given points
A and B." Four illustrations depict different reasoning paths
based on the target name. Naming the target C leads to a
3-step solution: draw circle A with radius AB, draw circle B
with radius AB, and mark their intersection as C. Naming it
D adds a fourth step, marking D as the final answer. Naming
it E introduces variables C and D first, resulting in a 5-step
solution with E on the perpendicular bisector of AB. For X,
the model reverts to a 3-step process, marking any intersection
arbitrarily and offering multiple solutions for X.

6196

found within a pre-defined depth limit. Euclid-Net
(Wong et al., 2022) uses "Deep visual reasoning
with backtracking," where a neural network assists
in step selection. These models rely on precise vi-
sual component extractors and real-time feedback
during their trial-and-error process. To assess the
possible benefits of real-time feedback, we intro-
duce Feedback mode (+FB), where validators have
access to ground truth answers instead of relying
solely on their internal knowledge but are restricted
to simply informing solvers about the correctness
of their steps, avoiding any solution leak. Our find-
ings show only a slight performance improvement,
indicating that solvers struggle to develop complex
solutions even with ground truth hints, highlight-
ing the nuanced complexities of applying LLMs to
constructive geometry.

Method pass@1 pass@50

Few-Shot

LlamaV2 (7B) 3.1 (± 0.5) 4.4 (± 0.7)
LlamaV2 (13B) 4.4 (± 0.4) 7.5 (± 0.8)
MetaMath (13B) 4.7 (± 0.4) 8.1 (± 0.8)
Mistral (7B) 5.1 (± 0.6) 8.7 (± 1.1)
Zephyr-α (7B) 5.3 (± 0.5) 8.9 (± 1.1)
MetaMath-Mistral (7B) 8.9 (± 0.7) 13.4 (± 1.2)
ChatGPT 11.7 (± 1.1) 18.6 (± 1.5)
GPT4 21.2 (± 1.3) 38.3 (± 1.4)
GPT4-V 22.8 (± 1.2) 38.5 (± 1.4)

Finetuned

LlamaV2 (7B) 3.7 (± 0.6) 5.1 (± 0.7)
LlamaV2 (13B) 4.9 (± 0.4) 8.7 (± 0.8)
MetaMath (13B) 5.3 (± 0.5) 9.2 (± 1.0)
Mistral (7B) 6.9 (± 0.7) 9.7 (± 1.1)
Zephyr-α(7B) 6.6 (± 0.6) 9.5 (± 1.2)
MetaMath-Mistral(7B) 9.4 (± 0.9) 16.2 (± 1.3)

Ours - Simulacra

MetaMath-Mistral (7B) 14.9 (± 1.3) 21.1 (± 1.7)
ChatGPT 32.3 (± 1.3) 61.4 (± 2.1)
GPT4 38.9 (± 1.1) 67.7 (± 2.2)
GPT4-V 37.1 (± 1.4) 65.9 (± 2.0)

FB + MetaMath-Mistral (7B) 15.1 (± 1.5) 21.4 (± 1.6)
FB + ChatGPT 35.6 (± 1.7) 63.5 (± 2.2)
FB + GPT4 41.2 (± 1.6) 71.2 (± 2.0)
FB + GPT4-V 40.3 (± 1.7) 70.6 (± 2.3)

Supervised Visual Component + Exhaustive Search

Method Accuracy

(Macke et al., 2021) (LOO-levels) 44.1
(Macke et al., 2021) (LOO-packs) 45.5
(Wong et al., 2022) Euclid-Net 75.5

Table 1: Results on Euclidea. Ours refers to the SNL − SGT

with VRP, variable renaming, and Adaptive Shot (Self). LOO
stands for "Leave-One-Out": The model is either trained on
the rest of the levels in the same pack (LOO-level) or the rest
of the packs in the dataset (LOO-packs). GPT4-V refers to
the multimodal use of GPT4 without the use of VRP in the
Simulacra experiments.

6 Ablation Studies
This section presents ablation studies that under-
pin our model’s development, as detailed in the
methods section. These studies highlight the itera-
tive refinement and integration of model elements,
addressing limitations observed in LLMs during
geometric problem-solving.

6.1 Hallucinations and Context Dependence

In our exploration, we initially tested LLMs in a
zero-shot manner using only tool descriptions as
context, which often resulted in hallucinated tool
functionalities. To mitigate this, we transitioned
to a few-shot setup, providing solved examples to
demonstrate proper tool usage. This adjustment re-
duced the incidence of tool hallucinations as mod-
els benefited from clear demonstrations. However,
a new problem emerged: models began replicating
entire reasoning processes and were heavily influ-
enced by the step sequences in the few-shot exam-
ples. We hypothesized that this behavior stemmed
from the instruction-following training nature of
LLMs, where they are predisposed to mimic styles
and patterns seen in the prompts. In our case, mod-
els were not mimicking styles but inadvertently
replicating entire reasoning processes.

Our adaptive shot method solved these chal-
lenges. Unlike random or static few-shot exam-
ples, our adaptive shot method ensures that the
most valuable demonstrations are selected for the
models at each step. This dynamic approach sig-
nificantly reduced hallucinations and repetitive rea-
soning patterns. We also compared Adaptive-Shot
(Self) with a simpler variant, Adaptive-Shot (ST),
where the Sentence Transformer selected the ex-
amples after the filtering stage. The Adaptive-Shot
(Self) method proved slightly more effective, al-
beit with the trade-off of more API calls than the
Adaptive-Shot (ST), showcasing that our prompt-
ing method exceeds the Sentence Transformer’s
contextual abilities.

The results, as shown in Table 2, validate the per-
formance benefits of our proposed method, demon-
strating its superiority in addressing the limitations
observed in earlier setups.

6.2 Effectiveness of Domain and Role Division

Interestingly, LLMs proved quite successful us-
ing geometric tools when prompted to generate
ideas—not specific steps. Although they made con-
venient assumptions, their overall reasoning was
still accurate. This led us to question the root cause

6197

of the discrepancy between knowing the solution as
a plan in natural language and failing to execute it
accurately using strict and abstract geometric tools.

We tested whether we benefit from those worlds’
synergy: an LLM could focus on generating ideas
in natural language, and another could specialize
in transforming these ideas into a series of geomet-
ric tool steps. By employing such a multi-agent
setup, as seen in Table 3, we observed a significant
performance gain – 13.6 → 21.5 pass@1 – when
comparing a single agent (SGT) operating directly
with geometric tools against a duo of collaborative
agents with differentiated domains (SNL − SGT).
The introduction of validators, the second set of
agents in our framework, plays a crucial role in
assessing the proposed rationales and geometric
tool steps. Their continuous feedback loop with
solvers, correcting superficial mistakes and prevent-
ing errors, leads to a further performance boost of
22.2 → 28.1 pass@1 in our proposed multi-agent
configuration. Our approach of disentangling rea-
soning and execution facilitates efficient dialogue
between agents. Each agent entirely focuses on
its domain, transmitting only the necessary infor-
mation to the next step while being receptive to
feedback. This method enables more accurate and
reliable problem-solving compared to traditional
multi-agent techniques.

Method pass@1 pass@50

Zero-Shot 5.9 (± 1.9) 9.6 (± 2.7)
Few-Shot (Tutorial) 7.2 (± 1.4) 15.9 (± 3.1)
Few-Shot (Alpha) 11.4 (± 1.8) 18.6 (± 3.2)
Few-Shot (Beta) 12.7 (± 2.2) 20.8 (± 3.6)
Adaptive-Shot (ST) 13.3 (± 1.8) 21.2 (± 3.0)
Adaptive-Shot (Self) 13.6 (± 1.8) 21.5 (± 2.7)

Table 2: Effectiveness of in-context examples: ChatGPT
3.5-Turbo on Alpha and Beta levels. Our adaptive method
showcases its ability to employ useful examples from the
already seen levels, leading to increased performance than
static, hard-coded alternatives.

