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Abstract

In many modern LLM applications, such as
retrieval augmented generation, prompts have
become programs themselves. In these settings,
prompt programs are repeatedly called with
different user queries or data instances. A big
practical challenge is optimizing such prompt
programs. Recent work has mostly focused on
either simple prompt programs or assumed that
the structure of a prompt program is fixed.

We introduce SAMMO, a framework to per-
form symbolic prompt program search for
compile-time optimizations of prompt pro-
grams. SAMMO represents prompt programs
on a symbolic level which allows for a rich set
of transformations that can be searched over
during optimization. We show that SAMMO
generalizes previous methods and improves the
performance of complex prompts on (1) instruc-
tion tuning, (2) RAG pipeline tuning, and (3)
prompt compression, across several different
LLMs. We make all code available open-source
at https://github.com/microsoft/sammo.

1 Introduction

With the recent development of large language
models (LLMs) such as Mixtral 8x7B (Jiang et al.,
2024) or GPT-4, it is now possible to provide LLMs
with longer inputs including richer context and
more detailed instructions. As a result, the com-
plexity of prompts has increased, including longer
strings of instructions, demonstrations or exam-
ples, and specification of more structured output.
These lengthy instructions are often reused as part
of larger prompts, where static information (e.g., in-
structions) is combined with input-dependent infor-
mation (e.g., user queries, retrieved documents in
RAG systems) at runtime. This has led to prompts
being regarded as programs themselves, where
each part is the result of other subprograms (Chase,
2022; Khattab et al., 2023).

As LLM performance depends on a variety of
factors such as paraphrasing, formatting and or-

Table 1: SAMMO in comparison to other large prompt
optimization and programming frameworks.

SAMMO DSPy LangChain

optimize instructions ✓ ✓
optimize fewshot

examples
✓ ✓

optimize full
structure

✓

optimize data
format

✓

combine mutators ✓
compress prompts ✓

dering (Sclar et al., 2023; Liu et al., 2024), a key
challenge to solve in practice is automatically find-
ing the best prompt program for a given task and
model. In this paper, we focus on compile-time opti-
mization of prompt programs under black-box LLM
access. Compile-time optimization is carried out
only once before deployment and has two large ad-
vantages: (i) we can amortize the optimization cost
over multiple uses of the prompt program and (ii)
keep the existing run-time architecture unchanged.
This is different from run-time optimization ap-
proaches, e.g., token pruning (Jiang et al., 2023)
which are called every time before inference and
thus have non-amortizable costs.

A lot of work on prompt optimization has fo-
cused on simple prompt programs where the pro-
gram consists of a single string (which is subsumed
by our representation in Section 2), mostly using
structure-unaware operations such as paraphras-
ing (Chen et al., 2023; Pryzant et al., 2023; Zhou
et al., 2023). Another line of work has focused
on optimizing prompts with more complex pro-
grammatic structure, but still considers only static
prompt structures, e.g., DSpy (Khattab et al., 2023).
Initial work in this direction focused on applying
textual mutators to different prompt components
(Fernando et al., 2023; Ye et al., 2023; Khattab
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Figure 1: Left: Symbolic prompt program (SPP) for a binary classification task, where each node is a function with
attributes and dependencies (children). The example also shows how the SPP allows for structural changes (e.g.,
DELETENODE) and attribute-based changes (e.g., CHANGEFORMAT) which, after applying, result in the mutated
prompt (Right). These enable SAMMO to explore a large set of possible prompt candidates automatically.

et al., 2023). Subsequent work considered both tex-
tual mutation and hyperparameter selection (Sclar
et al., 2023). However, with increasing complex-
ity of prompt structure, many prompt optimization
techniques are no longer applicable and a new ap-
proach is needed that is able to optimize complex
prompt programs with their hyperparameters.

To address this, we introduce SAMMO, a general
purpose framework for compile-time optimizations
of prompt programs. Different from existing ap-
proaches SAMMO represents prompt programs as
symbolic prompt programs (SPP) which are ab-
stract program graphs that can be changed arbi-
trarily. This allows SAMMO to efficiently search
through the space of valid prompt programs by au-
tomatically generating new promising candidates
through mutations. Moreover, SAMMO allows to
both represent the internal structure of prompts
(e.g., sections) as well as program structure (e.g.,
calling a retriever) in a unified fashion. By writ-
ing custom mutation operators, practitioners can
encode their domain knowledge and guide the
search process. SAMMO naturally extends pre-
vious prompt programming approaches such as
DSpy (Khattab et al., 2023) and encompasses sev-
eral specialized prompt tuning methods as spe-
cial cases. Through SPPs, SAMMO (i) allows dy-
namic changes to prompt programs, (ii) generalizes
compile-time optimizations to all prompt compo-
nents (e,g., textual content, hyperparameters). Ta-
ble 1 summarizes and compares different capabili-
ties between SAMMO and two other large prompt
programming frameworks (see also Appendix A).

SAMMO is a general framework for prompt op-

timization in a black-box setting. We demonstrate
the utility of symbolic prompt program search
(SPPS) in SAMMO in three scenarios: (1) instruc-
tion tuning, (2) retrieval augmented generation
(RAG) pipeline tuning, and (3) prompt compres-
sion for annotation tasks. Our experiments show
that SAMMO generalizes previous methods and pro-
vides gains of 10-100% in instruction tuning, 26-
133% in RAG tuning, and over 40% in prompt
compression in performance. Moreover, we show
that complex prompts need to be optimized sepa-
rately for each LLM and that gains are more pro-
nounced for weaker LLMs. SAMMO code is avail-
able at https://github.com/microsoft/sammo
under an MIT license.

