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Abstract

Language models (LMs) can hallucinate when
performing complex mathematical reasoning.
Physics provides a rich domain for assessing
their mathematical capabilities, where physical
context requires that any symbolic manipula-
tion satisfies complex semantics (e.g., units,
tensorial order). In this work, we systemati-
cally remove crucial context from prompts to
force instances where model inference may be
algebraically coherent, yet unphysical. We as-
sess LM capabilities in this domain using a
curated dataset encompassing multiple nota-
tions and Physics subdomains. Further, we
improve zero-shot scores using synthetic in-
context examples, and demonstrate non-linear
degradation of derivation quality with pertur-
bation strength via the progressive omission of
supporting premises. We find that the mod-
els’ mathematical reasoning is not physics-
informed in this setting, where physical context
is predominantly ignored in favour of reverse-
engineering solutions.

1 Introduction

Language models demonstrate some level of math-
ematical ability (Lewkowycz et al., 2022; Liu et al.,
2023; Azerbayev et al., 2023; Pan et al., 2024).
This reasoning modality requires controlled sym-
bolic behaviour involving the repeated application
of mathematical operations (Valentino et al., 2023;
Meadows et al., 2023a), and LMs struggle to de-
liver this reliably (Frieder et al., 2023; Liu and Yao,
2024). A particularly challenging mathematical
domain is that of Physics, where equation deriva-
tions serve as a rich environment within which the
mathematical inference capabilities of LMs may be
thoroughly examined, yet in contrast to other forms
of mathematical reasoning (Shakarian et al., 2023;
Yuan et al., 2023; Wang and Lu, 2023), there are
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few examples of such efforts (Lewkowycz et al.,
2022). While Mathematics proofs are closer to a
logical argument over more abstract domain types,
Physics derivations are centered around the inte-
gration of the abstraction of physical properties
and laws into approximations and premises, where
algebraic and calculus-related symbolic manipu-
lations are performed to obtain novel equations,
through a step-wise derivation, in close dialogue
with empirical evidence.

An explanation for the lack of Physics-related
approaches (Luo and Liu, 2018; Wu and Tegmark,
2019; Eivazi et al., 2022; Lewkowycz et al., 2022)
is the fact that automating scientific discovery in
mathematics has a long tradition in the context
of automated theorem provers and proof assis-
tants (Jiang et al., 2022; Lample et al., 2022), and
this relies on the translation of mathematical proofs
into logical forms (Szegedy, 2020; Wu et al., 2022).
However, much of Physics is less compatible with
logical formalisation (Kaliszyk et al., 2015; Davis,
2019; Meadows and Freitas, 2021; Yang et al.,
2024; Davis, 2024). The flexibility of transformer-
based models as soft reasoners (Clark et al., 2020)
offers the opportunity to circumvent formalisation
requirements, and develop models capable of de-
tailed mathematical reasoning based on informally
defined scientific knowledge. However, as with any
form of mathematical reasoning, these models need
to be built around models that support controlled,
step-wise, symbolic inference.

One reason why current LMs fail in this regard,
is because online resources used for training (such
as Wikipedia and arXiv), and many mathemati-
cal datasets (Mishra et al., 2022; Hendrycks et al.,
2021; Saxton et al., 2019), do not feature the re-
quired detail necessary for fine-grained reasoning.
Physics derivations contain specific notations (e.g.,
Dirac notation) that are relied upon to build sym-
bolically complex text spans, and complex opera-
tions (e.g., Laplace transform, Taylor expansion)

6487



form sophisticated dependencies between textual
elements. Moreover, the derivations presented in
papers and textbooks omit a significant number of
steps, reinforcing difficulties in training models to
perform more detailed calculations.

Figure 1: An incorrect derivation generated by few-shot
GPT-4 that scores high ROUGE (81), BLEU (71), and
GLEU (71). Erroneous equations are denoted in red.

For instance, in Fig. 1, GPT-4 fails a derivation
(from the present data) related to the Uncertainty
Principle in Quantum Mechanics. The first error
arises from attempting to substitute the RHS of the
second equation into the RHS of the first, but GPT
erroneously keeps the

´∞
−∞ db in the LHS. The sec-

ond error involves an incorrect evaluation of an
integral over a Dirac delta function (by a factor
of 2π), which is a critical result in Physics. Real-
world research inherently involves equation manip-
ulation which is out-of-distribution with respect to
models’ training data, either through a derivation’s
specific use of notation or its underlying reasoning.
If state-of-the-art LMs fail at such basic manip-
ulation, and if current evaluation metrics fail to
account for such fine-grained errors (Welleck et al.,
2022a; Meadows et al., 2023a), to what extent are
leading methods appropriate for inference in math-
ematical domains (Davis, 2024)?

This paper aims to explore these considerations,
contributing with:

(1.) A manually curated step-wise granular
dataset comprising 1200 derivation steps over 218
fine-grained Physics derivations at approximately

graduate-level difficulty. Examples span a di-
verse set of subdomains including electromag-
netism, classical, quantum, and statistical mechan-
ics. The derivations are aligned to reference those
on Wikipedia, but have been manually augmented
to include finer steps, and are mapped to prompts
containing premises and goal equations.

(2.) Zero-shot and few-shot evaluation of GPT-4,
GPT-3.5, and T5-related models on a Derivation
Generation task using common text generation met-
rics, paired with a manual evaluation, to highlight
model reasoning limitations related to Physics.

(3.) An exploration of models’ out-of-
distribution mathematical abilities centered on a
controllable Premise Removal intervention.

Through these contributions, we measure and
qualify the ability of current LMs in performing
out-of-distribution, fine-grained, multi-step math-
ematical reasoning, and aim to provide empirical
foundations for developing transformer-based rea-
soners suitable for assisting discovery in Physics
and related fields.