Configuration Agents Domains pass@1 pass@50

SGT 1 1 13.6 (± 1.8) 21.5 (± 2.7)
SVGT 2 1 17.9 (± 1.2) 34.9 (± 2.3)
SNL − SGT 2 2 22.2 (± 1.3) 46.7 (± 2.0)
SVNL − SVGT 4 2 28.1 (± 1.1) 53.5 (± 2.4)

Table 3: ChatGPT 3.5-Turbo on Alpha and Beta levels. S:
Solver, V: Validator, NL: Natural language, GT Geomet-
ric tools. Our proposed multi-agent setup with role and
domain differentiation showcases significant performance
gains against a typical multi-agent setup SNL − SGT vs
SGT . This holds also true with the introduction of validators
that further boost the overall performance of the framework
SVNL − SVGT vs SVGT .

6.3 Visual Aids in Spatial Reasoning

Another noteworthy finding was that LLMs often
created new geometric objects without acknowl-
edging their overlap with existing ones. Moreover,
they occasionally suggested steps that violated ge-
ometric rules or led to repetitive movements. We
hypothesized that LLMs’ difficulty with geomet-
ric reasoning in 2D spaces stems from a lack of
exposure to such setups, typically operating in a
unidimensional, left-to-right manner. This raised
the question: Could introducing a visual signal
bridge this reasoning gap?

We prompted GPT4-V with simple freehand
sketches of geometric objects to explore this. The
model successfully identified these, including sub-
tle aspects like right angles indicated by small cor-
ner squares. In this way, we first established that
the model can indeed understand geometric scenes.
Continuing with a more complex test, we presented
GPT4-V with an image/problem pair and asked for
the first solution step. We then deliberately per-
formed an incorrect step, drew it on the image, and
presented it back to the model. The model often
validated these erroneous steps in this setup, sug-
gesting a disconnect between scene understanding
and geometric reasoning.

The findings in Table 4 illustrate this observa-
tion: Comparing GPT4 with its multimodal variant,
GPT4-V, revealed a marginal improvement, sug-
gesting that visual signals assist during initial scene
understanding. Building on these insights, we com-
pared our proposed VRP method, VRP-GPT4, to
the multimodal approach GPT4-V and observed
an additional performance boost. Here lies the key
advantage of our VRP method: Not only does it
match, if not slightly surpass, the effectiveness of
the multimodal approach, but it enables the trans-
fer of scene understanding benefits to non-visually
capable models like ChatGPT, which significantly
improved when enhanced with VRP.

6.4 Impact of Geometry Nomenclature

LLMs mirror the human convention of alphabetical
naming in mathematical contexts. The choice of
target variables later in the alphabetical order leads
to longer and more inaccurate solutions. This is
a byproduct of their training on human-generated
texts, where entities in algebraic or geometric con-
texts typically adhere to an alphabetical naming
convention -labeling a triangle as ABC rather than
EOA. Similarly, variables associated with the as-

6198

signment of solutions, like X, would theoretically
condition the LLM to find its value, possibly assign-
ing it to any given constructed object. We designed
an experiment with 20 geometric problems to em-
pirically validate this hypothesis, each requiring
3 to 5 solution steps. In these problems, we ma-
nipulated the target variable in three distinct ways:
maintaining the original name (+0), replacing it
with the letter X (+X), and renaming it using a let-
ter 1, 2, or 3 positions further in the alphabetical
sequence (+1, +2, +3). As depicted in Table 5,
models perform worse when the target variable is
shifted by one or two letters in the alphabet. Inter-
estingly, this tendency diminishes when the target
is more than three letters away and is further re-
duced with the substitution of ’X,’ underscoring its
effectiveness as a neutral, bias-mitigating variable.

Domain Method pass@1 pass@50

Language ChatGPT 13.6 (± 1.8) 21.5 (± 2.7)
GPT4 23.9 (± 0.9) 44.8 (± 1.6)
ChatGPT⋆ 28.1 (± 1.2) 53.5 (± 1.7)
GPT4⋆ 33.7 (± 1.0) 62.0 (± 1.3)

Multimodal GPT4-V 24.2 (± 1.4) 45.1 (± 1.7)
VRP-ChatGPT 19.4 (± 1.1) 37.1 (± 1.3)
VRP-ChatGPT⋆ 34.5 (± 0.8) 59.2 (± 1.2)
VRP-GPT4 25.3 (± 0.9) 48.6 (± 1.4)
VRP-GPT4⋆ 38.8 (± 0.9) 64.6 (± 1.2)

Table 4: Multimodal prompt effectiveness. Experiments on
the Alpha and Beta pack levels. The (⋆) symbol refers to an
SVNL − SVGT multi-agent configuration.

ChatGPT ChatGPT⋆ VRP-ChatGPT⋆

+0 10.7 (± 2.1) 48.1 (± 2.3) 60.7 (± 2.9)
+1 10.1 (± 2.4) 46.3 (± 2.1) 57.9 (± 2.5)
+2 10.1 (± 2.4) 47.5 (± 1.9) 57.9 (± 3.0)
+3 10.6 (± 1.2) 47.9 (± 1.7) 59.2 (± 2.3)
+X 10.5 (± 1.7) 48.6 (± 1.9) 61.1 (± 2.2)

GPT4 GPT4⋆ VRP-GPT4⋆

+0 35.2 (± 2.5) 52.9 (± 2.1) 65.1 (± 2.2)
+1 32.8 (± 2.6) 50.4 (± 2.2) 63.4 (± 3.2)
+2 31.6 (± 2.8) 50.7 (± 2.7) 63.6 (± 2.9)
+3 32.4 (± 1.1) 51.8 (± 1.4) 64.7 (± 2.1)
+X 37.5 (± 1.3) 53.3 (± 1.5) 66.2 (± 2.4)

Table 5: Qualitative results on the effect of variable renaming.
Results refer to the pass@50 metric. The star symbol (⋆)
refers to SVNL − SVGT configuration.

6.5 Generalisation to different datasets

While our focus has been primarily on geometric
problems, our framework is designed with adapt-
ability in mind. Transitioning to a different toolset
from the Euclidea tools, currently represented in
our framework as text-based Name: Operation lists,
requires minimal adjustment. This flexible design
can theoretically introduce any new toolset by sim-
ply integrating it into the domain-specific agents’
persona prompts with slight modifications to align

with their unique capabilities. To this end, we
tested its performance against three datasets involv-
ing mathematical reasoning: GSM8K, SVAMP,
and the Geometry split from the MATH dataset.
The toolset consisted of all basic math operations
(+, -, *, /) and a Python interpreter tool that could
sequentially execute any steps suggested before its
call. We were inspired by (Zhao et al., 2023), who
identified diverse reasoning patterns with Chain of
Thought (COT) (Wei et al., 2022) versus Program-
Aid (PAL) (Gao et al., 2023) methodologies. While
COT is recognized for its creativity and flexibility
in devising solutions, PAL is noted for its enhanced
accuracy in numerical computations. This differ-
entiation of domains was an ideal fit for our frame-
work: A pair of Solver-Validator agents (SVNL)
initially planned the solution of a math problem in
the natural language domain. The produced ratio-
nale is passed to another pair (SVMPT), which uti-
lizes the set of tools to formulate precise solutions.
Finally, we employed the Adaptive Few-Shot mech-
anism with examples from each dataset’s training
split. Results in Table 6 show our multi-agent setup
performing close to state-of-the-art methods de-
spite not being primarily designed for these tasks.
The MetaMath-Mistral model also saw significant
performance boosts using our method, even in non-
geometric setups.