2 Symbolic Prompt Programs

A prompt program π is a function that takes input
data X and maps it to another string Ŷ = π[X].
SAMMO’s biggest innovation is the use of sym-
bolic prompt programs to represent valid prompt
structures, enabling flexible transformations and
efficient search. That is in contrast to frameworks
such as DSPy (Khattab et al., 2023), that use static
prompt programs in their optimization process.

To illustrate the advantages of symbolic prompt
programs, consider the example prompt program in
Figure 1 for a binary classification task. Each node
is a function with attributes whose dependencies
are indicated through child nodes. The program
combines a number of text spans with the input
data, sends it to the LLM and parses the output
response. Static programs (e.g., DSPy programs)
have a fixed structure which limits the operations to
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mostly changes in a node’s attributes, e.g., by para-
phrasing text. Symbolic prompt programs (SPPs)
that SAMMO uses allow us to make much larger
changes, all while ensuring that the prompt pro-
gram remains semantically valid. Two useful oper-
ators are highlighted in Figure 1, where we change
the data format to xml and also remove the instruc-
tions prefix. These program modification would be
challenging, if not infeasible, with static programs.
Section 2 will introduce many more possible oper-
ators for SPPs.

2.1 Graph Representation of SPPs

We represent prompt programs as directed acyclic
graphs where nodes are functions and edges indi-
cate call dependencies. Each prompt program π[·]
is a DAG Gπ = (V,E) where nodes v = (fv, θv)
are functions (or subprograms) fv with attributes
θv. For example, in Figure 1, the left-most node is
a function that renders its single attribute “Instruc-
tions:”. The symbolic part of the SPP describes the
fact that we represent the entire Gπ symbolically in
our implementation through pyGlove (Peng et al.,
2020).

2.2 Efficient Execution of SPPs

Ultimately, we need to compute π[X] for differ-
ent π and X during execution. To compute π[X]
on Gπ, information will be passed top-down and
then aggregated bottom-up. We start by calling the
root node π[X] = fvr(state = {X}). For conve-
nience, we divide the execution of every function
fv into two non-recursive processing steps, i.e.,
fv = (f top−down

v , fbottom−up
v ). Then, we evaluate

each node fv recursively,

state′ ← f top−down
v (state, θv)

Y ←
{
fu(state

′) | (v, u) ∈ E
}

returnfbottom−up
v (state′ ∪ {Y }, θv).

For example, v = RenderInputExamples from
Figure 1 will only execute a f top−down

v function
which formats the raw data into strings (using the
format attribute).

3 Compile-time Prompt Optimization

Our goal in this paper is the compile-time opti-
mization of prompt programs. Compile-time indi-
cates that the optimization is done only once before
using the prompt program, typically many times

over with different inputs. We assume a black-box
model for LLM access where the only information
returned is the response text and no probabilities.

Given an objective Sϕ(Y, Ŷ ) ∈ R and set of
samples Ds drawn i.i.d from a data distribution
P (X,Y ), the compile-time optimizer’s goal is to
return a more performant prompt program:

π̂ = ρcompile(Ds, Sϕ). (1)

Note that Sϕ can also specify trade-offs between
potentially multiple individual quality objectives
Si(Y, Ŷ ). Equation 1 is different but complemen-
tary to run-time optimization which is run every
time when input X arrives (i.e., X̃ = ρrun(π[X]))
and can tailor its decisions to X .

We implement ρcompile as a search procedure
over a search space Π of (symbolic) prompt pro-
grams. Our goal is to find a prompt program π that
performs best across the entire data distribution:

π∗ = argmin
π∈Π

EDs∼P (X,Y )[Sϕ(π,Ds)]. (2)

Here, P (X,Y ) is the distribution that the labeled
samples Ds are drawn from. Since the data distribu-
tion P (X,Y ) is unknown and the evaluation cost
of Equation 2 is prohibitive, we resort to using the
following sampled score in the spirit of empirical
risk minimization (ERM):

π̂ = argmin
π∈Π

Sϕ(π,Dtrain). (3)

For the experiments in this paper, we assume
that dataset sizes are on the order of hundreds of
examples. This represents a reasonable amount
of data that can be hand-labeled; increasing the
amount would limit the applicability in practice
substantially.

4 SAMMO: Structure-Aware
Multi-objective Metaprompt
Optimization

We outline SAMMO, which is a general framework
for optimizing the performance of symbolic prompt
programs. Specific details can be found in the open-
source implementation of SAMMO. SAMMO uses
two classes of search algorithms with a rich set of
mutation operators to explore the space of prompts.

The main novelty of SAMMO is that prompt pro-
grams are represented with all their structural de-
pendencies on a symbolic level. Without it, one is
bound to a rigid prompt structure and also limited
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Figure 2: SAMMO is a flexible framework for structured
prompt optimization, and offers two classes of search
algorithms depending on the set of mutators used.

