
Findings of the Association for Computational Linguistics: EACL 2024, pages 6458–6472
November 12-16, 2024 ©2024 Association for Computational Linguistics

CAPEEN: Image Captioning with Early Exits and Knowledge Distillation

Divya Jyoti Bajpai and Manjesh Kumar Hanawal
Department of IEOR, IIT Bombay

{divyajyoti.bajpai, mhanawal}@iitb.ac.in

Abstract

Deep neural networks (DNNs) have made
significant progress in recognizing visual el-
ements and generating descriptive text in
image-captioning tasks. However, their im-
proved performance comes from increased
computational burden and inference latency.
Early Exit (EE) strategies can be used to en-
hance their efficiency, but their adaptation
presents challenges in image captioning as it
requires varying levels of semantic informa-
tion for accurate predictions. To overcome
this, we introduce CAPEEN to improve the
performance of EE strategies using knowl-
edge distillation. Inference in CAPEEN is
completed at intermediary layers if predic-
tion confidence exceeds a predefined value
learned from the training data. To account
for real-world deployments, where target dis-
tributions could drift from that of training sam-
ples, we introduce a variant A-CAPEEN to
adapt the thresholds on the fly using Multi-
armed bandits framework. Experiments on
the MS COCO and Flickr30k datasets show
that CAPEEN gains speedup of 1.77× while
maintaining competitive performance com-
pared to the final layer, and A-CAPEEN ad-
ditionally offers robustness against distortions.
The source code is available at https://
github.com/Div290/CapEEN

1 Introduction

Image captioning, a multifaceted challenge at the
intersection of computer vision and natural lan-
guage processing, has reaped the benefits of deep
neural networks (DNNs), characterized by their
increased scale and complexity. This task en-
tails not only the identification of visual elements
within an image but also the intricate interpreta-
tion of their relationships. Notably, the encoder-
decoder framework has made significant strides
in sentence generation by anticipating the next
word in a sequence (Anderson et al., 2018; Chen

Encoder 2

A big cat is
chasing a mouse
on a wooden floor

Encoder 1

Encoder N

Decoder N

Decoder 2

Decoder 1

Exit-1

Exit-2

Figure 1: The encoder-decoder framework with at-
tached exits. The figure states that low-level features
could be extracted from early classifiers and inferred
there, while high-level features are inferred at deeper
classifiers. The color of the text in the caption is the
same as the color of the classifier after that layer.

et al., 2021; Chen and Lawrence Zitnick, 2015;
Fei, 2021; Huang et al., 2019; Vinyals et al., 2015;
Xu et al., 2021, 2015; Yao et al., 2018; Zhang
et al., 2021; Li et al., 2022, 2023). This predictive
modeling considers both the image’s content and
the preceding partial sentence, resulting in sub-
stantial progress in the field (Bai and An, 2018).
However, their large size restricts deployment in
resource-constrained scenarios requiring fast in-
ference. Early Exit (EE) strategies have emerged
as a strategic solution to overcome this challenge.

In EE strategies, classifiers are attached to the
intermediary layers. Each sample can exit from
one of them without requiring to pass through all
layers (see Fig. 1). This brings down computa-
tional requirements and improves latency (Teer-
apittayanon et al., 2016; Xin et al., 2020). How-
ever, this generic approach of attaching exits to the
pre-trained backbone may not be suitable for im-
age captioning (Fei et al., 2022)– in the layered
hierarchy of representation in transformer-based
models, the initial layers focus on extracting low-
level features, while deeper layers delve into the

6458

https://github.com/Div290/CapEEN
https://github.com/Div290/CapEEN

complexities of semantic fusion relations (Cornia
et al., 2020; Liu et al., 2021c). Consequently, even
‘easy samples’ require a certain level of high-level
information present at deeper layers.

Moreover, the decisions of early exit are based
on the confidence at the intermediary layers being
above a predefined threshold. The threshold used
to compare the confidence levels significantly im-
pacts the amount of latency and accuracy. These
thresholds are learned during training and serve as
a crucial reference point during inference.

Post-deployment, it may be possible that the
distribution of the target sample could drift away
from that of training samples. This is often en-
countered in real-world scenarios, e.g., blurred
images due to the camera being out of focus
(Dodge and Karam, 2016) during inference. Such
drifts could affect the threshold choice and signifi-
cantly lower the DNNs performance (see figure 2)
prompting the question: How to adjust the thresh-
old of deployed pre-trained models when the la-
tent distribution of target samples differs from the
training samples due to variation in distortion lev-
els? Also, this adaptation has to be unsupervised,
as the ground truth labels may not be available
during inference. This motivates a method that 1)
gives initial layers high-level information during
training and 2) adjusts early exit thresholds dur-
ing inference for efficiency and robustness against
distortions.

We introduce a new approach that extends
the idea of knowledge distillation in early ex-
its (Phuong and Lampert, 2019; Zhu, 2021) to
image captioning tasks named Image Captioning
with Early Exits and KNowledge Distillation
(CAPEEN) to improve the efficiency of EEs in
image captioning tasks. By distilling the knowl-
edge residing in deeper layers (teacher), CAPEEN
empowers initial classifiers (students) to utilize
the richness of deeper representations, which en-
hances both the performance and speed of the EE
model.

To circumvent the issue of threshold choice un-
der distribution change due to distortion in in-
coming samples during inference, we propose
a novel online learning algorithm A-CAPEEN
based on the Multi-Armed Bandits (MAB) frame-
work (Auer et al., 2002) to learn the optimal
threshold as per latent distributions of input sam-
ples. A-CAPEEN is activated during the inference
phase and adapts to various levels of distortions in
test samples with minimal computational require-

0.0 0.1 0.2 0.3 0.4 0.5
 (distortion level)

0

10

20

30

40

50

60

70

80

Sc
or

es

42.7
39.8

37.0 34.7
31.7

28.5

83.9
78.2

72.3

65.3

56.1
51.3

Bleu-4
Bleu-1

Figure 2: This figure shows the effect of distortion in
the performance when the model was trained on undis-
torted images and tested on images with varying distor-
tion levels (σ models the distortion level).

ments, making our method more suitable for real-
world scenarios.

Our experiments on the MS COCO (Lin et al.,
2014) and Flickr30k (Plummer et al., 2015)
dataset demonstrate that CAPEEN significantly
increases speedup while maintaining competitive
accuracy performance (1.77x speedup in runtime
as compared to the final layer). A-CAPEEN fur-
ther enhances efficiency by dynamically adjusting
exit thresholds based on the latent distribution of
the test dataset to make it robust to noise present
in the datasets during inference.