Method Model GSM8K SVAMP Geometry

MM-Mist 84.3 79.7 21.6
Ours ChatGPT 88.4 86.1 40.2

GPT4 96.9 95.8 56.3

MetaMath MM-Mist 77.7 75.8 18.4
(Yu et al., 2023)
MS (SC, K=15) ChatGPT 89.2 85.2 N/A

(Zhao et al., 2023) GPT4 96.8 95.8 N/A
PHP (SC, K=40) ChatGPT 85.1 83.1 25.4

(Zheng et al., 2023) GPT4 95.5 91.9 41.9

CSV (K=1 / K=16) GPT4-Code 92.9 / 97.0 N/A 54.0 / 64.9
(Zhou et al., 2023a)

Table 6: Results of the multi-agent framework on mathemati-
cal datasets. MM-Mist: MetaMath-Mistral 7B. N/A refers to
not reported results.

7 Conclusions
Our study highlights the challenges LLMs face
in constructive geometry, including limited skill
transfer from other mathematical domains, inade-
quacies of typical prompting techniques, and a lack
of 2D spatial reasoning. We identify that existing
LLMs struggle with geometric tasks without induc-
tive solid biases like theorem provers (Trinh et al.,
2024). Furthermore, our research demonstrates
that a multi-agent system with role and domain spe-

6199

cializations can effectively address geometric prob-
lems and perform equally well in other domains.
We hope our work serves as a foundation for devel-
oping training systems that operate in multi-agent
settings, which is crucial for domains requiring
deep, specific, and accurate cognitive processing.

8 Limitations
We hope to attract more attention to this domain
and look forward to seeing future work improv-
ing our multi-agent setup or shifting the train-
ing paradigm of newer-generation LLMs to foster
deeper reasoning in mathematical and geometric
domains. However, we are aware of the poten-
tial risk associated with our work, specifically the
cost of experiments involving closed-source LLMs
behind APIs. These costs primarily stem from ex-
tensive communication rounds and large context
sizes, which can lead to substantial expenses. Re-
searchers planning to replicate or extend our work
must consider this, as it could significantly impact
their research budgets and timelines. Furthermore,
we acknowledge the possible limitations of apply-
ing our method to domains where planning, tool
usage, and/or validation might not be critical. Sim-
pler methods could be proven cheaper and better in
these domains.

Finally, we do not identify any ethical consid-
erations associated with our proposed ideas and
suggested methods or any possible malicious or
unintended harmful uses.

References
Jacob Andreas. 2022. Language models as agent mod-

els. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5769–5779, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil
Burch, Marc Lanctot, H. Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Ed-
ward Hughes, Iain Dunning, Shibl Mourad, Hugo
Larochelle, Marc G. Bellemare, and Michael Bowl-
ing. 2020. The hanabi challenge: A new frontier for
ai research. Artificial Intelligence, 280:103216.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje F. Karlsson, Jie Fu, and Yemin
Shi. 2023. Autoagents: A framework for automatic
agent generation. Preprint, arXiv:2309.17288.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin,
Chongyu Chen, and Xiaodan Liang. 2022. Unigeo:
Unifying geometry logical reasoning via reformu-
lating mathematical expression. In The 2022 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tan-
tum Collins, Kevin R. McKee, Joel Z. Leibo, Kate
Larson, and Thore Graepel. 2020. Open problems in
cooperative ai. Preprint, arXiv:2012.08630.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Yali Du, Bo Liu, Vincent Moens, Ziqi Liu, Zhicheng
Ren, Jun Wang, Xu Chen, and Haifeng Zhang.
2021. Learning correlated communication topol-
ogy in multi-agent reinforcement learning. In Pro-
ceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, AA-
MAS ’21, page 456–464, Richland, SC. International
Foundation for Autonomous Agents and Multiagent
Systems.

Euclidea. Euclidea game.

Richard Fitzpatrick. 2007-2008. Euclid’s Elements of
Geometry. I.L. Heiberg, Ed. & Trans.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764–
10799. PMLR.

6200

https://doi.org/10.18653/v1/2022.findings-emnlp.423
https://doi.org/10.18653/v1/2022.findings-emnlp.423
https://doi.org/10.1016/j.artint.2019.103216
https://doi.org/10.1016/j.artint.2019.103216
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2012.08630
https://arxiv.org/abs/2012.08630
https://www.euclidea.xyz/

Google. 2023. Bard.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. ArXiv, abs/2305.14992.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequence of symbols. In 5th Inter-
national Conference on Learning Representations
(ICLR 17, workshop track). 5th International Con-
ference on Learning Representations, ICLR 2017 ;
Conference date: 24-04-2017 Through 26-04-2017.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, Pierre Ser-
manet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter.
2022. Inner monologue: Embodied reasoning
through planning with language models. Preprint,
arXiv:2207.05608.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. ArXiv,
abs/2205.11916.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.

Camel: Communicative agents for "mind" explo-
ration of large language model society. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understand-
ing and mitigating social biases in language models.
In International Conference on Machine Learning,
pages 6565–6576. PMLR.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xiang
Ren. 2020. Birds have four legs?! NumerSense:
Probing Numerical Commonsense Knowledge of Pre-
Trained Language Models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6862–6868,
Online. Association for Computational Linguistics.

Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqi-
uyue Ping, and Qin Chen. 2023. Agentsims: An
open-source sandbox for large language model evalu-
ation. Preprint, arXiv:2308.04026.

Yat Long Lo, Christian Schroeder de Witt, Samuel
Sokota, Jakob Nicolaus Foerster, and Shimon White-
son. 2023. Cheap talk discovery and utilization
in multi-agent reinforcement learning. Preprint,
arXiv:2303.10733.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021.
Inter-GPS: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6774–
6786, Online. Association for Computational Lin-
guistics.

J. Macke, J. Sedlar, M. Olsak, J. Urban, and J. Sivic.
2021. Learning to solve geometric construction prob-
lems from images.

Marvin Minsky. 1986. The Society of Mind. Simon &
Schuster, Inc., USA.

Spyridon Mouselinos, Mateusz Malinowski, and Hen-
ryk Michalewski. 2023. A simple, yet effective ap-
proach to finding biases in code generation. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 11299–11329, Toronto, Canada. As-
sociation for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

6201

https://bard.google.com/
https://api.semanticscholar.org/CorpusID:258865812
https://api.semanticscholar.org/CorpusID:258865812
https://iclr.cc/archive/www/2017.html
https://iclr.cc/archive/www/2017.html
https://iclr.cc/archive/www/2017.html
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://proceedings.neurips.cc/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://arxiv.org/abs/2308.04026
https://arxiv.org/abs/2308.04026
https://arxiv.org/abs/2308.04026
https://arxiv.org/abs/2303.10733
https://arxiv.org/abs/2303.10733
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2023.findings-acl.718
https://doi.org/10.18653/v1/2023.findings-acl.718
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, pages 1–22.

Joon Sung Park, Lindsay Popowski, Carrie Jun Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2022. Social simulacra: Creating popu-
lated prototypes for social computing systems.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

PyEuclidea. Pyeuclidea.

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize
Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan
Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.
Communicative agents for software development.
Preprint, arXiv:2307.07924.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’21, New York, NY, USA.
Association for Computing Machinery.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1466–1476, Lisbon, Portugal. Association for
Computational Linguistics.

Junjie Sheng, Xiangfeng Wang, Bo Jin, Junchi Yan,
Wenhao Li, Tsung-Hui Chang, Jun Wang, and
Hongyuan Zha. 2020. Learning structured communi-
cation for multi-agent reinforcement learning.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus.
2016. Learning multiagent communication with
backpropagation. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

Alfred Tarski. 1959. What is elementary geometry? In
Studies in Logic and the Foundations of Mathematics,
volume 27, pages 16–29. Elsevier.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Thang
Luong. 2024. Solving olympiad geometry without
human demonstrations. Nature.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment. Preprint,
arXiv:2310.16944.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que,
Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Man
Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,
Wenhu Chen, Jie Fu, and Junran Peng. 2023.
Rolellm: Benchmarking, eliciting, and enhancing
role-playing abilities of large language models. arXiv
preprint arXiv: 2310.00746.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Man Fai Wong, Xintong Qi, and Chee Wei Tan. 2022.
Euclidnet: Deep visual reasoning for constructible
problems in geometry. Adv. Artif. Intell. Mach.
Learn., 3:839–853.