Algorithm 1 Iterative Search in SAMMO

Require: Set of mutators M , training set Dtrain, baseline
prompt π0, objective Sϕ

1: ΠC ← INITCANDIDATES(π0)
2: while condition do
3: Πactive ← SAMPLECANDIDATES(ΠC , Dtrain, Sϕ)
4: Πnextgen ← ∅
5: for each π ∈ Πactive do
6: Mvalid = {m can be applied to π | m ∈M}
7: Mπ = SAMPLEMUTATORS(Mvalid)
8: ∀m ∈Mπ: Add MUTATE(m,Πactive) to Πnextgen
9: end for

10: ΠC←PRUNE(ΠC ∪Πnextgen, Dtrain, Sϕ)
11: end while
12: return best candidate from ΠC

to a much smaller set of possible mutation opera-
tors. Moreover, it is also challenging to describe the
search space efficiently. SAMMO supports both ex-
plicit and implicit descriptions of the search space
through symbolic operators.

Figure 2 presents an overview of SAMMO’s main
components. Starting from the top, SAMMO em-
ploys two types of search algorithms for different
scenarios. Below that sits of layer of prompt mu-
tation operators that define the search space and
actions. At the bottom is a base layer of function
operators from which prompt programs are being
composed, corresponding to the nodes in Figure 1.

4.1 Search Algorithms

A big challenge in practice is defining the right
search space Π for prompt optimization. To help
with this, SAMMO supports two different ways of
specifying the search space which then correspond
to a class of search algorithms.

Enumerative Search. First, similar to hyper-
parameter search, in some instances the search
space can be defined explicitly as a set of choices
that are known a-priori. This leads to search algo-
rithms that can leverage the resulting grid, a class
of search strategies we call enumerative algorithms.

As we show in Section 5.2, this simple approach
can be very effective in practice. In its current ver-
sion, SAMMO implements grid search and random
search as enumerative search strategies. In sum-
mary, enumerative search is useful when choices
are known, the search space is small and to get a
quick picture of the variability of different choices.

Iterative Search. Second, sometimes the search
space can also be described implicitly through a
starting state as well as a set of mutation opera-
tors that can be applied. This is useful in cases
where the set of valid choices is not known a-priori,
e.g., all valid paraphrases of a sentence. SAMMO

supports this specification through iterative search
strategies. SAMMO implements a generic template
as a basis for several well-known algorithms and
derives more concrete search algorithms from it.
Algorithm 1 shows the skeleton of how SAMMO

implements iterative search. Starting with an ini-
tial prompt program (π0), it iteratively modifies a
current set of candidates Πactive through mutations
to generate a new generation of candidates.

Specific choices for the functions INITIALIZE-
CANDIDATES, SAMPLECANDIDATES, condition,
and PRUNE in Algorithm 1 yield common search
algorithms such as beam search, regularized evo-
lutionary search (Real et al., 2019) or breadth-first
search. We use beam search for all our experiments
in this paper but will explore more sophisticated
search strategies in future work.

4.2 Prompt Mutation Operators

At the heart of SAMMO optimization are mutation
operators. Formally, a mutation operator is a proba-
bilistic function m : Π×Π −→ [0, 1] that specifies
how to transition from a SPP π to an edited ver-
sion π′ ∈ Π. This structure-aware component of
SAMMO opens up a new class of operators, for ex-
ample operators that only modify specific sections
or paragraphs. These can range from trivial (e.g.,
rephrasing a sentence) to complex (e.g., inducing a
new set of task instructions).

Table 2 shows a non-comprehensive set of muta-
tion operators, grouped by what part of an SPP they
change. Many of these operators are task-agnostic
to allow for wide applicability, but we note that
practioners can easily implement their own task-
specific mutators to encode domain-specific heuris-
tics. To the best of our knowledge, SAMMO is the
first optimization method that can also optimize for
large structural changes and data formatting.
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Table 2: Examples for mutation operators, grouped by what part of a SPP π they affect. SAMMO allows for a rich set
of operations whereas traditional prompt optimization techniques only focused on operations that change the text.

Type Operator Description

Text attributes θtext PARAPHRASE Rewrite to keep meaning
INDUCEINSTRUCTIONS Generate instructions from examples
SHORTENTEXT Reduce length to certain number of

words
TEXTTOBULLETPOINTS Turn into bullet list
REMOVESTOPWORDS Filter out stopwords

Other attributes θ CHANGESECTIONFORMAT How sections are rendered (e.g., mark-
down, XML)

CHANGEDATAFORMAT How data is rendered (e.g., JSON, XML)
DECREASEINCONTEXTEXAMPLES Resample a smaller number of examples

Structure Gπ DROPSECTION Remove a section
REPEATSECTION Repeat a section somewhere

4.3 Specializations of SAMMO

We note that SAMMO is a rich framework that al-
lows practitioners to mix-and-match search strate-
gies with a large variety of mutation operators. The
following methods are examples of how known
methods can be implemented in SAMMO:

APE – Automatic Prompt Engineering (Zhou et al.,
2023). Here, INITIALIZECANDIDATES gener-
ates a set of initial candidates from a small set
of few-shot examples. Then, it uses a single
mutation operator, PARAPHRASE with beam
search to explore alternative candidates.

GrIPS – Gradient-free instruction search (Prasad
et al., 2023). This approach builds a syn-
tax parse tree from the task instructions and
then searches with ADD, DELETE, SWAP and
PARAPHRASE mutators on the constituents.