2 Related work

Our focus is on the generation of step-wise detailed
derivations of Physics equations with LMs (Brown
et al., 2020; Ahmed and Devanbu, 2022; Song
et al., 2022; Ge et al., 2023; Hu et al., 2023;
Yang et al., 2023). While we presently consider
solely equations, math generation exists in various
forms, split between approaches that consider for-
mal languages (First et al., 2023; Polu et al., 2022;
Jiang et al., 2021; Polu and Sutskever, 2020) and
those considering informal mathematical natural
language (Ferreira and Freitas, 2020; Welleck et al.,
2021; Ferreira et al., 2022; Valentino et al., 2022a;
Meadows and Freitas, 2023). Informal reasoning
approaches generally involve code generation as
input to symbolic solvers (He-Yueya et al., 2023;
Chen et al., 2022; Drori et al., 2022; Mandlecha
et al., 2022; Hu and Yu, 2022; Chen et al., 2021),
or directly generating math reasoning in natural
language (Lewkowycz et al., 2022; Welleck et al.,
2022a; Chowdhery et al., 2022; Lample and Char-
ton, 2019). Numerous approaches exist for evaluat-
ing the mathematical and symbolic capabilities and
robustness of models (Welleck et al., 2022b; Stolfo
et al., 2022; Meadows et al., 2023b), in contexts
such as solving math word problems (Roy et al.,
2015; Liang et al., 2022; Yao et al., 2023). Vari-
ous datasets exist containing mathematical reason-
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Figure 2: The difference between the Wikipedia proof (left) and our equational interpretation (right) of a reasoning
chain related to the Uncertainty Principle in quantum mechanics. The (red) values represent the number of
intermediate equations between equivalent equations in each representation, and highlights the detail gap.

ing (Ferreira and Freitas, 2020; Hendrycks et al.,
2021; Welleck et al., 2021; Mishra et al., 2022),
and to a lesser extent, Physics (Hendrycks et al.,
2021; Lewkowycz et al., 2022; Meadows et al.,
2022; Pan et al., 2024). We narrow our scope to
isolate equational content from natural language
descriptions, for the purpose of testing purely the
equation manipulation capabilities of LMs in the
Physics domain.

To summarise, we consider an equation Deriva-
tion Generation task, contribute a fine-grained
Physics dataset spanning multiple subdomains, per-
turb input prompts with a Premise Removal inter-
vention, and explore model performance and degra-
dation due to perturbations. We aim for this data
to improve the detailed step-wise equation deriva-
tion capabilities of LMs, and use it to analyse their
ability to perform Physics reasoning with complex
equational forms (Fig. 1 and 2). We later highlight
the difference between coherent mathematical and
physical reasoning (Fig. 4), and discuss underlying
generation degradation laws and how LMs perform
mathematics in this context.

3 Physics Dataset Construction

To elicit the level of mathematical detail and co-
herence from models as described in Section 1,
we randomly select a number of derivations from
Wikipedia spanning Electromagnetism, Quantum,
Classical and Statistical Mechanics, and expand
each example until the required granularity is ob-
tained (approximately one operation per step). We
rely on the support of two annotators with adequate

Physics expertise (Master’s level).
Fig. 2 gives an example of this rewriting and

the departure from natural language. With respect
to granularity differences, the single intermediate
step (denoted by red) in the Wikipedia derivation
on the left, is actually composed of multiple fine-
grained steps naturally omitted for the sake of suc-
cinct communication online. Experienced physi-
cists may indeed skip these steps within their own
workings, but there is no guarantee that LMs can
reliably perform them without error (Welleck et al.,
2022a; Frieder et al., 2023; Meadows et al., 2023a;
Liu and Yao, 2024; Quan et al., 2024). On the
right-hand side, this single step is expanded into
four finer-grained steps that improve explainabil-
ity. The first and second equations in the expanded
derivation are premises extracted from the text. The
third equation is formed by substituting the second
premise into the first, and the fourth equation is
not explicitly written anywhere – it is the Fourier
transform of φ(χ) described non-mathematically
within the initial description now included for com-
pleteness. The remaining equations are obtained
through substitution.

We algorithmically describe this expansion and
annotation process for converting online deriva-
tions into examples rendered in Appendices B-D,
in Alg. 1. This protocol was applied by each an-
notator within a double swap, review and refine
setting. Initial derivations were split between each
annotator, and after initial annotation, the datasets
were swapped for review and changes were tracked.
A second swap was performed for accepting the
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proposed changes.
The inclusion of the (implicit) Fourier transform

and the (explicit) premise in Fig. 2, give an example
of how a combined modality of natural language
and equations is mapped into a single equational
modality. The expansion of one step into four,
describes the emphasis towards the explainable rea-
soning we wish to elicit from models.

High-quality (Villalobos et al., 2022) data of this
kind is necessary to bridge an incompleteness gap
between the communicative reasoning available on-
line (used to train/evaluate models) and the reality
of Physics calculations (Pan et al., 2024; Akrobotu
et al., 2022; Meadows and Freitas, 2021; Mann
et al., 2018; Hopfield, 1958). Establishing that
models can robustly perform such reasoning is a
prerequisite enabling their utility and application
in theoretical discovery.

Algorithm 1 Derivation Annotation
1: Define premises from a given initial deriva-

tion.
2: Derive intermediate equations between

initial equations.
3: Re-write derivation asserting one opera-

tion per step (approximately).
4: Write derivation in LaTeX as a sequence

of equations.
5: Annotate “%PREM” within equation environ-

ments of premises.
6: Re-organise LaTeX derivation into self-

contained 4-9 step sub-derivations.
7: Re-annotate new sub-derivation premises

with “%PREM”.
8: Output multiple derivations in LaTeX

per initial derivation.

Data Analysis. We expand 60 derivations from
Wikipedia examples following the discussed proto-
col, and extract 218 shorter examples resembling
the right-hand side of Fig. 2. These are split into
three categories: Electromagnetism (containing
vector calculus), Quantum Mechanics (contain-
ing Dirac notation and commutation relations), and
Other Physics (containing results from classical
and statistical mechanics). Tab. 1 describes the
number of examples within each subdomain, and
example derivations are rendered in Appendices B
(electromagnetism), C (quantum), and D (other).