In summary, our contributions are as follows:
1) We present a novel self-distillation framework
named CAPEEN tailored for early exiting in im-
age captioning. 2) We introduce an online learning
algorithm, A-CAPEEN, designed to dynamically
choose optimal thresholds as per the latent data
distribution utilizing the MAB framework. The
algorithm uses the confidence scores to learn the
optimal threshold. It makes the method robust
to different levels of distortion in the test sam-
ples. 3) Comprehensive experiments conducted
on the MS-COCO and Flickr30k dataset, reveal
the superior performance of CAPEEN across all
key metrics compared to previous methodolo-
gies. Additionally, we validate the effectiveness
of A-CAPEEN in consistently determining opti-
mal threshold values for various data distributions.

2 Related works

Image Captioning: Recent research has wit-
nessed a surge in exploring efficient text descrip-
tion generation for input images (Bai and An,
2018). Encoder-decoder frameworks have gained
prominence for their exceptional performance in
text generation tasks, leveraging contextual infor-

6459

mation (Anderson et al., 2018; Chen et al., 2021;
Chen and Lawrence Zitnick, 2015; Fei, 2021;
Huang et al., 2019; Vinyals et al., 2015; Xu et al.,
2021, 2015; Yao et al., 2018; Zhang et al., 2021;
Li et al., 2022, 2023). With the advent of the atten-
tion mechanism (Vaswani et al., 2017), the focus
has shifted towards employing multiple layers of
transformers as both encoders and decoders.
Early-exits. In recent years, the issue of infer-
ence latency has gained substantial attention (Mat-
subara et al., 2022; Guo et al., 2020). To ad-
dress this issue, DNNs are implemented with in-
ternal classifiers in the intermediate layers. No-
tably, BranchyNet (Teerapittayanon et al., 2016)
explores early classification at intermediate layers
for images, while SPINN (Laskaridis et al., 2020)
uses a mobile cloud setup to split the DNN. SEE
(Wang et al., 2019b) performs the early exiting
in a service outage scenario. Multiple early ex-
iting frameworks have also been proposed such as
(Huang et al., 2017; Yang et al., 2020; Han et al.,
2023) for improving early exits for image tasks
dynamically choosing the depth of network for
different regions for an image. Other works like
(Phuong and Lampert, 2019) have utilized knowl-
edge distillation in early exit framework but not for
image captioning. Also, it performs joint training
of teacher and student that deteriorates the opti-
mality of the backbone.

Numerous early exiting frameworks have been
devised for natural language processing tasks (Xin
et al., 2020; Liu et al., 2021b, 2020; Wang et al.,
2019a; Li et al., 2021; Zhou et al., 2020; Zhu,
2021; Ji et al., 2023; Balagansky and Gavrilov,
2022; Zhang et al., 2022), primarily based on the
BERT backbone. DeeCap (Fei et al., 2022) in-
troduces early exiting to image captioning, em-
ploying an imitation network to replicate outputs
from computationally intensive transformer layers
within an encoder-decoder architecture. Similarly,
MuE (Tang et al., 2023) applies early exits to OFA
(Wang et al., 2022a), a unified vision language
model designed for multi-modal applications.
Multi-armed bandits in Early exits. Several
works utilize the MAB framework to adapt to dif-
ferent scenarios. Notable methods like LEE (Ju
et al., 2021b), DEE (Ju et al., 2021a), and AdaEE
(Pacheco et al., 2023) aim to learn the optimal
exit points in scenarios like mobile devices with
restricted computational resources. Additionally,
EPNet (Dai et al., 2020) adopts an offline approach
to learning when to exit based on considerations

of computational overhead and accuracy. On the
other hand, UEEUCB (Hanawal et al., 2022) em-
ploys a Multi-Armed Bandit (MAB) framework to
dynamically learn the optimal exit strategy in an
online and unsupervised manner. UEEUCB relies
on the assumption of strong dominance in neu-
ral networks, wherein accuracy increases with the
layer number in the neural network.

The key differences are: 1) to the best of our
knowledge, improving the performance of early
exits using knowledge distillation has not been
studied for image captioning. 2) Our online al-
gorithm based on the MAB setup overcomes the
challenge of choosing the optimal threshold by
adapting to the underlying latent distributions of
the noise present in the test dataset.

Note: We are the first to apply knowledge dis-
tillation for image captioning. Previous methods
have applied knowledge distillation for early exits
in text and image classification which are much
simpler tasks than image captioning and they
simultaneously perform distillation in a single-
stage training. This cannot be extended to image
captioning as it requires high-quality knowledge
transfer else it can lead to incorrect learning paths.

Given the complexity of image captioning, we
perform a two-stage training that not only transfers
high-quality knowledge but also maintains the op-
timality of the backbone. This approach provides
us with a state-of-the-art backbone and serves as a
testbed for A-CAPEEN.

3 Methodology

In this section, we discuss our method of fusing
knowledge distillation with early exit layers by
treating the final layer classifier as the teacher and
the early exit classifiers as the students.

3.1 Backbone

We use the encoder-decoder framework for build-
ing our backbone network motivated by previous
works (Liu et al., 2021a; Li et al., 2023). The
encoder component comprises a pre-trained Swin-
Transformer-base model (Liu et al., 2021c). What
sets the Swin-Transformer backbone apart from
other vision transformer models (Ranftl et al.,
2021) is its Window and Shifted-Window Multi-
head Self-Attention (SW-MSA) for the extraction
of high-quality rich features. Swin’s unique ap-
proach has consistently delivered state-of-the-art
performance in various vision-related tasks (Wang

6460

et al., 2022b). The encoder extracts rich features
from the input image and enhances them by cap-
turing their intra-relationships. The output of the
Swin-Transformer encoder represents the image in
a way that takes into account both local and global
context. These features capture details, objects,
and their spatial relationships within the image.
On the other hand, the decoder component uses the
pre-trained GPT-2 (Lagler et al., 2013) model to
generate captions in an autoregressive manner, ef-
fectively capturing the inter-relationships between
words and image features.

3.2 Finetuning Backbone and Training Exits

CAPEEN requires two main training steps: (i) The
backbone fine-tuning and (ii) Training of the at-
tached exits using knowledge distillation.

3.2.1 CAPEEN backbone fine-tuning

We start with a pre-trained encoder and decoder.
The grid features of the image from the encoder
output are passed to the decoder for cross-attention
computation. The encoder-decoder backbone is
then updated using cross-entropy loss calculated
between the predicted token yi and the ground-
truth token y∗i . The loss function for fine-tuning
is formulated as:

L(I; θ) = − 1

T

T∑

t=1

logPN (y∗t |y∗1:t−1, I; θ),

where θ denotes the collection of all the param-
eters, I denote the input image, T is the caption
length, y∗1:T denotes ground-truth caption, PN de-
notes the probability score from the final layer, and
N denotes the number of layers in the decoder. We
define vocabulary V as the set of tokens. Once the
fine-tuning is complete, we freeze all the backbone
parameters. This maintains the optimal quality of
the backbone after exits are attached.