5 Experiments

We demonstrate the flexibility and effectiveness of
SAMMO’s SPP search approach across three differ-
ent scenarios, comparing to the most appropriate
baselines in each scenario. In line with our as-
sumption of limited data availability (Section 3),
we sample n = 100 examples for training and test
sets each unless noted otherwise. For the back-
end LLMs, we consider two open-source models,
Mixtral 7x8B (Jiang et al., 2024) and Llama-2
70B (Touvron et al., 2023); as well as two closed-
source models, GPT-3.5 and GPT-4 (Brown et al.,
2020). See Appendix B.1 for model details. Un-
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Figure 3: SAMMO consistently outperforms all other
instruction tuning methods, for all of the backend LLMs.

less noted otherwise, we use SAMMO with beam
search and a search budget (fixed for all baselines)
of B = 48 candidate evaluations.

5.1 Instruction Tuning

To better align with previous work on prompt tun-
ing, we ran our experiments on BigBench zero-shot
classification tasks (Srivastava et al., 2023). We
sampled eight tasks that still had headroom to im-
prove, i.e., tasks where the baseline prompt π0 with
GPT-3.5 had an accuracy of < 0.9.

We compare against APE (Zhou et al., 2023),
APO (Automatic Prompt Optimization, Pryzant
et al., 2023), DSpy COPRO (Khattab et al., 2023)
and GrIPS (Prasad et al., 2023). We do not include
GPT-4 since it showed negligible headroom for
improving instructions in these simple prompt pro-
grams in pilot experiments (cf. also Section 5.2).
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Figure 5: There is only weak correlation between how
well enumerative search candidates do across LLMs.

Results. As Figure 3 shows, SAMMO is able
to outperform all other baselines, independent of
whether GPT-3.5, LLama-2 or Mixtral was used
as a backend model. DSpy COPRO (Khattab
et al., 2023) performed even worse than the base-
line prompt since DSPy’s prompting often caused
the model to not adhere to the output format (see
Appendix B.2.1 for an example). As a side note,
the model baseline performance seems to be corre-
lated with how much performance we gain through
prompt tuning. Llama-2-70B sees largest relative
performance gains (about 2x), Mixtral 7x8B mod-
erate, and GPT-3.5 smallest gains (around 10%)
compared to the baseline instructions.

5.2 Optimizing Retrieval Augmentation

Towards a more realistic application of prompt
optimization, we consider improving retrieval-
augmented semantic parsing. The overall task is to
translate a natural user query into a domain-specific
language (DSL) construct. Here, we sample 500
examples for retrieval, and use a subset of 100 ex-

amples from those to evaluate training performance.
We compare to DSpy MIPRO (Khattab et al., 2023),
a method that optimizes few-shot examples as well
the instructions. Since evaluation is expensive in
this scenario due to longer prompts, we limit the
budget to B = 24 candidate evaluations.

Following Bogin et al. (2023), we use three
different datasets/domains: GeoQuery (Zelle and
Mooney, 1996), SMCalFlow (Andreas et al., 2020)
and Overnight (Wang et al., 2015). We use the
same i.i.d. splits, DSLs and starting prompt for-
mat as Bogin et al. (2023). We used SAMMO with
enumerative search to optimize the data formats,
number of few shot examples and DSL specifica-
tions. For details, see Appendix B.5.

Results. As Figure 4 shows, despite its con-
ceptual simplicity, optimizing retrieval-augmented
prompts with SAMMO yields substantial gains
across most datasets and backend LLMs. We note
that as before, relative gains decrease with increas-
ing model strength. Llama-2 sees an average im-
provement of 133% and Mixtral of 44%. How-
ever, even GPT-4 can benefit from changes ex-
plored by SAMMO with a average relative gain
of 30%. DSpy MIPRO does worse than SAMMO in
all but one setting. Besides outputting answers in
the wrong format, MIPRO also suffers from over-
fitting as training accuracies can reach 100% (see
Appendix B.5.1).

Since we searched over the same set of mutations
with SAMMO across all models, we also measure
how well search trajectories align between differing
backend LLMs. Figure 5 plots the correlation of
the training scores of the 24 candidates explored
between LLMs, averaged over all three datasets. As
we can see, there is only weak correlation between
LLMs, which indicates that prompts may need to
be optimized separately for each LLM.

5.3 Prompt Compression

In these experiments, our goal is to optimize the
weighted costs of a prompt program while main-
taining its accuracy.

The primary objective is the weighted sum of
the number of input tokens with weight one and the
number of output tokens with weight two to reflect
current billing schemes of popular LLM providers.
Assuming a baseline prompt π0 that has a reason-
able level of accuracy, we set a threshold τacc such
that the performance of the compressed prompt is
required to be above the baseline prompt perfor-
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mance with margin ϵ = 0.02. We sampled ten clas-
sification tasks with longer instructions (1000 char-
acters or more) from the Super-NaturalInstructions
benchmark (Wang et al., 2022).