Smaller models, such as BERT (Devlin et al.,
2018) and T5 (Raffel et al., 2020), are limited to

Field of Physics # Derivations
Electromagnetism 82

Quantum Mechanics 98
Other Physics 38

All fields 218

Table 1: Number of derivations in the dataset by field
of Physics. The Other category corresponds to results
from classical and statistical mechanics.

input sequences of up to 512 tokens. This corre-
sponds to a LaTeX derivation comprising between
4-9 equations. The original expanded derivations
are segmented into shorter examples to accommo-
date these limitations. The relevant length distri-
butions are given in Fig. 3 alongside that of the
synthetic dataset used to fine-tune MathT5 in re-
lated work (Meadows et al., 2023a), and to provide
in-context examples for few-shot prompts in these
experiments. Other similarities with the synthetic
dataset include an overlap of 155 symbols and a
similar step granularity.

Otherwise, the Physics derivations contain sig-
nificantly more symbol combinations, including
limits of integration and entirely separate nota-
tion. In particular, this includes Dirac notation that
is commonplace in Quantum Mechanics (such as
´

⟨x|Ψ⟩† x′δ(x−x′) ⟨x′|Ψ⟩ dx′ = ⟨x|Ψ⟩† x ⟨x|Ψ⟩,
from C.3), and vector calculus involving the div,
grad, and curl operators which are commonplace in
Electromagnetism (such as ∇ · (ϕ∇ϕ) = (∇ϕ)2 +
ϕ∇2ϕ, from B.2).

Premises are another crucial element of deriva-
tions. These are axiomatic equations deemed neces-
sary for deriving a goal equation. The distribution
of the number of premises per derivation is given
in Fig. 4. A significant proportion of steps involves
simply writing the premises and goal equation in
the correct order with correct syntax (a non-trivial
task for LMs (Chen et al., 2024; Meadows et al.,
2023a)), or substituting expressions.

A final noteworthy property of the dataset is
its compositionality towards longer derivations.
Premises are separated from non-premises, and
goal equations from some examples are premises
in another, meaning that sequences may be chained
together to form much longer examples of up to 20
steps. The dataset itself contains both prompts and
target derivations. Output text takes the form of La-
TeX equations conjoined by an “and” token, which
provides a minimalistic template for defining equa-

6490



tion boundaries. The dataset is available online1,
and includes lists of derivation-specific premises
and references to original Wikipedia names along-
side each example.

Figure 3: P (L) is the probability that a given derivation
contains L equations.

Figure 4: P (N) is the probability that a given derivation
contains N premise equations.

4 Derivation Generation and
Generalisation Capabilities

The experimental analysis occurs in two parts: eval-
uation on an in-distribution test set in the setting
of a Derivation Generation task, followed by an
out-of-distribution evaluation facilitated by the pro-
gressive removal of premises from in-distribution
prompts. Perturbed prompts are out-of-distribution
with respect to either a model’s training data or
in-context examples.

4.1 The Derivation Generation task

Given a goal equation G and premises P arranged
within some prompt template t(P, G), a given
model M must generate a sequence of equations D̂
which represents a reasonable derivation of G. A
derivation is generated through M : t(P, G) 7→ D̂,
which is then compared to an idealised ground truth

1https://github.com/jmeadows17/
transformers-for-physics

D∗. Some idealised metric M∗ scores the gener-
ated derivation through M∗ : (D∗, D̂) 7→ S. As-
suming a suitable prompt t, we generally aim to
optimise the following problem to find the best
model according to the given metric, through:

M∗ = argmax
M

;M∗(D∗,M : t(P, G) 7→ D̂
)
.

However, we do not have access to ideal deriva-
tions D∗ corresponding to templates t(P, G), as
many derivations may reasonably derive G, yet
may differ from D∗. We also do not have access
to ideal metric M∗ suitable for accurately scoring
individual D̂. Instead, we manually produce coher-
ent ground truths D̃∗ and assume that the quality
of model derivations is reflected monotonically (on
average) with scores obtained from the text gener-
ation metrics. We then conventionally determine
M∗ through

M∗ = argmax
M

; 1
N

∑N
i=1M

(
D̃∗

i,M : t(Pi, Gi) 7→ D̂i

)
,

where N is the number of ground truth derivations.
In this work, we consider M as a reference-based
generation metric (e.g., ROUGE) used to evaluate
derivations at scale, but we contrast this with a
reference-free human evaluation of derivations. An
example prompt t(P, G) is given below.

Given q(a) = ea

and G(a) = −ea + d
daq(a),

then obtain eG(a) = 1

Prompting LMs. The specific details for zero-
shot and few-shot prompts are described in Ap-
pendix A, but we outline a brief summary descrip-
tion. For zero-shot prompts, a simple task descrip-
tion is prefixed to the above template which empha-
sises the equational focus of the output template.
For few-shot prompts, a total of 5 in-context ex-
amples are selected from the synthetic training set
(used to train MathT5) following Meadows et al.
(2023a). We note an inherent similarity with chain-
of-thought prompting (Wei et al., 2023) due to the
nature of the task, but prompts deviate from this
due to the exclusion of natural language.

4.2 Controlled Premise Removal
The goal of premise removal is to systematically
remove crucial mathematical and physical context
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from prompts, such that a given model must ei-
ther recall this missing context and use it appropri-
ately, or derive the goal equation via an alternative
route. If a model understands the underlying rea-
soning, then the removal of premises should not
incur derivation errors. If errors do occur as a func-
tion of the number of premises removed, we can
study how certain reasoning capabilities degrade
as the strength of the perturbation increases.

The prompt template accommodates the removal
of premises without introducing uncontrolled per-
turbations to other mathematical terms or natu-
ral language. This relatively pure intervention on
the input space (Stolfo et al., 2022; Pearl, 2009)
introduces a secondary premise selection prob-
lem (Alama et al., 2014; Wang et al., 2017; Fer-
reira and Freitas, 2020; Valentino et al., 2022b;
Meadows and Freitas, 2023) in tandem with the
main task. If successful Derivation Generation in-
volves the application of mathematical operations
to equations during inference, such as algebraic
manipulation and calculus, then Premise Removal
introduces the requirement that models must either
generate a missing premise, or find an alternative
derivation route. We can increase the severity of
the distribution shift (Fig. 4) by progressively re-
moving premises.