3.2.2 CAPEEN Exits Training

After obtaining the fine-tuned backbone from the
previous step, we attach task-specific exits at each
decoder layer except the final layer. We use a
student-teacher setup where the teacher is the final
layer, and each intermediate classifier is treated as
a student, as visualized in Fig. 3. The weights of

Decoder 1

Decoder 2

Decoder N

The cat is

The cat is chased

The cat is chasing

The cat is chasing

Student C

Student C

Teacher C
High-level info

Fine-tuned and frozen

Figure 3: The overall training process for the decoder.
Teacher C: Teacher classifier, Student C: Student Clas-
sifier, the bars show the probability distribution across
different exits.

the ith exit/student are trained using the loss:

Li(I; θ, θe) =

− 1

T

T∑

t=1

(log(Pi(y
∗
t |y∗1:t−1, I; θ, θe)

+KL(pit, p
n
t))

where θe are the learnable weights for the ex-
its, y∗t is the tth ground-truth token. pit is
the probability vector on the vocabulary for
ith student. Its vth component is given by
pit(v) = Pi(v|y∗1:t−1, I; θ, θe) and pnt is the
probability vector of the teacher model where
pnt (v) = PN (v|y∗1:t−1, I; θ). KL is the KL-
Divergence function defined as KL(pit, p

n
t) =∑

v∈V pit(v) log
pit(v)
pnt (v)

. The early classifiers are
then jointly trained using the loss function∑n−1

i=1 Li. In this way, the learning is guided by
hard and soft labels from the final layer.

3.3 CAPEEN inference

We predict the caption in an autoregressive man-
ner. This entails making token-by-token predic-
tions for a given image, where the layer at which a
token is predicted is determined by the prediction
confidence Ci = maxv∈V Pi(v|y1:t−1, I; θ, θe).
The input to the decoder is processed sequentially
through the decoder layers until Ci (the confidence
value) is greater than a predefined threshold value
α. This threshold is set using the validation data

6461

based on the required accuracy-efficiency trade-
off. The pseudo-code for inference is given in Al-
gorithm 1. In the algorithm < bos > and < eos >
denote the beginning of sentence and end of sen-
tence token, respectively. We rely on fixed con-
fidence threshold values during inference that are
tuned during training and applied uniformly across
all exits to make decisions of early inference. We
denote the prediction word by c and the predicted
caption by C.

Algorithm 1 CAPEEN Inference
1: Input: Image I , Vocabulary V , threshold α.
2: c =< bos >, C = [< bos >]
3: while c ̸=< eos > do
4: for i← 1 to N do
5: Ci ← maxv∈V Pi(v|I,C; θ, θe)
6: if Ci ≥ α and i < N then
7: c = argmaxv∈V Pi(v|I,C; θ, θe)
8: else if i = N then
9: c = argmaxv∈V PN (v|I,C; θ)

10: end if
11: end for
12: C.append(c)
13: end while
14: Return: C

4 Learning of Thresholds

Recall the discussion from the introduction that a
threshold set using the validation set may not re-
sult in better performance when test data distribu-
tion drifts from that of the train data distributions,
especially when the images in the test data are dis-
torted. As the threshold used in early exit deci-
sions significantly impacts both computational re-
quirements and accuracy, setting it appropriately
as per the test data distribution is crucial for op-
timal performance. We address this challenge by
adjusting the threshold as per input data distribu-
tion in an online fashion using the MAB frame-
work (Auer et al., 2002).

In the MAB setup, a decision-maker repeatedly
selects from a set of arms (or actions) while adapt-
ing to the unknown environment. Each arm cor-
responds to a specific choice or decision. The
challenge lies in learning which arms yield the
most favourable outcomes (highest reward) over
time. This adaptation and learning process, cen-
tral to MAB setups, aligns with the dynamic na-
ture of online learning problems, where decisions

are made sequentially based on incoming data.
By leveraging the principles of exploration and
exploitation, MAB frameworks facilitate learning
the optimal action for the latent distribution.

In this context, we define the action set as k
thresholds for each exit as A = {α1, α2, . . . , αk}.
For exit i, we define the latency factor as the cost
of processing the sample from the 1st exit to the
ith exit and denote it as oi. Let [N] denote the
set {1, 2, . . . , N}. A token will exit the backbone
only if the confidence is above the chosen thresh-
old. For a given threshold α where α ∈ A, sup-
pose that Cj < α for j ∈ [i− 1] and Ci ≥ α then
it exits at ith exit, and the reward is defined as:

r(α) = (Ci − C1)− µoi (1)

where µ is the scaling factor/conversion factor to
bring the cost in terms of confidence. If the to-
ken does not gain sufficient confidence till the fi-
nal layer, then Cj < α for all j ∈ [N − 1], and the
token will be inferred at the final layer. Then the
reward is:

r(α) = (CN − C1)− µoN (2)

The reward could be interpreted as follows: if a
sample exits at layer i, then the gain is the confi-
dence gain in the inference at layer i compared to
the inference at the first layer, and the cost incurred
in processing the token from the first exit to the ith
exit. The reward is the net gain, expressed as the
difference between gain and cost. The objective is
to maximize the expected reward as :

E[r(α)] =
N−1∑

i=1

E[(Ci − C1)− µoi|exit(i)]

.P [exit(i)] + E[(CN − C1)− µoN |exit(N)]

.P [exit(N)] (3)

where exit(i) denotes the exit from ith layer. The
objective is to find an action that maximizes the
expected reward function. Note that the reward
does not use any label information. The optimal
arm is defined as α∗ = argmaxα∈A r(α). If we
consider a policy π that selects threshold αt ∈ A
in round t based on past observations. The effi-
ciency of the chosen policy can be expressed in
terms of cumulative regret, defined as:

R(π, T) =
T∑

t=1

E[r(α∗)− r(αt)] (4)

6462

4.1 Algorithm

Algorithm 2 A-CAPEEN

1: Input: oi ∀i ∈ [N], γ ≥ 1, A
2: Initialize: For an image obtain |A| tokens by

setting different α ∈ A and observe r(α).
3: Set Q(α)← r(α), N(α)← 1,∀α.
4: t = |A|+ 1
5: for j > 1 do
6: For image Ij , set c = Cj =< bos >
7: while c ̸=< eos > do
8: Sj = {Cj , Ij}
9: For next token, set threshold

10: βt ← argmax
α∈A

(
Q(α) + γ

√
ln(t)

N(α)

)