Baselines. To make the compression task realis-
tic and start with a competitive prompt, we batch
input examples with the newline delimited format
of Cheng et al. (2023). Based on pilot experiments,
we chose input batch sizes b such that performance
between no batching and input batching was within
ϵ. This resulted in b = 10 for GPT-4, b = 5
for Mixtral and GPT-3.5, and b = 1 for Llama-2.
We compare SAMMO against four other compile-
time prompt compression techniques. Our baseline
prompt π0 uses the official instructions provided
with a task followed by k = 5 in-context exam-
ples. For SAMMO, we use all mutation operators
listed in Table 2 as possible operations, and choose
mutators uniformly at random during the search.
We also compare against APE, with the cost-aware
objective. APO is not applicable since it optimizes
only for accuracy. New baselines that were added
include:

STDC – Syntax-guided Task Definition Compres-
sion (Yin et al., 2023a) runs a sequential
search to prune syntax tree constituents.

Stopwords – This is using SAMMO limited to the
RemoveStopwords operators from Table 2.

GPT-4 Rewrite – Using the templates from Li
et al. (2023), we try out ten different templates
to shorten the instructions.

Results. Figure 6 show the the average perfor-
mance across the ten tasks for all backbone LLMs.
We show the final weighted costs on the test set (left
y-axis), as well as the difference of performance
relative to the baseline prompt which should ideally
not exceed ϵ = 0.02 (right y-axis). For all back-
end models, SAMMO achieves substantial compres-
sion rates, reducing the costs by over 40% while
maintaining the accuracy of the baseline prompt.
The STDC and Stopwords baselines achieve some
compression, but the compression rates seen are
only moderate, most likely because their mutation
operations are limited. APE and GPT-4 Rewrite
manage to compress prompts to a larger degree, but
can result in prompts that do not generalize well to
the test set and experience large drops in accuracy.

For each mutation operation chosen by SAMMO

during the search process, we recorded whether it

resulted in an improvement of the weighted costs.
This gives us a rough idea of how much individual
operators contribute to the success of the search.
Figure 7 shows the fraction of times each operator
resulted in an improvement when it was chosen.
From that, we can see that how successful a muta-
tor is depends on the backend LLM, but rewriting
operations and dropping in-context examples were
the most useful structural mutators compressing
the prompt. GPT-4’s performance was more robust
to lowering the number of in-context examples,
and also to dropping the introduction, than other
backend LLMs.

6 Related Work

Related work can be categorized into two areas:
prompt optimization and prompt compression.

In prompt compression, one main axis of distinc-
tion is what model access methods assume. As-
suming full model access, compression via prompt
tuning learns a mapping function that translates
an initial prompt to either soft or hard tokens for
efficiency (e.g., Lester et al. (2021)). For example,
Wingate et al. (2022) uses a distillation objective
to steer text generation with compressed instruc-
tions and Mu et al. (2023) use meta-learning to
compresses prompts into “gist” tokens.

Token-level compression methods operate dur-
ing run-time and assume that output probabilities
are known. The basic idea is that only information-
carrying tokens should be preserved. For example,
Li et al. (2023) uses self-information to select and
merge less probable tokens to compress in-context
examples. Jiang et al. (2023) extend this approach
by doing it segment-wise and adding a prefiltering
step. Jung and Kim (2023) use a reinforcement
learning approach to learn which tokens can be
excluded from a prompt without degradation in
accuracy. However, this requires extensive fine-
tuning with external datasets. Being very low-level,
a practical downside of token-level compression
methods is that they are not guaranteed to keep
important structures intact, such as data formats.

In this paper, we assume that practitioners only
have black-box access to LLMs through an API;
they do not have the ability to access the proba-
bility distribution of the output tokens or the gra-
dient information. Focusing on compressing task
definitions, Yin et al. (2023b) propose STDC, a
method that uses breadth-first search to prune the
syntax-tree after parsing the instructions. Comple-
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Figure 6: SAMMO is able the achieve high compression rates while still maintaining high accuracy. GPT-4 rewrite
results in short prompts that perform poorly on the test set.
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Figure 7: Mutation actions that lead to an improvement
in the objective differ from model to model.

mentary to that are efforts to improve call efficiency
by batching instances together that share the same
overall task instructions (Cheng et al., 2023; Lin
et al., 2023). As shown by Cheng et al. (2023),
batching only minimally impacts performance as
long as batch sizes do not exceed a certain model-
specific threshold. For this reason, our compression
experiments have batching enabled by default.

In prompt optimization, the main focus in on
improving the accuracy of prompts. Past work
has typically focused on simpler (e.g. single task,
non-batched) prompts with less structure. Again,
there are a variety of methods that assume full
model access (Lester et al., 2021; Qin and Eisner,
2021) which we will not discuss further. Work-
ing with continuous prompt representations using a

smaller surrogate model, InstructZero (Chen et al.,
2023) optimizes prompts locally via Bayesian op-
timization and uses calls to the LLM API as feed-
back. The main limitation here is similar to token-
level methods; it is unclear how to apply them to
structure-rich prompts. On the discrete optimiza-
tion side, Automatic Prompt Engineer (APE) (Zhou
et al., 2023) generates instruction candidates from
a few input-output pairs, and then uses beam search
over paraphrased candidates. We use a modified
version with the same objective as SAMMO in our
experiments. Targeting mainly accuracy and not
compression, GrIPS (Prasad et al., 2023) uses beam
search with edit, add and delete operations on the
syntax tree after parsing the instructions. Similarily,
Automatic Prompt Optimization (APO) (Pryzant
et al., 2023) re-writes instructions by generating ex-
planations for errors, changing the prompt to reflect
explanations, and then generating more prompt can-
didates by paraphrasing.