More formally, if the prompt t(P, G) is a tem-
plate containing (ordered) premises pi ∈ P , and
the goal equation G, through string concatenation
(+) we can define this perturbation as

t(P, G, S;α, β, γ) = α+ p1 +
∑|P|−S−1

i=2 (β + pi) + γ +G

(1)
where α, β, γ are natural language sequences held
constant with respect to any pi or G. Importantly,
S directly controls the perturbation strength. S
premises are removed from the prompt (reverse
chronologically) such that if S = 0 we recover the
original in-distribution prompt. In this work we
consider S ∈ {0, 1, 2}, and are hence restricted to
derivations containing |P| ≥ 3 (about half of the
data, Fig. 4), as at least one premise is required by
the prompt template.

To briefly demonstrate, the example prompt
in Section 4.1 corresponds to (|P|, S) = (2, 0),
whereas (|P|, S) = (2, 1) corresponds to the
prompt below (i.e., α+ p1 + γ +G). Both would
be excluded from this analysis as |P| = 2.

Given q(a) = ea

then obtain eG(a) = 1

5 Evaluation

We describe details of models and metrics in Ap-
pendix A. Here we report key results from the
Derivation Generation experiments, beginning with
an evaluation of unperturbed prompts (Section 5.1)
followed by an exploration of performance degrada-
tion due to Premise Removal perturbations (Section
5.2).

5.1 Derivation Generation

ROUGE BLEU GLEU
T5-base 13.6 1.8 7.2
T5-large 9.5 1.0 5.0
FLAN-T5-base 9.2 2.7 6.4
FLAN-T5-large 7.0 0.6 3.5
MathT5-base 70.6 58.6 60.7
MathT5-large 69.6 60.2 62.1
GPT-3.5 (ZS) 56.8 48.3 51.3
GPT-3.5 77.7 67.3 70.3
GPT-4 (ZS) 77.1 60.3 66.4
GPT-4 84.3 78.0 79.1

Table 2: Evaluation results for derivation generation
with the Physics dataset. (ZS) refers to zero-shot per-
formance. Otherwise, all T5 results are zero-shot, and
GPT results are few-shot.

Synthetic in-context examples improve infer-
ence. The few-shot approach used to prompt the
GPT models does not use Physics derivations as
in-context examples, and therefore does not learn
any biases present in the Physics data. Instead,
synthetic derivations are included in prompts that
demonstrate the required granularity between steps,
while helping to force model output into the re-
quired template. Few-shot learning over general
mathematical text significantly improves perfor-
mance over zero-shot prompting, and notably, few-
shot GPT-3.5 outperforms zero-shot GPT-4 across
all metrics in Tab. 2.
Agreement between models on the relative diffi-
culty of Physics domains. The dataset is divided
into the Electromagnetism, Quantum Mechanics,
and Other subdomains (Tab. 1). According to the
metrics, model derivations obtain highest scores
on Electromagnetism and lowest on Other (Tab. 3).
Notably, the quantum derivations are generally the
most difficult and feature domain specific (braket)
notation and relatively complex equational forms,
so it is unexpected that models generate more co-
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Field ROUGE BLEU GLEU

MathT5-base
EM 75.9 64.8 66.3
QM 68.4 55.7 58.2

Other 63.2 50.6 52.9

MathT5-large
EM 75.1 67.9 69.1
QM 67.9 57.3 59.2

Other 60.0 48.6 52.3

GPT-3.5
EM 82.7 71.1 75.3
QM 76.7 66.7 69.1

Other 67.6 59.1 61.1

GPT-4
EM 86.4 81.0 81.8
QM 83.6 77.8 78.9

Other 81.0 70.9 73.0

Table 3: Derivation generation results by field of
Physics. EM is Electromagnetism, QM is Quantum
Mechanics, and Other contains derivations from Classi-
cal and Statistical Mechanics.

herent reasoning than in other subdomains, as the
metrics suggest. A manual evaluation of GPT-4
derivations confirms these scores are misleading
(Tab. 4).

Physics # Derivations Accuracy
Electromagnetism 76 88

Quantum Mechanics 74 69
Other Physics 29 83

All 179 79

Table 4: Manual evaluation of 179 derivations generated
by few-shot GPT-4.

To supplement previous analysis, we manually
evaluate the coherence of the top scoring model’s
derivations in each subdomain (Tab. 4), and de-
scribe instances where reasoning failures violate
laws of Physics without necessarily including math-
ematical errors (Fig. 5). Notably, the misuse of
minus signs frequently contributes to incoherent
reasoning, and equations can be recalled incor-
rectly even if they are given in the prompt.

Use of Mathematics which violates Physics.
The coherence of a derivation does not depend
on the correct application of Mathematics alone.
Fundamental physical assumptions guide which
mathematical steps are allowed, and in many cases,
such as those in Fig. 5, GPT-4 fails to interpret
this. For example, the Electromagnetism excerpt
is only valid if the electric field E and charge den-
sity ρ are constant throughout space. In this case,
all integrals indeed cancel to give Gauss’ law. As
this law is true when quantities are spatially de-
pendent, this reasoning is flawed. In the Quan-
tum excerpt, both equations are true simultane-

ously only if x̂ and p̂ commute. Assuming each are
respectively the quantum mechanical operators rep-
resenting position and momentum, GPT-4 violates
Heisenberg’s uncertainty principle. The Classical
excerpt is from a derivation that attempts to obtain
Snell’s law. GPT-4 asserts that light cruises across
optical boundaries at 1 m/s without refraction.

5.2 Premise Removal

Following from Eq. 1, we progressively remove
premises from prompts and report corresponding
scores in Tab. 5.

The non-linear degradation in derivation qual-
ity reported by text generation metrics is sup-
ported by manual evaluation. Across all met-
rics, the average performance degradation due to
premise removal is non-linear with respect to the
number of premises removed, and the score de-
crease from (S = 0) → (S = 1) is on average
less than that of (S = 1) → (S = 2). However,
this alone does not tell us the extent that removing
premises leads to mathematical errors, as it may
be the case that models select alternative deriva-
tion paths which inherently lead to lower scores,
despite the correct use of mathematics (Meadows
et al., 2023a).