11: i = 1 and o1 = 0
12: for i = 1 to N do
13: Pass Sj till layer i
14: Apply threshold βt and observe Ci

15: if Ci ≥ βt and i < N then
16: Infer at layer i and exit
17: rt(α)← (Ci − C1)− µoi
18: Nt(α)← Nt−1(α) + 1

19: Qt(α)←
∑t

j=1 rj(αj)1{αj=α}
Nt(α)

20: c = argmaxv∈V Pi(v|Sj ; θ, θe)

21: break
22: else if i = N then
23: Process till the last layer.
24: rt(α)← (CN − C1)− µoN
25: Nt(α)← Nt−1(α) + 1

26: Qt(α)←
∑t

j=1 rj(αj)1{αj=α}
Nt(α)

27: c = argmaxv∈V PN (v|Sj ; θ)
28: end if
29: t← t+ 1
30: end for
31: Cj .append(c)
32: end while
33: Return Cj , j ← j + 1
34: end for

We introduce an algorithm called Adaptive-
CAPEEN (A-CAPEEN) to adaptively choose the
threshold values, and its pseudocode is outlined in
Algorithm 2. The input for this algorithm includes
latency factors oi for each exit i ∈ [N], the ex-
ploration parameter γ. The expectation above is
with respect to the randomness induced by latent
sample distribution in the selection of actions. A
policy denoted as π∗ is characterized as sub-linear
when the average cumulative regret diminishes,

that is, R(π∗, T)/T → 0. Our primary goal is
to devise a learning algorithm that has a sub-linear
regret guarantee.

The initialization of the algorithm involves en-
suring that each action is played at least once.
In the subsequent rounds, the algorithm selects
the arm with the highest UCB index, denoted as
βt (line 5). UCB indices comprise weighted av-
erages of rewards Qt(α) and incorporate confi-
dence bonuses with γ as the exploration parameter
(weight). This confidence threshold is associated
with each exit i.e., βt is the threshold chosen for all
exits for the tth token. The token is then processed
until the confidence is above βt (line 10) and if
the token never gains sufficient confidence, it is
inferred at the final layer (line 16). After the token
exits from one of the layers, the average reward of
the played arm is updated (line 14). The caption
starts with a < bos > token and the next predicted
token c is appended to the predicted caption set C
until the < eos > token is predicted. Note that
there are two counters, one is for the image, once
the < eos > token is predicted the caption for the
image is complete and the counter for the image
is updated while the token counter is updated ev-
ery time a token is passed through it and denotes
the number of times rewards are updated. Hence,
the algorithm learns faster as the thresholds (arms)
are learnt on the number of tokens passed instead
of the number of images.

Drawing from the analysis of UCB1 (Auer
et al., 2002), the regret of A-CAPEEN can be
shown to be of the order O

(∑
α∈A\α∗

log(n)
∆α

)
,

where ∆α = r(α∗) − r(α) denotes the sub-
optimality gap. For completeness, we provide
proof in the Appendix A.1.

5 Experiments

Dataset and Metric: We evaluate the perfor-
mance of our method using the MS-COCO and
Flickr30k datasets for image captioning. Our pri-
mary objective is to produce coherent image cap-
tions. To maintain consistency with prior studies,
we preprocess all captions by converting them to
lowercase. Additionally, we filter out words that
occur fewer than 5 times in the dataset, ensuring
robustness in our evaluation. We report key met-
rics, including BLEU-4 (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), CIDEr
(Vedantam et al., 2015), ROUGE (Lin, 2004) and
SPICE (Anderson et al., 2016) scores. To be

6463

Models/Metric BLEU-1 BLEU-4 METEOR CIDEr SPICE ROUGE-L Speedup
Final-Exit 82.9 42.3 32.2 147.1 26.7 61.3 1.00×

Decoder-9L 76.5 37.1 29.3 134.8 23.2 57.9 1.33×
DeeBERT 70.1 32.3 26.9 110.2 20.9 50.7 1.35×

ElasticBERT 71.4 32.8 27.6 114.6 21.4 51.6 1.37×
F-PABEE 72.7 33.9 27.9 115.6 21.9 52.3 1.30×
FastBERT 75.0 35.6 28.2 119.5 22.1 53.7 1.42×
LeeBERT 77.3 38.7 29.4 129.2 23.0 55.9 1.39×
DeeCap 77.5 39.2 29.9 132.8 23.2 56.9 1.60×

MuE 79.3 40.5 30.9 139.4 24.9 59.7 1.66×
Ours 80.7 41.3 31.6 140.3 25.5 60.1 1.77×

Table 1: Main Results on COCO dataset: CapEEN outperforms other baselines across different metrics.

consistent with previous methods, we report the
speedup ratio as the measure of reduction in com-
putational requirements. This metric can easily be
converted to the expected time reduction rate.

∑N
l=1w

I
l ×N

∑N
l=1w

I
l × l

(5)

where N is the number of decoder layers and l is
the number of layers after which the token exits
the backbone during inference. wI

l is the number
of words that exit at the lth decoder layer for an
image I . This metric provides insights into our
decoding process’s resource utilization and effi-
ciency, a critical aspect discussed in our work.
Training: The encoder-decoder backbone is ini-
tially fine-tuned for 10 epochs with a starting
learning rate of 1e-5, which decays by 0.5 every 3
epochs. Subsequently, self-critical training is em-
ployed for 5 epochs with an initial learning rate of
7e-6, also decaying by 0.5 every 3 epochs. The
backbone weights are frozen post-fine-tuning, and
exits are added to the decoder, whose weights are
further trained for 5 epochs. The Adam optimizer
and a batch size of 8 are chosen, with a thresh-
old of 0.6 chosen based on the accuracy-efficiency
trade-off on the validation split. Inference is con-
ducted on the Karpathy test split of the MS-COCO
dataset with a batch size of 1, using NVIDIA RTX
2070 GPUs. Results are presented in Table 1.
More runtime details are in Appendix B.5
Adaptive threshold learning (A-CAPEEN): We
experiment with two types of noise, Gaussian
noise and Gaussian blur. We mimic real-world
scenarios by adding different levels of noise to the
images of the test set and then proceed to learn the
thresholds. In this, we adapt the thresholds based
on the level of distortion present in an image using
Algorithm 2. For this step, we choose the action
set as A = {0.1, 0.2, . . . , 1.0}. We add noise to
the dataset’s test split. Then we perform learning

of threshold values, using A-CAPEEN for all the
exits. Note that algorithm 2 has small computa-
tional complexity and does not add upon latency
in the inference process. It maximizes the rewards
over a finite set which has negligible complexity.