7 Conclusion

In this paper, we introduced SAMMO, a frame-
work for efficient compile-time optimization of
prompt programs. The key innovation of SAMMO

is to represent prompts as symbolic prompt pro-
grams. Symbolic prompt programs enable SAMMO

to search through the space of possible programs in
an efficient manner. This approach notably outper-
forms and generalizes existing methods of prompt
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optimization and compression, as demonstrated
through several use cases tasks in our experimental
evaluation.

SAMMO is made available publicly as an open-
source project. It is our hope that similar to
how compilers accelerated and robustified soft-
ware programming, prompt program compilers
like SAMMO will accelerate prompt development,
model evaluation and prompt migration between
different architectures.

Limitations

The optimization costs as well as the resulting
prompt program performance could be sensitive
to search hyperparameter choices. Given the high
cost of running just one experiment, we could not
afford to run a full hyperparameter search, but did
our best to choose settings based on recommenda-
tions by the authors or previous similar work and
ensured that all algorithms had the same budget.

Due to SAMMO high-level operators, we did
not observe substantial drops in performance be-
tween training and test sets. However, methods that
mostly optimize in-context examples like DSPy
showed a large risk of overfitting (cf. Section 5.2).
We conclude that more research is needed to un-
derstand when and how overfitting occurs prompt
optimization.

All of our experiments have been carried out
with datasets in English; performances for lower-
resource language are likely to be lower. While
SAMMO is generally efficient, tasks need to have
a certain level of downstream usage in order to
compensate for the upfront costs of optimization.
Future research could also combine run-time opti-
mization with compile-time optimization to see if
additional gains can be achieved. Finally, SAMMO

adopts a supervised learning scenario where labels
are required; we plan to address more unsupervised
tasks in the future.
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A Differences between SAMMO and DSPy (and similar)

Conceptually, SAMMO subsumes the optimization part of DSpy and other static prompt optimization
frameworks because it allows changes to the execution flow of the prompt program itself (i.e., routing of
modules to use DSPy language) as well to all its nested structures (modules).

Features offered by SAMMO but not supported in DSPy:

• Adding nested subroutines during optimization, e.g., LLM calls to self-reflect on the output

• Adding another retriever during optimization (e.g., for negative examples) in a RAG scenario

• Mutating the ordering of sections and paragraphs

• Deleting subroutines from the prompt program [Compression experiment]

• Automatically exploring minibatching of several input examples to reduce costs [Compression
experiment]

• Mixing and matching mutation operators to form new optimization schemes [All experiments]

Feature offered by SAMMO that would require custom implementation in DSPy:

• Automatically choosing between different common data formats and data grouping [RAG and
compression experiment]

• Combining discrete choices (e.g., number of few shot examples) with iterative refinements (e.g.,
paraphrasing) [RAG experiment]

• Scoping mutators so that specific operations are applied only to some modules [RAG and compression
experiment]

B Experiment Details

B.1 Model versions
Model versions used:

• GPT 3.5: gpt-3.5-turbo-16k-0613

• GPT 4: gpt-4-0613

• LLama-2: meta-llama/Llama-2-70b-chat-hf

• Mixtral 7x8B: cognitivecomputations/dolphin-2.6-mixtral-8x7b

B.2 Instruction Tuning
B.2.1 DSPy Example Output
DSpy often caused the model to not adhere to output instructions.

Input
Does Speaker 2's answer mean yes or no?
---
Follow the following format.
Question: ${question}
Answer: ${answer}
---
Question: Speaker 1: 'Should we repay you?' Speaker 2: 'There is no charge for awesomeness, or attractiveness.'
Answer:

Output
No

Question: Speaker 1: 'Should we repay you?' Speaker 2: 'There is no charge for awesomeness, or attractiveness.'
Answer: No
Question: Speaker 1: 'Should we repay you?' Speaker 2: 'There is no charge for awesomeness, or attractiveness.'
Answer: No
Question: Speaker 1: 'Should we repay you?' Speaker 2: 'There is no charge for awesomeness, or attractiveness.'
Answer: No
Question: Speaker 1: 'Should we repay you?' Speaker 2: 'There is no charge

See Table 3
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B.3 Prompt Compression: Table form of main results
See Table 4 for numeric results.

B.4 Prompt Compression: Examples prompts
Below prompts are for task 346 with a backend LLM of GPT-3.5.

B.5 RAG optimization
Mutation operations searched over:

• In-context examples format: JSON, Plaintext, XML

• In-context examples grouping: by item, by input/output

• No. of in-context examples: 5, 10

• DSL specifications: full, only signatures

RAG retrieved examples via OpenAI’s text-embedding-3-small embedding model.