To better assess the effect of premise removal,
we manually evaluate 300 derivations for mathe-
matical coherence. As with Tab. 4, our evaluation
is reference-free (Deutsch et al., 2022; Ke et al.,
2022; Zhao et al., 2020) with respect to the rea-
soning itself, although premises and goal equations
are necessarily compared. Notably, we allow one
or two missing steps given a coherent path can be
traced through the derivation, and we are lenient
if a derivation’s underlying physics is not appro-
priately considered. The focus of the evaluation
is the correct use of mathematics, but sometimes
the physical context requires specific mathematical
behaviour (e.g., Fig. 5).

To give helpful examples, in the supplementary
material2, the key concept in C.89 is to equate
kinetic energy with work and rearrange for ve-
locity, but rather than introduce kinetic energy as
a premise, GPT reverse-engineers the derivation
from the goal equation, which we mark as cor-
rect. The derivations A.54 and B.54 would be
marked as correct if they did not skip the premise

2https://github.com/jmeadows17/
transformers-for-physics/blob/main/
Supplementary_Model_Derivations.pdf
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Figure 5: Excerpts from few-shot GPT-4 derivations that violate well-documented Physics.

ROUGE BLEU GLEU
S = 0 S = 1 S = 2 S = 0 S = 1 S = 2 S = 0 S = 1 S = 2

MathT5-base 69.5 64.1 56.4 58.5 55.1 49.0 59.9 56.7 51.3
MathT5-large 69.1 64.4 55.7 60.6 56.4 46.8 62.1 58.1 49.9
GPT-3.5 77.7 75.8 60.2 68.7 65.6 44.4 70.5 68.4 51.5
GPT-4 85.6 81.0 70.5 79.7 73.8 58.9 80.6 75.7 63.5

Table 5: Results from the Premise Removal perturbation analysis.

S = 0 S = 1 S = 2

GPT-4 83 73 57

Table 6: GPT accuracy as S premises are removed from
the prompt.

z = ⟨f |g⟩, but the reasoning as it stands would
allow z ≥ ⟨f |g⟩, which is false.

Overall, the manual evaluation gives a liberal
estimate of model accuracy on the dataset in Tab. 6.
We would expect Physics professionals to give
lower scores, particularly for S = 2. The non-
linear degradation in accuracy due to the gradual
removal of premises aligns closely with scores ob-
tained from the automatic metrics (notably BLEU).

Substitution errors. A fundamental component
of mathematical reasoning is the substitution of
equivalent terms. A significant proportion of errors
involve substitution.

Language models derive equations by reverse-
engineering. Working backwards from the result,
this approach is characterised by a lack of under-
standing of the problem. Due to the prevalence of
this reasoning in the outputs, this is perhaps the
core mechanism behind how language models de-
rive given equations. An example is given below:

σ2p =
´∞
−∞ p2|ϕ(p)|2dp (initial premise)

⟨g| =
´∞
−∞ p2|ϕ(p)|2dp

|g⟩ = 1

σ2p = ⟨g|g⟩ (goal equation)

GPT-4 has clearly recognised that it must define
terms for ⟨g| and |g⟩, but a fundamental lack of
understanding of Dirac notation (from quantum
mechanics) has resulted in defining them as scalar
quantities instead of vectors.

6 Conclusion

We explore the mathematical ability of LMs in
the context of a derivation generation task using a
novel dataset of equation derivations and prompt
interventions, with the intent of emulating granular
mathematical workings and exploring how models
perform detailed calculations involving a variety of
Physics notations.

We apply premise removal interventions on
prompts to reveal a non-linear relationship be-
tween the perturbation strength and average deriva-
tion quality, as reported by manual and automatic
scores. We find that models (particularly GPT-
4) derive goal equations from premises through
reverse-engineering intermediate steps without ap-
propriate consideration of basic underlying Physics.
This becomes increasingly apparent as we progres-
sively remove premises from few-shot prompts.

Furthermore, many algebraic errors arise from
attempts at substitution. While it is challenging to
build synthetic datasets that reflect all aspects of
mathematical reasoning (Toshniwal et al., 2024),
it is more manageable to focus on the application
of individual operations (such as substitution), and
use symbolic engines to apply them in the context
of vast vocabularies of symbols and notations rep-
resentative of target subdomains, which could po-
tentially bolster models’ out-of-distribution math-

6494



ematical abilities. Our use of synthetic in-context
examples (involving substitution) improves models’
evaluation scores.

Although exploration of the synergy between
language models and symbolic engines is under-
way (Yang et al., 2024; Davis, 2024), Physics
derivations rely on physical behaviour which is im-
plicitly assumed (e.g., commutative properties of
quantum operators), yet is ignored by LMs. Such
assumptions govern the reasoning paths allowed
in derivations, and are hence independent of the
ability to perform fine-grained algebraic manipu-
lation. This is effectively a premise/operation se-
lection problem, and integrating symbolic solvers
does not inherently improve this limitation (Liu and
Yao, 2024). We find contemporary language mod-
els severely lacking in this regard, and suggest re-
search efforts should be directed towards LM-based
querying of appropriate knowledge bases during
inference alongside solver integration (Trinh et al.,
2024).
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7 Limitations

We have not extensively optimised prompts for
model performance. However, our few-shot ap-
proach mirrors related work (Azerbayev et al.,
2023; Meadows et al., 2023a). Our focus on
fine-grained mathematical transformations between
equations excludes natural language (e.g., Fig. 2)
as a design choice. Text generation metrics (e.g.,
ROUGE) fail to account for mathematical errors
in individual derivations, however we contrast this
with a human evaluation of 300 derivations in the
case of GPT, which supports our conclusions. Due
to the small number of human annotators responsi-
ble for curating the dataset and manually evaluating
model outputs, both elements of this research may
vary with the number of annotators or their expe-
rience in Physics. Our focus in this regard is a
self-consistent set of derivations and assessment
criteria agreed upon by the annotators involved.