We set µ = 1/N . The latency cost oi could be
understood as the cost of processing the samples
from 1st exit to ith exit. Hence we set the latency
cost as oi = λi where λ is per layer computational
cost. Since the value of threshold α is adaptively
chosen in this case, λ models the trade-off between
accuracy and efficiency. A higher value of λ will
provide higher accuracy while a lower value will
give high efficiency. We use the value of λ = 1. A
detailed ablation study of this hyperparameter can
be found in the Appendix B.4.

Impact of change in Distribution: We evalu-
ate the impact of data distribution shifts on our
model’s performance (BLEU-1, BLEU-4) using
image distortion (Figure 2). We train on undis-
torted MS-COCO images and introduce Gaussian
noise/blur to the test set, simulating real-world im-
perfections. Noise levels are varied for Gaussian
noise (σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}) and Gaussian
blur (σ ∈ {0.5, 1.0, 1.5, 2.0}) to assess robustness
to context-driven data variations.

Baselines: We establish baseline models for per-
formance evaluation. To assess improvements in
speedup as compared to the final decoding layer,
we consider this setup as a baseline for our ap-
proach (final exit). In this case, all the samples are
inferred only at the final layer. We also directly re-
duce the layer number to 9 in Decoder-9L and use
only 9th layer to make an inference. This base-
line serves as a lower bound for performance met-
rics since it does not employ any technique. Since
DeeBERT (Xin et al., 2020), ElasticBERT (Liu
et al., 2021b), F-PABEE (Zhou et al., 2020), Fast-
BERT (Liu et al., 2020) and LeeBERT (Zhu, 2021)
were originally conducted on BERT, we imple-

6464

Model BLEU-4 METEOR CIDEr Speed
Blur intensity = 0.5

Final 39.2 31.6 148.7 1.00×
DeeCAP 34.7 28.4 133.6 1.33×

MuE 35.5 28.9 137.2 1.47×
Our 36.8 29.5 139.9 1.55×

A-our 37.3 29.8 141.8 1.61×
Blur intensity = 1.0

Final 37.9 30.7 139.5 1.00×
DeeCAP 33.2 27.5 126.3 1.31×

MuE 34.5 28.3 129.4 1.48×
Our 36.1 28.6 130.9 1.53×

A-our 37.0 29.2 132.7 1.59×
Blur intensity = 1.5

Final 34.1 28.6 127.4 1.00×
DeeCAP 28.4 26.8 113.5 1.28×

MuE 29.7 27.4 117.2 1.46×
Our 30.9 27.9 120.6 1.50×

A-Our 31.7 28.5 123.0 1.63×
Blur intensity = 2.0

Final 28.7 22.6 100.4 1.00×
DeeCAP 21.2 18.4 91.7 1.19×

MuE 23.9 20.3 94.5 1.35×
Our 25.4 21.0 98.2 1.39×

A-Our 26.5 21.9 101.2 1.49×

Table 2: Results of A-CAPEEN when the test sample
contains images with different levels of blur.

mented their methods in the decoder part of GPT-2
without changing any hyperparameters. We com-
pare our model with DeeCap (Fei et al., 2022) and
MuE (Tang et al., 2023) utilizing the setup from
their framework. DeeCap implements an imita-
tion network where as a sample exits the back-
bone, it passes through multiple MLP layers to re-
gain lost information due to early exiting. MuE
is another early exiting model for image caption-
ing that attaches exits in the OFA backbone which
is a multimodal unified vision language model. It
has the similarity score of consecutive layers as
the confidence metric. More details on baselines
can be found in Appendix B.3. Note that except
for DeeCAP, we have applied the methodology of
other baselines to our setup.

We evaluate the performance of CAPEEN on
the Karpathy test split of the MS-COCO dataset,
as done by all the baselines for fair evaluation,
and the results are in Table 1. The results of the
Flickr30k dataset are in Appendix C and table 5.

5.1 Results

In this section, We discuss the main results (me-
dian of 5 independent runs) of our work. Details
of the stability of our method are in table 3.

CAPEEN. In the context of pristine (undis-
torted) images, Table 1 presents performance re-
sults of early exit models, showcasing our ap-

proach’s superiority over various baselines. Our
method outperforms all previous baselines, in-
cluding DeeCap and MuE. Unlike DeeCap, our
approach does not rely on an imitation network,
avoiding noise accumulation as samples exit the
main backbone early. Additionally, our method
consistently outperforms MuE by leveraging deep
representations crucial for semantic correctness.
Baselines like DeeBERT, ElasticBERT, and F-
PABEE exhibit significant performance drops due
to limited access to deep representations. While
FastBERT and LeeBERT performs better than
these baselines by accessing deep representations,
they lacks the appropriate ground-truth informa-
tion during weight learning for attached exits.

CAPEEN enriches early classifiers with higher-
level semantic information distilled from the final
layer, leading to minimal performance drops and
the highest speedup ratio across all metrics.

Adaptive learning of the thresholds (A-
CAPEEN). In Table 2 and 4, we highlight the
impact of adapting threshold values based on
changes in data distribution, comparing them with
thresholds learned during training and fixed dur-
ing inference. Our findings demonstrate that fixed
thresholds significantly affect inference time and
performance, highlighting the need for dynamic
threshold learning to accommodate contextual in-
formation and inherent image noise.

For the CIDEr metric, A-CAPEEN observes
minimal occasional gains from the final decoder
layer, attributed to overthinking (Zhu, 2021) dur-
ing inference similar to overfitting during training.
A-CAPEEN consistently outperforms CAPEEN
as well as other baselines when the dataset distri-
bution changes due to distortion in images. The
gain in performance and speed is observed as A-
CAPEEN finds the optimal threshold that opti-
mally models the accuracy-efficiency trade-off.

We perform an ablation study and a case study
in Appendix B to further prove the effectiveness of
our method.

5.2 Analysis of threshold α

We present in the figure 4, the trade-off between
accuracy and efficiency. To obtain higher accu-
racy, we increase the value of α and the time re-
duction decreases with higher accuracy. On the
other hand, decreasing the threshold α will in turn
increase the time reduction but with compromis-
ing performance. CAPEEN performed better than
other baselines due to the available knowledge

6465

0 -10% -20% -30% -40% -50%
Time Reduction Rate

10

15

20

25

30

35

40
Bl

eu
-4

DeeBERT
F-PABEE
DeeCAP
MuE
CapEEN (Ours)

0 -10% -20% -30% -40% -50%
Time Reduction Rate

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

M
et

eo
r

DeeBERT
F-PABEE
DeeCAP
MuE
CapEEN (Ours)

0 -10% -20% -30% -40% -50%
Time Reduction Rate

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

SP
IC

E

DeeBERT
F-PABEE
DeeCAP
MuE
CapEEN (Ours)

Figure 4: Change in the performance of different metrics with changing time reduction rates. These reductions are
observed by changing the threshold parameter α.

from deeper exits. Observe that in figure 4, there
is a very minimal drop in performance (mostly
constant). This ability comes from the extra in-
formation available at the intermediate exits due
to knowledge distillation. However, the perfor-
mance begins to drop when we try to reduce time
by more than 50% since then the sample exits from
the very initial layers which in turn affects the per-
formance.