B.5.1 Overfitting in DSpy MIPRO
See Figure 8.
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Figure 8: Training accuracies on RAG task

B.5.2 Baseline
# Task
In this task, you will be presented with a question, a word, and a POS tag. You have to determine whether the part-of-speech tag

of the given word in the question is equal to the given POS tag or not. Give your answer with True or False. Here is the
Alphabetical list of part-of-speech tags used in this task: CC: Coordinating conjunction, CD: Cardinal number, DT:
Determiner, EX: Existential there, FW: Foreign word, IN: Preposition or subordinating conjunction, JJ: Adjective, JJR:
Adjective, comparative, JJS: Adjective, superlative, LS: List item marker, MD: Modal, NN: Noun, singular or mass, NNS: Noun,
plural, NNP: Proper noun, singular, NNPS: Proper noun, plural, PDT: Predeterminer, POS: Possessive ending, PRP: Personal
pronoun, PRP$: Possessive pronoun, RB: Adverb, RBR: Adverb, comparative, RBS: Adverb, superlative, RP: Particle, SYM: Symbol,
TO: to, UH: Interjection, VB: Verb, base form, VBD: Verb, past tense, VBG: Verb, gerund or present participle, VBN: Verb,
past participle, VBP: Verb, non-3rd person singular present, VBZ: Verb, 3rd person singular present, WDT: Wh-determiner, WP:
Wh-pronoun, WP$: Possessive wh-pronoun, WRB: Wh-adverb

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

# Examples
Q[0]: What is the nickname of the institution whose current Vice President of the Pastoral Animation of the school is Rev . Fr .

John Vernil Q. Lopez , S.D.B ?↪→
, Word: Rev
, POS tag: NNP
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
Q[3]: How many main ecosystems does the state in Brazil with a name meaning thick grass or dense woods contain ?
, Word: with
, POS tag: DT
Q[4]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
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, POS tag: NN
A[0]: True
A[1]: False
A[2]: False
A[3]: False
A[4]: True

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN

B.5.3 STDC
# Task
will be presented with a question, a word, and a POS tagGive your answer with True or FalseHere is : , IN: Preposition or

subordinating conjunctionJJ: AdjectiveJJR, JJS: Adverb, RBR: Adverb, comparative, RBS: Adverb, superlative, RP: Particle,
SYM: Symbol, TO: to, UH: Interjection, VB: Verb, base form, VBD: Verb, past tense, VBG: Verb, gerund or present participle,
VBN: Verb, past participle, VBP:

↪→
↪→
↪→

# Examples
Q[0]: What is the nickname of the institution whose current Vice President of the Pastoral Animation of the school is Rev . Fr .

John Vernil Q. Lopez , S.D.B ?↪→
, Word: Rev
, POS tag: NNP
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
Q[3]: How many main ecosystems does the state in Brazil with a name meaning thick grass or dense woods contain ?
, Word: with
, POS tag: DT
Q[4]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
, POS tag: NN
A[0]: True
A[1]: False
A[2]: False
A[3]: False
A[4]: True

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN

B.5.4 APE
# Task
Provide a true or false response for each input based on the question or statement.

# Examples
Q[0]: What is the nickname of the institution whose current Vice President of the Pastoral Animation of the school is Rev . Fr .

John Vernil Q. Lopez , S.D.B ?↪→
, Word: Rev
, POS tag: NNP
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
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Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
Q[3]: How many main ecosystems does the state in Brazil with a name meaning thick grass or dense woods contain ?
, Word: with
, POS tag: DT
Q[4]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
, POS tag: NN
A[0]: True
A[1]: False
A[2]: False
A[3]: False
A[4]: True

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN

B.5.5 Stopwords
# Task
task, presented question, word, POS tag. determine --speech tag given word question equal given POS tag . answer True False.

Alphabetical list --speech tags task: CC: Coordinating conjunction, CD: Cardinal number, DT: Determiner, EX: Existential ,
FW: Foreign word, : Preposition subordinating conjunction, JJ: Adjective, JJR: Adjective, comparative, JJS: Adjective,
superlative, LS: List item marker, MD: Modal, NN: Noun, singular mass, NNS: Noun, plural, NNP: Proper noun, singular, NNPS:
Proper noun, plural, PDT: Predeterminer, POS: Possessive ending, PRP: Personal pronoun, PRP$: Possessive pronoun, RB: Adverb,
RBR: Adverb, comparative, RBS: Adverb, superlative, RP: Particle, SYM: Symbol, : , UH: Interjection, VB: Verb, base form,
VBD: Verb, past tense, VBG: Verb, gerund present participle, VBN: Verb, past participle, VBP: Verb, non-3rd person singular
present, VBZ: Verb, 3rd person singular present, WDT: Wh-determiner, WP: Wh-pronoun, WP$: Possessive wh-pronoun, WRB:
Wh-adverb

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

# Examples
Q[0]: What is the nickname of the institution whose current Vice President of the Pastoral Animation of the school is Rev . Fr .

John Vernil Q. Lopez , S.D.B ?↪→
, Word: Rev
, POS tag: NNP
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
Q[3]: How many main ecosystems does the state in Brazil with a name meaning thick grass or dense woods contain ?
, Word: with
, POS tag: DT
Q[4]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
, POS tag: NN
A[0]: True
A[1]: False
A[2]: False
A[3]: False
A[4]: True

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN
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B.5.6 GPT-4 Rewrite
# Task
Determine if the part-of-speech (POS) tag of the given word in the question matches the provided POS tag. Answer with True or

False. Here are the POS tags: CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN, NNS, NNP, NNPS, PDT, POS, PRP, PRP$, RB, RBR,
RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB.

↪→
↪→

# Examples
Q[0]: What is the nickname of the institution whose current Vice President of the Pastoral Animation of the school is Rev . Fr .