Overall ethical impact. This work explores a
systematic way to elicit the mathematical/symbolic
inference properties of Transformer-based models
in a mathematical language processing task. As

such, it contributes in the direction of a critique of
the reasoning capabilities and the biases of these
models, particularly in the Physics domain.
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Miłoś, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models and
automated theorem provers. Advances in Neural In-
formation Processing Systems, 35:8360–8373.

Cezary Kaliszyk, Josef Urban, Umair Siddique, Sanaz
Khan-Afshar, Cvetan Dunchev, and Sofiene Tahar.
2015. Formalizing physics: automation, presentation
and foundation issues. In International Conference
on Intelligent Computer Mathematics, pages 288–
295. Springer.

Pei Ke, Hao Zhou, Yankai Lin, Peng Li, Jie Zhou,
Xiaoyan Zhu, and Minlie Huang. 2022. Ctrleval:
An unsupervised reference-free metric for evaluating
controlled text generation.

Guillaume Lample and François Charton. 2019. Deep
learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412.

Guillaume Lample, Timothee Lacroix, Marie-Anne
Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing
Systems, 35:26337–26349.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative
reasoning problems with language models. arXiv
preprint arXiv:2206.14858.

6496

http://arxiv.org/abs/2304.09102
http://arxiv.org/abs/2304.09102
http://arxiv.org/abs/2304.09102
http://arxiv.org/abs/2204.00862
http://arxiv.org/abs/2204.00862
http://arxiv.org/abs/2204.00862


Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.
Mwp-bert: Numeracy-augmented pre-training for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 997–1009.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439.

Haoxiong Liu and Andrew Chi-Chih Yao. 2024. Aug-
menting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003.

MinZhong Luo and Li Liu. 2018. Automatic deriva-
tion of formulas using reforcement learning. arXiv
preprint arXiv:1808.04946.

Pratik Mandlecha, Snehith Kumar Chatakonda, Neeraj
Kollepara, and Pawan Kumar. 2022. Hybrid tok-
enization and datasets for solving mathematics and
science problems using transformers. In Proceedings
of the 2022 SIAM International Conference on Data
Mining (SDM), pages 289–297. SIAM.

Charlie-Ray Mann, Thomas J Sturges, Guillaume We-
ick, William L Barnes, and Eros Mariani. 2018. Ma-
nipulating type-i and type-ii dirac polaritons in cavity-
embedded honeycomb metasurfaces. Nature commu-
nications, 9(1):1–11.

Jordan Meadows and André Freitas. 2021. Similarity-
based equational inference in physics. Physical Re-
view Research, 3(4):L042010.

Jordan Meadows and André Freitas. 2023. Introduc-
tion to mathematical language processing: Informal
proofs, word problems, and supporting tasks. Trans-
actions of the Association for Computational Linguis-
tics, 11:1162–1184.

Jordan Meadows, Marco Valentino, and Andre Freitas.
2023a. Generating mathematical derivations with
large language models.

Jordan Meadows, Marco Valentino, Damien Teney, and
Andre Freitas. 2023b. A symbolic framework for
systematic evaluation of mathematical reasoning with
transformers.

Jordan Meadows, Zili Zhou, and Andre Freitas. 2022.
Physnlu: A language resource for evaluating natural
language understanding and explanation coherence
in physics. arXiv preprint arXiv:2201.04275.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,
et al. 2022. Lila: A unified benchmark for mathemat-
ical reasoning. arXiv preprint arXiv:2210.17517.

Andrew Mutton, Mark Dras, Stephen Wan, and Robert
Dale. 2007. Gleu: Automatic evaluation of sentence-
level fluency. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 344–351.

Haining Pan, Nayantara Mudur, Will Taranto, Maria
Tikhanovskaya, Subhashini Venugopalan, Yasaman
Bahri, Michael P Brenner, and Eun-Ah Kim. 2024.
Quantum many-body physics calculations with large
language models. arXiv preprint arXiv:2403.03154.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Judea Pearl. 2009. Causal inference in statistics: An
overview. Statistics surveys, 3:96–146.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal mathematics statement curriculum
learning. arXiv preprint arXiv:2202.01344.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Xin Quan, Marco Valentino, Louise A. Dennis, and
André Freitas. 2024. Verification and refinement of
natural language explanations through llm-symbolic
theorem proving.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Paulo Shakarian, Abhinav Koyyalamudi, Noel Ngu, and
Lakshmivihari Mareedu. 2023. An independent eval-
uation of chatgpt on mathematical word problems
(mwp). arXiv preprint arXiv:2302.13814.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2022.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. arXiv
preprint arXiv:2212.04088.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

6497

http://arxiv.org/abs/2307.09998
http://arxiv.org/abs/2307.09998
http://arxiv.org/abs/2305.12563
http://arxiv.org/abs/2305.12563
http://arxiv.org/abs/2305.12563
http://arxiv.org/abs/2405.01379
http://arxiv.org/abs/2405.01379
http://arxiv.org/abs/2405.01379
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683


Christian Szegedy. 2020. A promising path towards
autoformalization and general artificial intelligence.
In International Conference on Intelligent Computer
Mathematics, pages 3–20. Springer.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. arXiv preprint arXiv:2402.10176.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476–482.

Marco Valentino, Deborah Ferreira, Mokanarangan
Thayaparan, André Freitas, and Dmitry Ustalov.
2022a. Textgraphs 2022 shared task on natural
language premise selection. In Proceedings of
TextGraphs-16: Graph-based Methods for Natural
Language Processing, pages 105–113.

Marco Valentino, Deborah Ferreira, Mokanarangan
Thayaparan, André Freitas, and Dmitry Ustalov.
2022b. TextGraphs 2022 shared task on natural
language premise selection. In Proceedings of
TextGraphs-16: Graph-based Methods for Natural
Language Processing, pages 105–113, Gyeongju, Re-
public of Korea. Association for Computational Lin-
guistics.

Marco Valentino, Jordan Meadows, Lan Zhang, and
André Freitas. 2023. Multi-operational mathemat-
ical derivations in latent space. arXiv preprint
arXiv:2311.01230.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay
Besiroglu, Marius Hobbhahn, and Anson Ho. 2022.
Will we run out of data? an analysis of the limits of
scaling datasets in machine learning.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by deep
graph embedding. arXiv preprint arXiv:1709.09994.