6 Conclusion

We introduced a new encoder-decoder back-
bone for image captioning with early exits and
knowledge distillation named CapEEN. Using the
student-teacher model, we trained early exit classi-
fiers using knowledge distillation to capture high-
level semantic representations available at the
deeper layers. We demonstrated that CapEEN of-
fers a significant increase in speedup while main-
taining a competitive performance guarantee. Fur-
ther, we introduced A-CapEEN, where the thresh-
old used for early exit decisions can be adaptively
learned for distributions that differ from the train-
ing data due to changes in the distortion levels.

7 Limitations

In our work, we have applied a uniform thresh-
old across all exits during inference, simplifying
the implementation process. However, extending
this to individual thresholds for each exit could
offer additional flexibility, albeit with increased
complexity. Additionally, while early exit models
effectively reduce latency during inference, they
do incur higher computational costs during train-
ing. This is due to the need for exit classifiers to
learn additional weights after each layer, result-
ing in increased complexity. Nonetheless, post-
training, these models significantly enhance infer-

ence speed, which becomes the primary consider-
ation post-deployment.

Acknowledgements

Divya Jyoti Bajpai is supported by the Prime Min-
ister’s Research Fellowship (PMRF), Govt. of In-
dia. Manjesh K. Hanawal thanks funding support
from SERB, Govt. of India, through the Core Re-
search Grant (CRG/2022/008807) and MATRICS
grant (MTR/2021/000645), and DST-Inria Tar-
geted Programme.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2016. Spice: Semantic propo-
sitional image caption evaluation. In Computer
Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V 14, pages 382–398. Springer.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6077–6086.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47:235–256.

Shuang Bai and Shan An. 2018. A survey on auto-
matic image caption generation. Neurocomputing,
311:291–304.

Nikita Balagansky and Daniil Gavrilov. 2022. Palbert:
Teaching albert to ponder. Advances in Neural In-
formation Processing Systems, 35:14002–14012.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

6466

Long Chen, Zhihong Jiang, Jun Xiao, and Wei Liu.
2021. Human-like controllable image captioning
with verb-specific semantic roles. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16846–16856.

Xinlei Chen and C Lawrence Zitnick. 2015. Mind’s
eye: A recurrent visual representation for image cap-
tion generation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2422–2431.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi,
and Rita Cucchiara. 2020. Meshed-memory trans-
former for image captioning. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 10578–10587.

Xin Dai, Xiangnan Kong, and Tian Guo. 2020. Epnet:
Learning to exit with flexible multi-branch network.
In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management,
pages 235–244.

Samuel Dodge and Lina Karam. 2016. Understanding
how image quality affects deep neural networks. In
2016 eighth international conference on quality of
multimedia experience (QoMEX), pages 1–6. IEEE.

Zhengcong Fei. 2021. Memory-augmented image cap-
tioning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 1317–1324.

Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian.
2022. Deecap: Dynamic early exiting for efficient
image captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 12216–12226.

Longteng Guo, Jing Liu, Xinxin Zhu, Xingjian He, Jie
Jiang, and Hanqing Lu. 2020. Non-autoregressive
image captioning with counterfactuals-
critical multi-agent learning. arXiv preprint
arXiv:2005.04690.

Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang,
Xuran Pan, Yifan Pu, Chao Deng, Junlan Feng,
Shiji Song, and Gao Huang. 2023. Dynamic per-
ceiver for efficient visual recognition. arXiv preprint
arXiv:2306.11248.

Manjesh K Hanawal, Avinash Bhardwaj, et al. 2022.
Unsupervised early exit in dnns with multiple exits.
arXiv preprint arXiv:2209.09480.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu,
Laurens Van Der Maaten, and Kilian Q Wein-
berger. 2017. Multi-scale dense networks for re-
source efficient image classification. arXiv preprint
arXiv:1703.09844.

Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong
Wei. 2019. Attention on attention for image caption-
ing. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4634–4643.

Yixin Ji, Jikai Wang, Juntao Li, Qiang Chen, Wenliang
Chen, and Min Zhang. 2023. Early exit with disen-
tangled representation and equiangular tight frame.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 14128–14142.

Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan.
2021a. Dynamic early exit scheduling for deep neu-
ral network inference through contextual bandits. In
Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 823–832.

Weiyu Ju, Wei Bao, Dong Yuan, Liming Ge, and
Bing Bing Zhou. 2021b. Learning early exit for
deep neural network inference on mobile devices
through multi-armed bandits. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), pages 11–20. IEEE.

Klemens Lagler, Michael Schindelegger, Johannes
Böhm, Hana Krásná, and Tobias Nilsson. 2013.
Gpt2: Empirical slant delay model for radio space
geodetic techniques. Geophysical research letters,
40(6):1069–1073.

Stefanos Laskaridis, Stylianos I Venieris, Mario
Almeida, Ilias Leontiadis, and Nicholas D Lane.
2020. Spinn: synergistic progressive inference of
neural networks over device and cloud. In Proceed-
ings of the 26th annual international conference on
mobile computing and networking, pages 1–15.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven
Hoi. 2023. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large
language models. arXiv preprint arXiv:2301.12597.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image
pre-training for unified vision-language understand-
ing and generation. In International Conference on
Machine Learning, pages 12888–12900. PMLR.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021. Acceler-
ating bert inference for sequence labeling via early-
exit. arXiv preprint arXiv:2105.13878.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer.

6467

Wei Liu, Sihan Chen, Longteng Guo, Xinxin Zhu,
and Jing Liu. 2021a. Cptr: Full transformer
network for image captioning. arXiv preprint
arXiv:2101.10804.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Xiangyang Liu, Tianxiang Sun, Junliang He, Jiawen
Wu, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao
Cao, Xuanjing Huang, and Xipeng Qiu. 2021b. To-
wards efficient nlp: A standard evaluation and a
strong baseline. arXiv preprint arXiv:2110.07038.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
2021c. Swin transformer: Hierarchical vision trans-
former using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 10012–10022.

Yoshitomo Matsubara, Marco Levorato, and Francesco
Restuccia. 2022. Split computing and early exiting
for deep learning applications: Survey and research
challenges. ACM Computing Surveys, 55(5):1–30.