6202

https://arxiv.org/pdf/2208.04024.pdf
https://arxiv.org/pdf/2208.04024.pdf
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://github.com/mirefek/py_euclidea
https://arxiv.org/abs/2307.07924
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://openreview.net/forum?id=BklWt24tvH
https://openreview.net/forum?id=BklWt24tvH
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
https://arxiv.org/abs/2310.16944
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:256389437
https://api.semanticscholar.org/CorpusID:256389437

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi
Wang. 2023. Autogen: Enabling next-gen llm ap-
plications via multi-agent conversation. Preprint,
arXiv:2308.08155.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.
Self-evaluation guided beam search for reasoning.
Preprint, arXiv:2305.00633.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Ming-Liang Zhang, Fei Yin, and Cheng-Lin Liu. 2023a.
A multi-modal neural geometric solver with textual
clauses parsed from diagram. In International Joint
Conference on Artificial Intelligence.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023b. Automatic chain of thought prompt-
ing in large language models. In The Eleventh Inter-
national Conference on Learning Representations.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He,
and Qizhe Xie. 2023. Automatic model selection
with large language models for reasoning. Preprint,
arXiv:2305.14333.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. arXiv
preprint arXiv:2304.09797.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Solving
challenging math word problems using gpt-4 code in-
terpreter with code-based self-verification. Preprint,
arXiv:2308.07921.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu
Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen,
Peng Cui, and Mrinmaya Sachan. 2023b. Agents:
An open-source framework for autonomous language
agents. Preprint, arXiv:2309.07870.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023c. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

6203

https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2305.00633
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://api.semanticscholar.org/CorpusID:257078982
https://api.semanticscholar.org/CorpusID:257078982
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2305.14333
https://arxiv.org/abs/2305.14333
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

A Information on Models and Datasets

Model Name Link LICENSE

LlamaV2 (Touvron et al., 2023) https://github.com/facebookresearch/llama LLAMA 2 COMMUNITY LICENSE AGREEMENT
MetaMath (Yu et al., 2023) https://github.com/meta-math/MetaMath Apache License 2.0
Mistral (Jiang et al., 2023) https://github.com/mistralai/mistral-src Apache License 2.0
Zephyr-α (Tunstall et al., 2023) https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha MIT
MetaMath-Mistral (Yu et al., 2023) https://github.com/meta-math/MetaMath Apache License 2.0
ChatGPT (Ouyang et al., 2022) OpenAI - API usage of gpt-3.5-turbo-16k N/A
GPT4 (OpenAI, 2023) OpenAI - API usage of gpt-4-32k N/A
GPT4-V (OpenAI, 2023) OpenAI - API usage of gpt-4-vision-preview N/A

Table 7: URL and Licenses of used Large Language Models / APIs.

Dataset Name Link LICENSE

Euclid-Elements (Fitzpatrick, 2007-2008) https://farside.ph.utexas.edu/books/Euclid/Elements.pdf CC BY-NC-SA 4.0
Python Port of Euclidea (PyEuclidea) https://github.com/mirefek/py_euclidea MIT
Euclidea Wiki Page https://euclidea.fandom.com/wiki/Euclidea_Wiki CC BY-SA
GSM8k (Cobbe et al., 2021) https://github.com/openai/grade-school-math MIT
SVAMP (Patel et al., 2021) https://github.com/arkilpatel/SVAMP MIT
Geometry / MATH (Hendrycks et al., 2021) https://github.com/hendrycks/math/ MIT

Table 8: URL and Licenses of used Datasets.

The licenses associated with the models and datasets used in this work are consistent with their intended
use in academic and research contexts. Specifically, the LLAMA 2 Community License Agreement and
the Apache License 2.0 are permissive licenses that allow for extensive use in research and academic
settings, provided that proper attribution is given. Similarly, the MIT License, the CC BY-NC-SA 4.0, and
the CC BY-SA also support usage in academic work, allowing for modification and distribution under
certain conditions. The OpenAI API usage adheres to OpenAI’s terms of service, which permits their
application in research.

B Information on Experimental Setup
Our experimental setup consisted of 1x NVIDIA A100 GPU. Regarding the fine-tuning results on
Euclid’s Elements of Table 1, we trained all LLMs using the bitsandbytes library (https://github.com/
TimDettmers/bitsandbytes) and 4-bit quantization with the QLoRA technique (Dettmers et al., 2023).
The Euclid-Elements dataset we created consists of approximately 1 million characters, or equivalently
290k thousand ChatGPT / GPT4 tokens.

Below, the reader can find the full hyperparameter list:

Hyperparameter Value
Training Epochs 3
Batch Size 32
Accumulation Steps 4
Learning Rate 2e-5
Warmup Ratio 0.03
Scheduler Cosine
Max Gradient Norm 0.3
Weight Decay 0.001
Lora Alpha 16
Lora Dropout 0.1
Lora R 64
Use 4bit True
BnB_4bit_compute_dtype Float16
BnB_4bit_quant_type NF4
Gradient Checkpointing True
Optimizer Paged_adamw_32bit

Table 9: Hyperparameters and their values

Regarding the training objective, we used the typical causal language modeling loss. Moreover, we used

6204

https://github.com/facebookresearch/llama
https://github.com/meta-math/MetaMath
https://github.com/mistralai/mistral-src
https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
https://github.com/meta-math/MetaMath
https://farside.ph.utexas.edu/books/Euclid/Elements.pdf
https://github.com/mirefek/py_euclidea
https://euclidea.fandom.com/wiki/Euclidea_Wiki
https://github.com/openai/grade-school-math
https://github.com/arkilpatel/SVAMP
https://github.com/hendrycks/math/
https://github.com/TimDettmers/bitsandbytes
https://github.com/TimDettmers/bitsandbytes

a validation split of 10% sampled uniformly across different book chapters. We monitored the validation
loss every 500 steps as our metric for early stopping.

Regarding the API calls to OpenAI models, gpt3.5-turbo-16k was used for the ChatGPT experiments,
gpt4-32k was used for the GPT4 experiments, and the extraction of Visual Relation Prompts, The endpoint
called gpt4-vision-preview was used. Our API calls were subject to throttling limits, and waiting loops
were introduced to avoid service interruptions. We conducted most of our ablation studies and early
experiments with ChatGPT to avoid massive waiting times and reduce the high experimental cost. The
total experiment time was approximately 500 hours, and our total costs were around 2000 USD.

Finally, regarding the choice of 0.2 and 0.6 temperature values for pass@1 and pass@50, we experi-
mented with different combinations of values for solvers on the Alpha pack of the Euclidea dataset and a
100 problem subset of GSM8K. For pass@1, values between 0.2 and 0.3 worked best, while for pass@50,
values between 0.6 and 0.8 also worked great. We finalized our decision on the values 0.2 and 0.6 for all
solver experiments. The temperature of validator agents was 0.8 in all cases, based on the idea that we
wanted more expressiveness and different reasoning pathways to be considered when validating a solution.
We found that setting the temperature too low (0-0.2) led validators to accept more solutions verbatim,
defying their purpose.

6205

C Tools and problems from Euclidea dataset
There are 10 tools available in Euclidea, although not all of them can be used on every level. Tools become
available progressively as the difficulty increases. Here is a list of all available tools:

1. Move Tool: Moves a geometric object.
2. Point Tool: Marks a point and labels it.
3. Line Tool: Draws a line between two points or a ray from a starting point.
4. Circle Tool: Constructs a circle using a specific point as the center.
5. Perpendicular Bisector Tool: Creates the perpendicular bisector of a segment between two points.
6. Perpendicular Tool: Draws a line perpendicular to a given one at a specific point.
7. Angle Bisector Tool: Creates a line that bisects a given angle.
8. Parallel Tool: Draws a line parallel to a given line or segment.
9. Compass Tool: Uses a compass to construct a circle with a radius equal to a given segment.