Tianduo Wang and Wei Lu. 2023. Learning multi-step
reasoning by solving arithmetic tasks. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 1229–1238.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalproofs: Mathematical theorem proving in nat-
ural language. arXiv preprint arXiv:2104.01112.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022a. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. arXiv preprint arXiv:2205.12910.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2022b. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8629–8637.

Tailin Wu and Max Tegmark. 2019. Toward an artifi-
cial intelligence physicist for unsupervised learning.
Physical Review E, 100(3):033311.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N.
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. 2024. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? arXiv
preprint arXiv:2304.02015.

Wei Zhao, Goran Glavaš, Maxime Peyrard, Yang Gao,
Robert West, and Steffen Eger. 2020. On the lim-
itations of cross-lingual encoders as exposed by
reference-free machine translation evaluation. arXiv
preprint arXiv:2005.01196.

A Further details on models, metrics, and
prompting

Models. T5 (Raffel et al., 2020) is an encoder-
decoder transformer where all pre-training objec-
tives are formulated as text generation (and there-
fore do not require different loss functions). FLAN-
T5 (Chung et al., 2022) is T5 fine-tuned on in-
structions, and outperforms T5 in a variety of
tasks. The GPT models (Brown et al., 2020) are
decoder-only transformer-based models trained on
large-scale natural (and mathematical) language
corpora. We evaluate 8 models on derivation gen-
eration: the base and large variants of T5 and
FLAN-T5, GPT-3.5, GPT-4, MathT5-base, and
MathT5-large (Meadows et al., 2023a). MathT5-
large is a version of FLAN-T5-large fine-tuned
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for 25 epochs on 15K (LaTeX) synthetic mathe-
matical derivations (containing 4 - 10 equations),
that were generated using a symbolic engine. It
outperforms the few-shot performance of GPT-4
and GPT-3.5 on derivation generation in ROUGE,
BLEU, BLEURT, and GLEU scores, and shows
some generalisation capabilities. It was trained on
155 Physics-related symbols, but struggles with out-
of-vocabulary symbols. MathT5-base is the equiv-
alent, but uses T5-base as the initialised model
before fine-tuning. Instantiated few-shot prompts
are fed to the instruction-based models (in this case
GPT) models through the OpenAI API3, with tem-
perature set to 0 to minimise non-deterministic ef-
fects.

Computation and hyperparameters. Hyperpa-
rameters used in T5 models are the default hyper-
parameters of MathT5 defined in the MathT5.py
script on the Hugging Face website. There was no
training involved in the experiments of this paper,
and models were evaluated on a single GTX 1070
for up to a week in total.

Zero-shot prompts. We prefix the following sen-
tence to the prompt template discussed in the main
paper:

“Derive the final equation using the premise equa-
tions from the following prompt (denoted by
"Prompt:"). Give only the equations involved in
the derivation. Do not include any text other than
equations each separated by "and". Prompt: ”.

Few-shot prompts. For each initial prompt, such
as the example template in the main paper, a set of
5 example templates (and their derivations) are ran-
domly selected from the set of synthetic derivations.
We select in-context examples by filtering only
those containing more than one premise, and with
no given intermediate equations, to better match
the Physics prompts. The examples are then fit into
the few-shot prompt below:

The following examples consist of a prompt (de-
noted by Prompt:) and a mathematical derivation
(denoted by Derivation:). Each derivation contains
LaTeX equations separated by "and".
The training prompts are appended after this de-
scription, then continues:

Now given the following prompt, generate the
derivation. Ensure equations are split by the word
"and".

3https://platform.openai.com/overview

The evaluation prompt is inserted here, prefixed by
“Prompt:”.

Metrics. ROUGE, BLEU, and GLEU are all met-
rics used to evaluate the quality of text generated
by machine translation or other natural language
processing tasks, but they differ in their approaches
and specific applications.

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) (Lin, 2004) focuses on the overlap
of n-grams, word sequences, and word pairings
between the generated text and reference texts, em-
phasising recall. It is widely used in summarisa-
tion evaluation and other tasks where capturing the
essence of the reference material is critical. BLEU
(Bilingual Evaluation Understudy) (Papineni et al.,
2002) measures the precision of n-gram matches
between the output and reference texts, adjusted by
a brevity penalty to discourage overly short trans-
lations. BLEU is predominantly used in machine
translation to assess the closeness of the translation
to human-produced texts.

GLEU (Generalized Language Understanding
Evaluation) (Mutton et al., 2007) is similar to
BLEU in its use of n-gram overlap but was specif-
ically designed for evaluating grammatical error
corrections. GLEU includes modifications to ac-
commodate the nuances of grammar correction by
considering both the presence of corrected n-grams
and penalising uncorrected errors, without the need
for tuning across different numbers of reference
texts. While ROUGE emphasises capturing the
essence of the text through recall, BLEU focuses
on precision, and GLEU targets the specific domain
of grammatical correctness. The latter is used in
related work (Welleck et al., 2022a).

B Electromagnetism

B.1 Gauss’ law: Derivation from Coulomb’s
law

E(r) =
1

4πε0

ˆ

ρ(s)(r− s)

|r− s|3 d3s (2)

∇ ·E(r) = ∇ · 1

4πε0

ˆ

ρ(s)(r− s)

|r− s|3 d3s (3)

∇ ·E(r) =
1

4πε0

ˆ

ρ(s)∇ · (r− s)

|r− s|3d
3s (4)

∇ · (r− s)

|r− s|3 = 4πδ(r− s) (5)
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∇ ·E(r) =
1

4πε0

ˆ

ρ(s)4πδ(r− s)d3s (6)

B.2 Uniqueness theorem for Poisson’s
equation 2

∇ · (ϕ∇ϕ) = (∇ϕ)2 + ϕ∇2ϕ (7)

∇2ϕ = 0 (8)

∇ · (ϕ∇ϕ) = (∇ϕ)2 (9)

ˆ

V
∇ · (ϕ∇ϕ)dV =

ˆ

V
(∇ϕ)2dV (10)