Roberto G Pacheco, Mark Shifrin, Rodrigo S Couto,
Daniel S Menasché, Manjesh K Hanawal, and
Miguel Elias M Campista. 2023. Adaee: Adaptive
early-exit dnn inference through multi-armed ban-
dits. In ICC 2023-IEEE International Conference
on Communications, pages 3726–3731. IEEE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Mary Phuong and Christoph H Lampert. 2019.
Distillation-based training for multi-exit architec-
tures. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 1355–
1364.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pages
2641–2649.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun.
2021. Vision transformers for dense prediction. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 12179–12188.

Shengkun Tang, Yaqing Wang, Zhenglun Kong,
Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. 2023. You need mul-
tiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10781–10791.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd international conference on pattern recogni-
tion (ICPR), pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition, pages 4566–4575.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3156–3164.

Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang,
and Li Du. 2019a. Dynexit: A dynamic early-exit
strategy for deep residual networks. In 2019 IEEE
International Workshop on Signal Processing Sys-
tems (SiPS), pages 178–183. IEEE.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022a. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In In-
ternational Conference on Machine Learning, pages
23318–23340. PMLR.

Yiyu Wang, Jungang Xu, and Yingfei Sun. 2022b.
End-to-end transformer based model for image cap-
tioning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 2585–2594.

Zizhao Wang, Wei Bao, Dong Yuan, Liming Ge,
Nguyen H Tran, and Albert Y Zomaya. 2019b. See:
Scheduling early exit for mobile dnn inference dur-
ing service outage. In Proceedings of the 22nd In-
ternational ACM Conference on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems,
pages 279–288.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Guanghui Xu, Shuaicheng Niu, Mingkui Tan, Yucheng
Luo, Qing Du, and Qi Wu. 2021. Towards accu-
rate text-based image captioning with content diver-
sity exploration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 12637–12646.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:

6468

Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057. PMLR.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng
Dai, and Gao Huang. 2020. Resolution adaptive net-
works for efficient inference. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 2369–2378.

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. 2018.
Exploring visual relationship for image captioning.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 684–699.

Xuying Zhang, Xiaoshuai Sun, Yunpeng Luo, Jiayi Ji,
Yiyi Zhou, Yongjian Wu, Feiyue Huang, and Ron-
grong Ji. 2021. Rstnet: Captioning with adaptive
attention on visual and non-visual words. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 15465–15474.

Zhen Zhang, Wei Zhu, Jinfan Zhang, Peng Wang, Rize
Jin, and Tae-Sun Chung. 2022. Pcee-bert: Acceler-
ating bert inference via patient and confident early
exiting. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 327–338.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Sys-
tems, 33:18330–18341.

Wei Zhu. 2021. Leebert: Learned early exit for bert
with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2968–2980.

A Appendix

A.1 Regret Bound

Theorem A.1. For any γ ≥ 1, the regret of A-
CAPEEN with K arms in the action set after T
rounds is given as:

R(A− CAPEEN, T) ≤ 4γ
∑

α ̸=α∗

log(T)

∆α

+

(
π2

3
+ 1

) ∑

α̸=α∗
∆α (6)

where ∆α = r(α∗)− r(α).

Proof. The proof follows similar lines as given in
the classical UCB (Auer et al., 2002). the instan-
taneous regret in round t is given as :

Rt = r(αt)− r(α∗)

The value of r(α) defined in our problem is a
bounded quantity. More specifically r(α) ∈ [−1−
λN, 1] where λ is the processing cost of the layers
and N is the number of layers in the decoder.

The bound given in algorithm A.1 can be further
improved by adding multiple updates for a single
sample. To get an idea of the number of arms that
will get updated, we provide the following propo-
sition:

B More experimental details

B.1 Ablation study

In Figure 6a, we conduct an ablation study by
learning the early exit weights using different loss
combinations. First, we learn the early exit only
using the cross-entropy loss where only ground-
truth labels are used to train the weights of early
exits. Then we consider only knowledge distilla-
tion loss and only soft labels guide the early exits.
We observe that if we do not use the combination
of both soft as well as hard labels then early clas-
sifiers get the highest hit in terms of performance
as they need rich information from deeper layers.
As we move deeper into the backbone all three
combinations converge to similar CIDEr scores as
deeper layers already have access to rich features.

These observations suggest the significance of
the various components within the loss function,
ultimately guiding us towards a more comprehen-
sive understanding of the model’s behaviour.

B.2 Case Study

We also provide some examples of how the dif-
ferent proposed models annotate an image. We
compare the captions generated by the two pro-
posed methods with the captions provided by hu-
mans (ground-truth). As we can observe from fig-
ure 6c, CAPEEN performs well in explaining the
content of the image. As compared to the ground-
truth, CAPEEN provides more details as it also
recognizes that the cake is large. A-CAPEEN gets
a caption which is closer to the CAPEEN when
there is no noise in the image. However, as we add
noise to the image, then the results of A-CAPEEN
are better than CAPEEN. Note that A-CAPEEN is
tested on this example after it has seen a sufficient
amount (around 100 images) of data with similar
noise so that it adopts the distribution of the data.
Also, observe that there is a slight variation in the
captions and some information is lost when there
is added noise in the dataset. Still, the prediction

6469

 = 0.1 = 0.4 = 0.7 = 1.0 = 1.3 = 1.6
-values

0

10

20

30

40

50

30.1
32.4

35.2

40.5
42.7

45.3

39.6 39.4 39.0 38.5
36.9

34.1

Time reduction (in %)
BLEU-4

Figure 5: The change in time reduction rate as well as
the BLEU-4 scores when the values of the λ are varied.

given by A-CAPEEN is better as it has added ’is
cutting’ in the sentence while CAPEEN just out-
puts ’cuts’ and CAPEEN observes that it is a large
knife which is redundant information.

.

B.3 Baselines
DeeBERT: do a separate training of the backbone
and the attached exits in a setup similar to ours. It
trains the model by only using the ground-truth la-
bels and is originally trained for text classification
tasks. We implement it in the decoder part of our
backbone.
ElasticBERT: is similar to DeeBERT but per-
forms a joint training of the backbone i.e. all the
exits with the final exit are trained simultaneously.
We implement it in the decoder part and provide
the results.
F-PABEE: has different exiting criteria from
DeeBERT and ElasticBERT, it exits the samples
based on the consistency in the prediction from
the intermediate classifiers being above a thresh-
old. Its main purpose was to reduce the time as
well as overthinking problems in DNNs.
FastBERT: has also been originally implemented
on the BERT backbone. For the first few epochs
of training, it performs a joint training of the back-
bone and the exits and then more epochs on dis-
tilling the knowledge from deeper exits but with-
out using the ground-truth. We implement it in the
GPT-2 i.e. decoder part of our method.
LeeBERT use prediction stability to decide early
exits, LeeBERT also distil the knowledge from
deeper layers. It perfoms cross level optimization
to make the exits and the backbone learn better.
DeeCAP: is specifically made for early exits in
image captioning. It learns an imitation network

in the form of MLP(Multi-layer Perceptron) layers
for each sample as it exits the backbone. Due to a
separate MLP layer for each exit, it increase the
size of the model to a greater extent. The expected
time reduction rate is also affected as each time the
sample has to check whether to exit a layer or not
from the original backbone it has to exit from the
main backbone and pass through the imitation net-
work until the confidence is above a given thresh-
old.
MuE: is an early exit mechanism in DNNs de-
signed for making inferences at the intermediate
classifier for the multi-modal tasks. The base
model it has used is the OFA model. It sets the
similarity in the hidden representations as the ex-
iting criteria. This exiting criterion gives an ad-
vantage that it could also be applied to the encoder
but has a restriction that the layers of the encoders
are identical which might not be always the case
(Liu et al., 2021c; He et al., 2016).