10. Intersect Tool: Marks the intersection between two geometric objects.

Here are some sample problems from different difficulty levels:

Problem: Rhombus in Rectangle - Pack: Alpha

Given the rectangle ABCD with AB > AD. Inscribe a rhombus in the rectangle so that they share a diagonal.
Available Tools: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Intersect Tool]
Solution:
Perpendicular Bisector Tool: Construct the perpendicular bisector of AC, intersecting AB at E and CD at F.
Line Tool: Construct line AF.
Line Tool: Construct line CE.

Problem: Lozenge - Pack: Gamma

Given the side AB. Construct a rhombus with the given side and an angle of 45° in a vertex.
Available Tools: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool, Intersect Tool, Angle Bisector
Tool]
Solution:
Perpendicular Tool: Construct the perpendicular to AB from A; let C be a distinct arbitrary point on that perpendicular.
Angle Bisector Tool: Construct the angle bisector of BAC.
Circle Tool: Construct the circle with center A and radius AB, intersecting the angle bisector at D and line AC at E with
E on the side of A opposite from C.
Perpendicular Tool: Construct the perpendicular to AC through D.
Line Tool: Construct line BE.

Problem: Angle of 54 - Pack: Theta

Let A be the vertex. Construct two rays that divide the given angle of 54 degrees into three equal parts.
Available Tools: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Intersect Tool, Parallel Tool, Compass Tool]
Solution:
Circle Tool: Construct a circle with center B on either line and radius AB. Circle B intersects with line AB at point C,
and the other line at point D.
Circle Tool: Construct a circle with center D and radius AD. Circle D intersects with circle B at point E.
Line Tool: Draw line AE. This is the first angle trisector.
Circle Tool: Draw circle with center E and radius EC. Circle E intersects with circle B at point F.
Line Tool: Draw line AF. This is the second angle trisector.

6206

D Static Versus Adaptive Few-Shot
In this section, we will provide a more detailed overview of our adaptive few-shot mechanism.

Initially, we collect a set of previously solved problems alongside their solutions, which we refer to as
our knowledge base. This set can be acquired in multiple ways: In the case of our GSM8K / SVAMP /
Geometry-Math experiments of Table 6, we use all problems belonging to the provided training split.

In the case of the Euclidea experiments of Table 1, we begin with a small set of five handcrafted
geometric challenges. Euclidea’s problems vary in difficulty and are grouped into increasingly difficult
level packs. Since we are not provided with a training split, we add all problems belonging to previously
seen packs to our knowledge base during the solution of a level. In this way, we continuously increase the
size of our base and the availability of more diverse and complex techniques that our agents can utilize.

The second stage involves using a Sentence Transformer to reduce the size of our knowledge base. For
this, we compare the cosine similarity scores of our current problem and the problems in our knowledge
base and keep entries with scores over 0.5 or the top fifteen, whichever leads to fewer examples.

The third and final stage involves using the Sentence Transformer again, which chooses the top five
most similar examples to build the final few-shot prompt. This procedure is referred to as Adaptive-Shot
(ST) in our experiments. An alternative to this is to use the examples from the second step and prompt
our solver-LLM to filter the top five most relevant examples by itself. We call this alternative Adaptive-
Shot (Self). Note here that the second step of the procedure can be skipped during Adaptive-Shot (ST)
since instead of filtering, we can directly return the top five results. However, it is necessary for the
Adaptive-Shot (Self) method, where we need to respect the context size limits of the tested LLMs.

Below, we present an example of three different few-shot prompts: A static-handcrafted version, an
adaptive prompt compiled by a Sentence Transformer (Adaptive ST), and finally, an adaptive prompt
filtered by the model itself (Adaptive Self). Our model is ChatGPT, and the problem at hand is: Construct
the circumcircle of a given triangle ABC.

6207

ProblemConstruct the circumcircle of a given triangle ABC.

Available Tools[Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]

Static Prompt ✗

[...]
Example 1:
Description: Construct an equilateral triangle given one side. Let AB be the given side.
Tool List: [Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]
Solution:
Circle Tool: Construct a circle with center A and radius AB.
Circle Tool: Construct a circle with center B and radius AB, intersecting circle A at point C.
Line Tool: Construct lines AC and BC. Triangle ABC is equilateral.

Example 2:
Description: Construct a right angle at a point on a line. Given point A on a ray.
Tool List: [Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]
Solution:
Circle Tool: Construct a circle with center A and an arbitrary radius, intersecting the ray at points B and C.
Perpendicular Bisector Tool: Construct the perpendicular bisector of BC.

Example 3:
Description: Bisect a given segment. Let AB be the given segment.
Tool List: [Line Tool, Circle Tool, Intersection Tool]
Solution:
Circle Tool: Construct a circle with center A and radius AB.
Circle Tool: Construct a circle with center B and radius AB, intersecting circle A at points C and D.
Line Tool: Construct line CD, intersecting AB at point E. Point E is the midpoint of AB.

Example 4:
Description: Construct a 45-degree angle given a right angle. Let angle XYZ be a right angle with vertex Y.
Tool List: [Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]
Solution:
Circle Tool: Construct a circle with center Y and an arbitrary radius, intersecting XY at point A and YZ at point B.
Perpendicular Bisector Tool: Construct the perpendicular bisector of AB, intersecting XY at point C and YZ at point D.
Line Tool: Construct lines YC and YD. Angles XYC and YYD are 45 degrees.

Example 5:
Description: Construct the perpendicular from a point to a line. Given point A and line l.
Tool List: [Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]
Solution:
Circle Tool: Construct a circle with center A intersecting line l at points B and C.

Problem Solution [ChatGPT]:
Circle Tool: Construct a circle at point A with radius equal to the distance between point A and any of the other two
vertices, let’s say point B.
Circle Tool: Construct a circle at point B with radius equal to AB.
Intersection Tool: Use the Intersection Tool to find the two intersection points between the two circles. These points are
the circumcircle’s endpoints.
Line Tool: Connect the two intersection points to form the circumcircle of triangle ABC.

6208

Adaptive ST ✓

[...]
Example 1:
Description: Inscribe a circle in the square.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool]
Solution:
Line Tool: Construct line AC.
Perpendicular Bisector Tool: Construct the perpendicular bisector of AB, intersecting AB at E and AC at F.
Circle Tool: Construct a circle with center E and radius EF.

Example 2:
Description: Construct an equilateral triangle that is circumscribed about the circle O with radius R and contains the
given point A on its circumference.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Line Tool: Construct line OA, intersecting the circle at B
Perpendicular Tool: Construct the perpendicular to OA from A
Circle Tool: Construct the circle with center B and radius OB, intersecting the circle at C and D, and line OA at E
Line Tool: Construct line CE
Line Tool: Construct line DE

Example 3:
Description: Construct the midpoint of the segment that connects the midpoints of the diagonals of the quadrilateral.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Construct the perpendicular bisector of AB, intersecting AB at E
Construct the perpendicular bisector of CD, intersecting CD at F
Construct the perpendicular bisector of EF
Construct line EF

Example 4:
Description: Inscribe an equilateral triangle in the circle using the given point as a vertex. The center of the circle is not
given.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Circle Tool: Construct a circle with center A and an arbitrary radius, intersecting the original circle at B and C
Circle Tool: Construct the circle with center B and radius AB, intersecting circle A at D and E
Perpendicular Bisector Tool: Construct the perpendicular bisector of CD, intersecting the original circle at F
Perpendicular Bisector Tool: Construct the perpendicular bisector of CE, intersecting the original circle at G
Line Tool: Construct line FG

Example 5:
Description: Circumscribe a square about the circle O. Two of its sides should be parallel to the given line.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Perpendicular Tool: Construct the perpendicular to the line through O, intersecting the circle at A and B
Perpendicular Tool: Construct the perpendicular to AB from A
Perpendicular Tool: Construct the perpendicular to AB from B
Circle Tool: Construct circle with center A and radius OA, intersecting the perpendicular to AB from A at C and D
Perpendicular Tool: Construct the perpendicular to CD from C
Perpendicular Tool: Construct the perpendicular to CD from D

Problem Solution [ChatGPT]:
Perpendicular Bisector Tool: Construct the perpendicular bisector of side AB. Label the intersection with AB as D.
Perpendicular Bisector Tool: Construct the perpendicular bisector of side BC. Label the intersection with BC as E.
Perpendicular Bisector Tool: Construct the perpendicular bisector of side AC. Label the intersection with AC as F.
Intersection Tool: Label the intersection of the perpendicular bisectors as O.
Circle Tool: Create a circle with center O and radius OA.