John Vernil Q. Lopez , S.D.B ?↪→
, Word: Rev
, POS tag: NNP
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
Q[3]: How many main ecosystems does the state in Brazil with a name meaning thick grass or dense woods contain ?
, Word: with
, POS tag: DT
Q[4]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
, POS tag: NN
A[0]: True
A[1]: False
A[2]: False
A[3]: False
A[4]: True

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN

B.5.7 SAMMO
# Task
- Check if word matches part-of-speech tag (True/False)
- Tags: conjunction, number, determiner, adjective, noun, verb

# Examples
Q[0]: What result was given to the couple that danced to a song from a 2005 crime-comedy ?
, Word: couple
, POS tag: NN
Q[1]: The youngest Luge Champion listed won what medal in the one year he competed in the Olympics ?
, Word: one
, POS tag: IN
Q[2]: What comedy sitcom did the guest who appeared on September 29 appear on ?
, Word: did
, POS tag: NN
A[0]: True
A[1]: False
A[2]: False

# Complete and output in the same format as above
Q[0]: In what town was the director of the film titled `` Take a Sixer '' in English born ?
, Word: In
, POS tag: WP
Q[1]: what is the description of the crime by the person born October 12 , 1971 ?
, Word: is
, POS tag: ,
Q[2]: What is the institution of the Laureate who was Frank Henry Sommer Professor of Law and Philosophy at New York University ?
, Word: Henry
, POS tag: NNP
Q[3]: What is the team whose city straddles the Henares River ?
, Word: the
, POS tag: VBZ
Q[4]: The rider born on July 16 1973 played on which team ?
, Word: July
, POS tag: IN
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Table 3: Results for individual datasets from the BigBench benchmark.

model task APE APO Baseline Prompt GRIPS SAMMO

GPT 3.5 Turbo implicatures test 0.78 0.78 0.56 0.76 0.77
train 0.78 0.83 0.51 0.81 0.87

metaphor test 0.89 0.86 0.87 0.88 0.87
train 0.89 0.90 0.84 0.88 0.87

navigate test 0.64 0.68 0.62 0.62 0.59
train 0.65 0.75 0.72 0.72 0.77

presuppositions test 0.49 0.48 0.39 0.42 0.52
train 0.56 0.57 0.37 0.47 0.54

sports test 0.77 0.89 0.75 0.74 0.87
train 0.84 0.88 0.75 0.80 0.88

vitaminc test 0.71 0.74 0.74 0.73 0.73
train 0.75 0.69 0.67 0.68 0.73

winowhy test 0.53 0.45 0.48 0.50 0.61
train 0.60 0.53 0.49 0.60 0.61

word test 0.76 0.75 0.72 0.72 0.74
train 0.85 0.85 0.81 0.81 0.83

Llama-2 70B implicatures test 0.72 0.61 0.35 0.79 0.78
train 0.72 0.53 0.37 0.75 0.73

metaphor test 0.34 0.50 0.47 0.47 0.50
train 0.48 0.48 0.45 0.45 0.48

navigate test 0.20 0.15 0.08 0.08 0.25
train 0.14 0.17 0.02 0.02 0.19

presuppositions test 0.14 0.11 0.11 0.11 0.11
train 0.18 0.19 0.19 0.19 0.19

sports test 0.61 0.52 0.13 0.54 0.53
train 0.64 0.47 0.16 0.49 0.50

vitaminc test 0.57 0.49 0.26 0.26 0.50
train 0.54 0.48 0.26 0.26 0.47

winowhy test 0.16 0.35 0.09 0.11 0.39
train 0.19 0.35 0.08 0.13 0.44

word test 0.00 0.00 0.00 0.00 0.00
train 0.00 0.00 0.00 0.00 0.00

Mixtral 8x7B implicatures test 0.80 0.68 0.64 0.84 0.84
train 0.79 0.69 0.65 0.82 0.82

metaphor test 0.85 0.87 0.86 0.86 0.85
train 0.85 0.88 0.86 0.86 0.87

navigate test 0.59 0.50 0.50 0.50 0.54
train 0.62 0.45 0.45 0.45 0.66

presuppositions test 0.53 0.59 0.55 0.60 0.55
train 0.68 0.69 0.64 0.70 0.65

sports test 0.32 0.58 0.39 0.62 0.62
train 0.40 0.51 0.26 0.63 0.63

vitaminc test 0.75 0.77 0.75 0.76 0.78
train 0.73 0.74 0.67 0.71 0.73

winowhy test 0.68 0.57 0.34 0.52 0.62
train 0.61 0.45 0.31 0.57 0.66

word test 0.14 0.23 0.09 0.17 0.24
train 0.28 0.31 0.10 0.22 0.27
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Table 4: Test accuracy and costs across 10 tasks.

LLM method accuracy costs

GPT-4 Baseline 0.746 13949
STDC 0.742 11927
APE 0.715 10791
Stopwords 0.744 10752
GPT-4 Rewrite 0.733 9754
SAMMO 0.736 8410

GPT-3 Baseline 0.587 21872
STDC 0.568 18608
APE 0.464 14702
Stopwords 0.576 19022
GPT-4 Rewrite 0.484 15938
SAMMO 0.599 12691

MIXTRAL Baseline 0.610 22894
STDC 0.607 19932
APE 0.611 18702
Stopwords 0.629 18854
GPT-4 Rewrite 0.485 13999
SAMMO 0.637 15292

LAMA Baseline 0.380 103606
STDC 0.426 65728
APE 0.328 77980
Stopwords 0.337 103573
GPT-4 Rewrite 0.335 53192
SAMMO 0.447 53087
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