B.4 Analysis of the cost λ

In figure 5, we perform analysis on the cost pa-
rameter λ. We introduced the cost parameter λ
as a user-defined parameter. It can also be under-
stood as a trade-off factor between accuracy and
efficiency. Since a higher value of λ will increase
the impact of processing cost and in turn will force
samples to make an early exit by lowering the
threshold values. This will increase the efficiency
of the model but in turn, will decrease the accuracy
of predictions. While a smaller value of λ will
motivate the samples to gain higher confidence
by processing them to deeper layers. The latter
method will increase the accuracy while compro-
mising the efficiency of the model.

B.5 Computational requirements

We perform experiments on three NVIDIA RTX
2070 GPUs and the training time takes∼ 10 hours
for the backbone fine-tuning and an additional 1
hour for exits training. The model has 205 million
parameters and not all are updated as the backbone
is pre-trained and not all parameters need to be
updated as we are only fine-tuning it. The infer-
ence time is < 1 hour on the Karpathy test split.
When we also employ A-CapEEN i.e. we adapt
the threshold values then the time required is the
same as running CapEEN individually since the
MAB framework does not add minimal computa-
tional complexity.

6470

1 2 3 4 5 6 7 8 9 10 11
Layer number

20

40

60

80

100

120

140
CI

D
Er

Hard Labels
Soft Labels
Both

(a) Effect of Loss Combinations on
CIDEr Score across the layers.

0.0 0.1 0.2 0.3 0.4 0.5
 (distortion level)

0

10

20

30

40

50

60

70

80

Sc
or

es

42.7
39.8

37.0 34.7
31.7

28.5

83.9
78.2

72.3

65.3

56.1
51.3

Bleu-4
Bleu-1

(b) Effect of different distortion levels
on Bleu-1 and Bleu-4 metrics on final
layer.

GT : A woman wearing a net on
her head is cutting a cake.
CAPEEN: A woman wearing a hair
net cutting a large cake.
A-CAPEEN: A woman wearing a
hair net is cutting a cake.

GT : A woman wearing a net on
her head is cutting a cake.
CAPEEN: A woman cuts a large
cake with large knife.
A-CAPEEN: A woman is cutting
a large cake with a knife.

(c) Predicted captions by CAPEEN and A-
CAPEEN Ground-truth(GT) caption.

Figure 6: (a) Hard Labels (Ground-truth), Soft Labels (Teacher Model Predictions), and Both (Combined Labels).
(b) Image is added with noise and then the captions are predicted, we report the Bleu-1 and Bleu-4 scores. (c) The
first image is pristine (undistorted) while the second image is distorted with σ = 0.2 and the captions are predicted
using CAPEENand A-CAPEEN.

Model BLEU-4 CIDEr SPICE ROUGE-L Speedup
Final-exit 42.7 154.1 26.7 63.3 1.00x
CapEEN 41.3±0.015 140.3±0.3 25.5±0.009 62.3±0.07 1.77x±0.058

A-CapEEN 42.1±0.08 144.2±1.1 26.1±0.08 63.0±0.5 1.76x±0.17

Table 3: This table shows the stability of CAPEEN and A-CAPEEN where 5 independent runs are made.

Model BLEU-4 METEOR CIDEr Speed
σ = 0.5

Final-exit 28.5 24.0 99.5 1.00x
Ours 26.1 23.9 91.1 1.43x

A-Ours 26.7 24.1 91.9 1.51x
σ = 0.4

Final-exit 31.7 26.5 113.9 1.00x
Ours 28.9 26.4 105.2 1.53x

A-Ours 29.2 26.4 107.9 1.59x
σ = 0.3

Final-exit 34.7 28.9 122.1 1.00x
Ours 32.7 28.3 115.8 1.50x

A-Ours 33.5 28.4 121.7 1.58x
σ = 0.2

Final-exit 37.1 30.7 134.8 1.00x
Ours 35.7 30.1 127.3 1.51x

A-Ours 35.8 30.1 129.4 1.58x
σ = 0.1

Final-exit 39.8 31.9 142.8 1.00x
Ours 38.5 31.1 132.3 1.62x

A-Ours 38.8 31.3 135.1 1.68x
σ = 0.0

Final-exit 42.3 32.2 147.1 1.00x
Ours 41.3 31.6 140.3 1.77x

A-Ours 41.8 32.0 142.6 1.76x

Table 4: Comparison of CAPEEN and A-CAPEEN
with different distortion levels.

C Results on Flickr30k

In table 5, we provide the results on Flickr30k
when the experiments are performed in a similar
setup as given in the experimental section 5. Our
method consistently outperforms the other base-
lines in terms of all the metrics. Again this gain
in performance with decreasing sufficient time is
possible due to the higher level of information
available at intermediate exit points. This en-
courages the exit of more samples early and with
high confidence. Hence we prove across different
datasets that CAPEEN outperforms previous base-
lines.

6471

Model/Metric BLEU-1 BLEU-4 METEOR CIDEr SPICE ROUGE-L Speed
Final-Exit 76.9 33.6 25.5 72.7 18.1 55.3 1.00×
DeeBERT 65.2 24.5 20.8 47.5 12.6 45.1 1.24×

ElasticBERT 66.4 25.3 21.1 49.3 13.2 45.9 1.27×
F-PABEE 68.6 26.5 21.9 51.9 13.8 46.3 1.29×
FastBERT 70.1 27.9 22.8 55.3 14.7 48.5 1.33×

DeeCap 72.8 30.1 23.5 64.2 16.1 51.7 1.41×
MuE 74.2 31.9 24.4 66.7 16.9 53.4 1.58×
Ours 75.1 32.8 25.0 67.2 17.4 53.9 1.65×

Table 5: Results on Flickr30k dataset

6472