6209

Adaptive Self ✓

[...]
Example 1:
Description: Construct a segment connecting the sides of the angle to get a triangle whose perpendicular bisectors are
intersected in the point O.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool]
Solution:
Circle Tool: Construct the circle with center O and radius OA, intersecting the sides of the angle at B and C
Line Tool: Construct line BC

Example 2:
Description: Construct an equilateral triangle that is circumscribed about the circle O with radius R and contains the
given point A on its circumference.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Line Tool: Construct line OA, intersecting the circle at B
Perpendicular Tool: Construct the perpendicular to OA from A
Circle Tool: Construct the circle with center B and radius OB, intersecting the circle at C and D, and line OA at E
Line Tool: Construct line CE
Line Tool: Construct line DE

Example 3:
Description: Construct the midpoint of the segment that connects the midpoints of the diagonals of the quadrilateral.
Tool List: [Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool, Angle Bisector Tool, Perpendicular
Tool]
Solution:
Perpendicular Bisector Tool: Construct the perpendicular bisector of AB, intersecting AB at E
Perpendicular Bisector Tool: Construct the perpendicular bisector of CD, intersecting CD at F
Perpendicular Bisector Tool:Construct the perpendicular bisector of EF Line Tool: Construct line EF

Example 4:
Description: Inscribe an equilateral triangle in the circle using the given point as a vertex. The center of the circle is not
given.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Circle Tool: Construct a circle with center A and an arbitrary radius, intersecting the original circle at B and C
Circle Tool: Construct the circle with center B and radius AB, intersecting circle A at D and E
Perpendicular Bisector Tool: Construct the perpendicular bisector of CD, intersecting the original circle at F
Perpendicular Bisector Tool: Construct the perpendicular bisector of CE, intersecting the original circle at G
Line Tool: Construct line FG

Example 5:
Description: Construct a segment connecting the sides of an angle to get a triangle whose orthocenter is in the given
point O.
Tool List: [Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool]
Solution:
Perpendicular Bisector Tool: Construct the perpendicular to one side R1 of the angle through O, intersecting the second
side at A
Perpendicular Bisector Tool: Construct the perpendicular to the second side R2 of the angle through O, intersecting the
first side at B
Line Tool: Construct line AB

Problem Solution [ChatGPT]:
Perpendicular Bisector Tool: Construct the perpendicular bisector of side AB. Label the intersection with AB as D.
Perpendicular Bisector Tool: Construct the perpendicular bisector of side BC. Label the intersection with BC as E.
Circle Tool: Create a circle with center D and radius AD.

We observe that the static prompt leads to an incorrect solution, with the model misinterpreting the
meaning of a circumcircle, and blindly performing step sequences similar to those presented in the prompt.

In the case of Adaptive ST, the prompt consists of examples more closely related to the task at hand,
leading to a correct solution. However, the model still suggests unnecessary steps, which can be attributed
to style-mimicking tendencies introduced by instruction tuning.

Finally, when the model is tasked to filter the examples by itself - Adaptive Self, we observe an overlap
in the selected examples with the Sentence Transformer method. Here, the model suggests a correct
sequence of steps, free from any unnecessary or repetitive tool usage.

6210

E Target Variable Name Bias
Below, we present the completions obtained from GPT4 when presented with the problem: "Find a point
that is equidistant from given points A and B.", as presented visually in Figure 4.

Problem
Given two points, A and B, find a point [Target] so that its distance from A is equal to its distance from B.

Available Tools[Line Tool, Circle Tool, Intersection Tool, Perpendicular Bisector Tool]

Target = C

Circle Tool: Construct a circle with center A and radius AB.
Circle Tool: Construct another circle with center B and radius AB.
Intersect Tool: Identify the points where the two circles intersect. These intersection points are equidistant from A
and B. Let’s call one of these intersection points C.
The point C, found at the intersection of the two circles, satisfies the condition that its distance from A is equal to
its distance from B.

Target = D

Circle Tool: Construct a circle with center A and radius AB.
Circle Tool: Construct a circle with center B and radius AB.
Intersect Tool: Find the intersection points of the two circles, let’s call them C and D. These points are equidistant
from A and B.
By following these steps, point D will be at an equal distance from both points A and B.

Target = E

Circle Tool: Use the circle tool to draw a circle with center A and radius AB.
Circle Tool: Use the circle tool again to draw a circle with center B and radius AB.
Intersect Tool: The two circles will intersect at two points, which we can call point C and point D.
Line Tool: Draw the line CD.
Choose any point on line CD (other than C or D) and label it point E.

Target = X

Circle Tool: Construct a circle with center A and radius AB.
Circle Tool: Construct a circle with center B and radius AB.
Intersection Tool: The intersection points of the two circles represent the points that are equidistant from A and B.
These intersection points are the solutions for point X.
In this case, there will be two solutions for X, each lying on the circumference of the circles where they intersect.

Table 10: Completions for different name choices of the target variable.

6211

F Baselines
We introduce two baselines to analyze the complexity of the geometric construction problem. In the first
baseline, which we will call "Longest Common Solution" (LCS), we identify the top five longest common
sequences of steps between ground truth solutions. Then, for each given problem, we uniformly sample
from these sequences, adjusting the variables of each step and the tool usage to the current task. If a
sampled step does not apply to the current state of the problem, the sampled sequence is discarded, and a
new one is sampled instead. This baseline corresponds to the success rate of an agent who memorized a
set of fixed solution steps and applied them to each given problem.

Additionally, we propose a second baseline named ’N-Gram Rollouts’ (N-Gram), which begins by
creating a database of uni-, bi-, and tri-grams derived from the tools used in ground-truth answers. For
each problem, our method involves a two-phase iterative process. Initially, we choose either a single
tool (n = 1) or a sequence of tools (n > 1) from our database. Following this, we select the geometric
variables upon which these tools will be applied. To facilitate this, we maintain a memory initially
populated with variables given in the problem statement. It is important to note that tool application varies
in complexity, with some tools requiring a single variable (e.g., constructing a ray from point A) and
others necessitating two (e.g., drawing a line between points A and B). For each tool or sequence of tools
selected, we sample the required number of variables from memory, with recent variables weighted more
heavily than older ones, following an exponential decay schema. Any new variables a tool generates (such
as a new point) are added to this memory. This process is repeated until a predefined number of steps is
reached.

Method Correct tool sequence Fully correct solution

LCS 0.17 0.02
1-Gram 0.14 0.11
2-Gram 0.12 0.09
3-Gram 0.07 0.06

Table 11: Performance of Baselines. Results refer to pass@1 estimated after 1000 trials.

According to Table 11, finding an entirely correct solution randomly is almost 0.1% probable. Note
here that finding the correct tool sequence score is significantly higher. However, this is expected since
many problems share common starting steps (e.g., drawing a line or a circle).

6212

G Visual Relations Prompt
Here are two examples presenting the benefits of VRP inclusion. In Example 1, the models are devoid of
visual input and seem to struggle to find a correct solution to the problem. On the contrary, in example 2,
the models are now equipped with the VRP and complete the challenge successfully.

Example 1:

Problem
Given the rectangle, ABCD, and the point E located over the side AB at a random position, construct a line through
E that cuts the rectangle into two parts of equal area.

Available Tools
[Line Tool, Circle Tool, Perpendicular Bisector Tool, Angle Bisector Tool, Intersect Tool]

MetaMath-Mistral

Line Tool: Construct line EF, parallel to AB.
Perpendicular Bisector Tool: Construct the perpendicular bisector of line EF.
Intersect Tool: Mark the intersection of the perpendicular bisector and line AB as point G.
Line Tool: Construct line EG.✗

ChatGPT

Perpendicular Bisector: Construct the perpendicular bisector of AB. This bisector will cut the rectangle into two
equal parts.
Intersect Tool: Extend this perpendicular bisector line to intersect side CD. Label this intersection point as F.
Draw a line through point E and point F. This line will cut the rectangle into two parts of equal area. ✗

GPT4

Line Tool: Construct Line AE.
Perpendicular Bisector: Construct the perpendicular bisector of CD.
Intersect Tool: Mark the intersection of the perpendicular bisector with CD and mark it as H. This point H is the
midpoint of CD.
Line Tool: Draw a line from point E to point H. ✗

6213

Example 2:

Image

Problem
Given the rectangle, ABCD, and point E located over the side AB at a random position, construct a line through E
that cuts the rectangle into two parts of equal area.

Available Tools
[Line Tool, Circle Tool, Perpendicular Bisector Tool, Angle Bisector Tool, Intersect Tool]

Visual Relations Prompt

Here is the full description of all the relations between geometric objects:
Shapes:
Rectangle: ABCD
Points:
A: Top-left corner of the rectangle.
B: Top-right corner of the rectangle.
C: Bottom-right corner of the rectangle.
D: Bottom-left corner of the rectangle.
E: Point outside of the rectangle.
Lines:
AB: Top horizontal line of the rectangle.
BC: Right vertical line of the rectangle.
CD: Bottom horizontal line of the rectangle.
DA: Left vertical line of the rectangle.
Relations:
AB is parallel to CD.
AD is parallel to BC.
The length of AB is equal to the length of CD.
The length of AD is equal to the length of BC.
E is an isolated point, not connected to any lines of the rectangle ABCD.

MetaMath-Mistral

Perpendicular Bisector Tool: Construct the perpendicular bisector of the line AB.
Perpendicular Bisector Tool: Construct the perpendicular bisector of the line CD.
Perpendicular Bisector Tool: Construct the perpendicular bisector of the line BC.
Perpendicular Bisector Tool: Construct the perpendicular bisector of the line DA.
Intersect Tool: Find the intersection of the perpendicular bisectors of AB and CD and name it F.
Intersect Tool: Find the intersection of the perpendicular bisectors of BC and DA and name it G.
Line Tool: Draw a line from E to F.✓

ChatGPT

Line Tool: Draw a diagonal of the rectangle AC.
Perpendicular Bisector Tool: Construct the perpendicular bisector of AC.
Intersect Tool: Label the intersection point of the perpendicular bisector and AC as M.
Line Tool: Draw a line segment from point E to point M. This line, EM, will cut the rectangle ABCD into two
parts of equal area since it passes through the midpoint of the diagonal AC.✓

GPT4

Line Tool: Draw a diagonal of the rectangle AC.
Perpendicular Bisector Tool: Construct the perpendicular bisector of AC.
Intersect Tool: Label the intersection point of the perpendicular bisector and AC as M.
Line Tool: Draw a line segment from point E to point M. This line, EM, will cut the rectangle ABCD into two
parts of equal area since it passes through the midpoint of the diagonal AC.✓

6214

When tasked with tackling the same geometrical problem, our three agents (MetaMath-Mistral / ChatGPT
/ GPT4) resort to a "convenient" placement of point E outside rectangle ABCD. All of them try to utilize
the fact that the perpendicular bisector of any edge of a rectangle cuts the rectangle into two equal areas.
Then, a series of erroneous steps are suggested, trying to connect point E with this line.

After introducing the VRP, we observed that all agents managed to correct their responses. Placing
geometric objects in the prompt helps them better understand the problem’s nature. Agents no longer
resort to steps that suggest splitting the rectangle area into two equal parts, ignoring point E, but rather
respect the particular spatial circumstances the problem presents. Note here that the initial solutions are
valid if the random position of point E happens to align with the midpoint of any side. The initial tendency
to produce such solutions can be attributed to the fact that the splitting of a rectangle must have been
observed more frequently in their training data through the use of diagonals or lines connecting midpoints.

6215

H Multi-Agent Dialogue Examples
Illustration of our proposed SVNL − SVGT multi-agent setup. We present the agent dialogue leading to a
successful solution. The use of a single ChatGPT instance is not sufficient to solve this particular problem.
However, the combined power of multiple agents can.

According to our proposed method, we employ 4 agents:

1. Natural Language Solver (NL Solver)

2. Natural Language Validator (NL Validator)

3. Geometric Tools Solver (GT Solver)

4. Geometric Tools Validator (GT Validator)

The four different agents interact with each other from top to bottom and from left to right.

6216

ProblemGiven the square ABCD, inscribe a circle in the square.

Available Tools[Line Tool, Circle Tool, Perpendicular Bisector Tool, Intersect Tool]

NL Solver

[...] To inscribe a circle in the square ABCD means to draw a circle such that all four sides of the square are tangent
to the circle. The circle should touch each side of the square at exactly one point. I suggest the following steps:
<STEP>1: Draw the square ABCD.
<STEP>2: Draw the diagonal AC of the square. The diagonal AC will pass through the center of the circle.
<STEP>3: Construct the perpendicular bisector of the diagonal AC. This line will intersect the diagonal at the
center of the circle.
<STEP>4: Draw a line segment from the center of the circle to one of the vertices of the square (e.g., A or C). This
line will be the radius of the circle.
<STEP>5: Use the compass to measure the length of the line segment drawn in the previous step.
<STEP>6: Set the compass to the measured length and draw a circle with the center at the intersection of the
diagonal AC and the perpendicular bisector.

NL Validator

According to the task and the provided rationale, I am confident regarding the validity of the following steps:
<STEP>1: Correct.
<STEP>2: Correct.
<STEP>3: Correct.
Please try to correct the remaining steps.

NL Solver

[...]<STEP>4: Draw a line segment from the center of the circle to one of the points where the circle is tangent to
the square. This line segment will be the radius of the circle.

Following these corrected steps, we will successfully inscribe a circle in the square ABCD.

GT Solver

Given the suggested expert rationale and the available tools I suggest the following steps:
<Line Tool>1: Draw a line segment from point A to point B.
<Line Tool>2: Draw a line segment from point A to point C.
<Perpendicular Bisector Tool>3: Draw the perpendicular bisector of AB.
<Intersect Tool>4: Mark the intersection point of the bisector and AB as E.
<Intersect Tool>5: Mark the intersection of the perpendicular bisector and the diagonal AC as O.
<Circle Tool>6: Create a circle with center O and radius AO.

GT Validator

According to the steps given, the available tools and the suggested rationale, I am confident of the validity of the
following steps:
<Line Tool>1: Correct.
<Line Tool>2: Correct.
<Perpendicular Bisector Tool>3: Correct.
<Intersect Tool>4: Correct.
<Intersect Tool>5: Correct.
Please try to correct the solution according to my suggestions.

GT Solver

[...] <Circle Tool>6: Create a circle with center
O and radius OE. ✓

ChatGPT Simulaca

6217

Below, we present another example where we showcase the benefits of incorporating variable renaming
in multi-agent scenarios. Simulacra are not immune to the variable name bias: In the example below, the
variables A, B, and C are used. A and B mark the two initial points of the problem, while C stands as the
target to be found. Initially, the NL Solver comes up with a promising 5-step rationale. However, the NL
Validator corrects the proposed final step as a mistake. Since A,B, and C are consecutive letters in the
alphabet, and C has already appeared in the fourth step, the validator marks the final step as redundant.
The new variable D generated at the fifth step is after C (in terms of alphabetical ordering), and thus
the problem must have been already solved. This error is propagated to the GT agents, leading to an
eventually wrong final response.

6218

Problem

Let |AB| = 1. Construct a point C on the line AB such that the length of AC is equal to
√
2.Do not use arbitrary

numbers but only existing lengths and sizes in your solution

Available Tools
[Line Tool, Circle Tool, Perpendicular Bisector Tool, Perpendicular Tool, Angle Bisector Tool, Intersect Tool]

NL Solver

[...] To create a line segment whose length is the square root of 2, we should utilize an existing segment of
length 1, here AB. This requires forming a right-angled triangle where one side measures 1, and determining the
hypotenuse’s length which will be the square root of 2. I suggest the following steps:
<STEP>1: Draw a straight line segment AB of any length. This will serve as our unit length.
<STEP>2: At point B, construct a perpendicular line to AB.
<STEP>3: From point B, draw a line segment BC on the perpendicular line with the same length as AB.
<STEP>4: Connect points A and C to form a right triangle ABC. The length of AC, the hypotenuse, is the square
root of 2.
<STEP>5: Finally, mark the point D on the line AB such that AD = AC This will give us the line segment AD of
length square root of 2. ✓

NL Validator

According to the task and the provided rationale, I am confident regarding the validity of the following steps:
<STEP>1: Correct.
<STEP>2: Correct.
<STEP>3: Correct.
<STEP>4: Correct.
Please try to correct the solution according to my suggestions.

NL Solver

I suggest we should re-write the steps so that all suggested changes are incorporated.
[...] <STEP>5: Point C is the required point on the line segment extended from AB such that the length AC equals
the square root of 2.✗

GT Solver

Given the suggested expert rationale and the available tools I suggest the following steps:
<Circle Tool>1: Use the circle tool to draw a circle with center A and radius AB.
<Perpendicular Tool>2: Draw a perpendicular line to AB at point B using the Perpendicular Tool.
<Circle Tool>3: Draw a circle with center B and radius BA.
<Intersect Tool>4: Use the Intersection Tool to find point C, which is the intersection of the circle centered at B
and the line perpendicular to AB.
<Line Tool>5: Draw a line from A to C using the Line Tool. ✗

GT Validator

According to the steps given, the available tools
and the suggested rationale, I am confident of
the validity of the following steps:
<Circle Tool>1: Correct.
<Perpendicular Tool>2: Correct.
<Circle Tool>3: Correct.
<Intersect Tool>4: Correct.
<Line Tool>5: Correct.

Great job!

GT SolverThank you!

GPT4 Simulacra

6219

Now, let us rename the target variable and present the problem to our multi-agent setup again. Instead
of the consecutive letter C, we swap the final target with a far-away (in terms of alphabetical ordering) as
well as a common mathematical symbol X. We observe that the validator now approves the suggested
rationale, leading to a successful generation.

Target Variable Renaming

Let |AB| = 1. Construct a point X on the line AB such that the length of AX is equal to
√
2. Do not use arbitrary

numbers but only existing lengths and sizes in your solution.

NL Solver

[...] Based on the problem description, we are tasked with constructing a point on a given line segment such that
the length of the segment from the initial point to the new point equals the square root of 2 without using explicit
numerical values. Here’s how we can approach this:
<STEP>1: Draw a straight line segment AB of any length (this will be our unit length as we are not to use
numbers).
<STEP>2: Construct a circle with center at A and radius AB.
<STEP>3: Draw a line perpendicular to AB at point B. This line intersects the circle A at a new point D.
<STEP>4: Draw a line segment AD. The length of AD is the square root of 2 (according to Pythagoras’ theorem).
<STEP>5: Take point X such that AX = AD. Now AX is equal to the square root of 2.✓

NL Validator

According to the task and the provided rationale, I am confident regarding the validity of the following steps:
<STEP>1: Correct.
<STEP>2: Correct.
<STEP>3: Correct.
<STEP>4: Correct.
<STEP>5: Correct.
Your solution is valid!

NL SolverThank you for your help!

GT Solver

Given the suggested expert rationale and the available tools I suggest the following steps:
<Line Tool>1: Use the line tool to draw the line AB.
<Circle Tool>2: Draw a circle with center B and radius BA.
<Perpendicular Tool>3: Draw a perpendicular line at point B.
<Intersect Tool>4: Use the Intersection Tool to find point D, which is the intersection of the circle centered at B
and the line perpendicular to AB.
<Line Tool>5: Draw the line AD.
<Line Tool>6: Draw a line from A to X. ✗

GT Validator

According to the steps given, the available tools
and the suggested rationale, I am confident of
the validity of the following steps:
<Line Tool>1: Correct.
<Circle Tool>2: Correct.
<Perpendicular Tool>3: Correct.
<Intersect Tool>4: Correct.
<Line Tool>5: Correct.
Please try to correct the solution according to
my suggestions.

GT Solver

[...] <Circle Tool>6: Draw a circle with center
A and radius AD.
<Intersect Tool>7: Mark the point of intersec-
tion of the circle with the line AB as X. X is
the desired point. ✓

GPT4 Simulacra

6220

I Human Study On Euclidea Dataset
While there is no concrete data on human performance - assuming an adequate level of geometric
knowledge background - on the Euclidea challenge, Macke et al. (2021) describe these challenges as
formidable even for well-prepared mathematicians, including International Mathematics Olympiad (IMO)
participants, whereas Wong et al. (2022) characterizes the dataset as notably difficult. To validate these
claims, we conducted an empirical study involving ten individuals with mathematical or computer science
backgrounds, of graduate level, and experience with geometrical problem solving. The participants
collaborated voluntarily and without any financial compensation.

Given the progression of the original Euclidea game, which requires solving preceding problems to
advance, we decided to sample 20 problems across all packs. The outcomes revealed a success rate
ranging from 20% to 35% - 5 to 7 correctly solved problems - with the average performance at 30.5%,
indicating the high level of challenge presented by the tested geometry tasks. This finding underscores the
domain’s complexity. Table 12 contains the problems that were presented to participants, while Figure 5
showcases an example. Here is the list of the problems presented to the participants:

Name Pack

Angle of 60 Alpha
Rhombus in Rectangle Alpha
Angle of 30 Beta
Circle in Rhombus Beta
Three equal segments v1 Gamma
Center of Quadrilateral Gamma
Square Root of 3 Delta
Equilateral Triangle in Circle Delta
Square in Square Epsilon
Regular Hexagon Epsilon
Given Angle Bisector Zeta
Symmetry of Four Lines Zeta
Annulus Eta
Angle of 75 Eta
Egyptian Triangle Theta
Torricelli Point Theta
Harmonic Mean of Trapezoid Bases Iota
Minimum Perimeter v2 Iota
Rotation 60 Kappa
Inner Tangent Kappa

Table 12: Euclidea problems included in the human study.

6221

Here is what a question in the questionnaire looked like:

Figure 5—Example of a given problem in the human study: On top, the available tools are provided to the participant.
Below, an image containing the annotated initial setup of the problem is provided. The participant is then asked to
use the provided tools and respond with their solution.

J On the use of AI assistants
We disclose that AI writing assistant tools were used during the creation of this work. However, these
tools were strictly used to refine, summarize, and check the accuracy of grammar and syntax. No AI
assistant was involved in generating ideas or constructing arguments to support our perspectives or claims.
All original thoughts and analyses are entirely our own.

6222