ˆ

V
∇ · (ϕ∇ϕ)dV =

ˆ

S
ϕ∇ϕ · dS (11)

ˆ

S
ϕ∇ϕ · dS =

ˆ

V
(∇ϕ)2dV (12)

B.3 Lorentz force: Derivation of Lorentz
force from classical Lagrangian (LHS)

L =
m

2
(ẋ2+ ẏ2+ ż2)+q(ẋAx+ ẏAy+ żAz)−qϕ

(13)

∂L

∂ẋ
=

∂

∂ẋ
(
m

2
(ẋ2+ẏ2+ż2)+q(ẋAx+ẏAy+żAz)−qϕ)

(14)

∂L

∂ẋ
=
m

2

∂

∂ẋ
(ẋ2 + ẏ2 + ż2)

+ q
∂

∂ẋ
(ẋAx + ẏAy + żAz)− q

∂

∂ẋ
ϕ (15)

∂

∂ẋ
ϕ = 0 (16)

∂L

∂ẋ
=
m

2

∂

∂ẋ
(ẋ2 + ẏ2 + ż2)

+ q
∂

∂ẋ
(ẋAx + ẏAy + żAz) (17)

B.4 Ampere’s circuital law: Proof of
equivalence 2

∇×H = Jf +
∂D

∂t
(18)

∇× 1

µ0
B = ∇×H+ JM (19)

∇× 1

µ0
B = Jf +

∂D

∂t
+ JM (20)

D = ε0E+P (21)

∂D

∂t
=

∂

∂t
(ε0E+P) (22)

∂D

∂t
=

∂

∂t
ε0E+

∂

∂t
P (23)

∇× 1

µ0
B = Jf +

∂

∂t
ε0E+

∂

∂t
P+ JM (24)

C Quantum Mechanics

C.1 Uncertainty principle: Kennard
inequality proof part 2.7

g(x) =
1

2πℏ

ˆ ∞

−∞
p·( ℏ
ip

ˆ ∞

−∞

dψ(χ)

dχ
e

−ipχ
ℏ dχ)·e ipx

ℏ dp

(25)

g(x) =
1

2πℏ

ˆ ∞

−∞

ℏ
i

ˆ ∞

−∞

dψ(χ)

dχ
e

−ipχ
ℏ dχ · e ipx

ℏ dp

(26)

g(x) =
1

2πi

ˆ ∞

−∞

ˆ ∞

−∞

dψ(χ)

dχ
e

−ipχ
ℏ dχ · e ipx

ℏ dp

(27)

e
−ipχ

ℏ · e ipx
ℏ = e

i
ℏ (x−χ)p (28)

g(x) =
1

2πi

ˆ ∞

−∞

ˆ ∞

−∞

dψ(χ)

dχ
e

i
ℏ (x−χ)pdχdp

(29)
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C.2 Uncertainty principle: Kennard
inequality proof part 3.3

σ2p =

ˆ ∞

−∞
p2|φ(p)|2dp (30)

|g̃(p)|2 = p2|φ(p)|2 (31)

σ2p =

ˆ ∞

−∞
|g̃(p)|2dp (32)

ˆ ∞

−∞
|g̃(p)|2dp =

ˆ ∞

−∞
|g(x)|2dx (33)

σ2p =

ˆ ∞

−∞
|g(x)|2dx (34)

⟨g|g⟩ =
ˆ ∞

−∞
|g(x)|2dx (35)

σ2p = ⟨g|g⟩ (36)

C.3 Expectation value: integral expression 3

〈
X̂
〉
Ψ
=

ˆ ˆ

⟨x|Ψ⟩† x′δ(x− x′)
〈
x′
∣∣Ψ

〉
dxdx′ (37)

ˆ

⟨x|Ψ⟩† x′δ(x− x′)
〈
x′
∣∣Ψ

〉
dx′

= ⟨x|Ψ⟩† x ⟨x|Ψ⟩ (38)

〈
X̂
〉
Ψ
=

ˆ

⟨x|Ψ⟩† x ⟨x|Ψ⟩ dx (39)

⟨x|Ψ⟩ = Ψ(x) (40)

〈
X̂
〉
Ψ
=

ˆ

Ψ†(x)xΨ(x)dx (41)

Ψ†(x)Ψ(x) = |Ψ(x)|2 (42)

〈
X̂
〉
Ψ
=

ˆ

x|Ψ(x)|2dx (43)

C.4 Hellmann–Feynman theorem 2
dEλ

dλ
=

d

dλ
⟨Ψλ| Ĥλ |Ψλ⟩ (44)

d

dλ
⟨Ψλ| Ĥλ |Ψλ⟩ =

〈
dΨλ

dλ

∣∣∣∣ Ĥλ |Ψλ⟩

+ ⟨Ψλ|
dĤλ

dλ
|Ψλ⟩

+ ⟨Ψλ| Ĥλ

∣∣∣∣
dΨλ

dλ

〉
(45)

dEλ

dλ
=

〈
dΨλ

dλ

∣∣∣∣ Ĥλ |Ψλ⟩

+ ⟨Ψλ|
dĤλ

dλ
|Ψλ⟩

+ ⟨Ψλ| Ĥλ

∣∣∣∣
dΨλ

dλ

〉
(46)

⟨Ψλ| Ĥλ = ⟨Ψλ|Eλ (47)

Ĥλ |Ψλ⟩ = Eλ |Ψλ⟩ (48)

dEλ

dλ
= Eλ

〈
dΨλ

dλ

∣∣∣∣Ψλ

〉
+ ⟨Ψλ|

dĤλ

dλ
|Ψλ⟩

+ Eλ

〈
Ψλ

∣∣∣∣
dΨλ

dλ

〉
(49)

D Other

D.1 Euler-Lagrange equation: Derivation 2
dJε
dε

=

ˆ b

a

dLε

dε
dx (50)

dLε

dε
=
∂Lε

∂gε
η(x) +

∂Lε

∂g′ε
η′(x) (51)

dJε
dε

=

ˆ b

a
(
∂Lε

∂gε
η(x) +

∂Lε

∂g′ε
η′(x))dx (52)

dJε
dε

=

ˆ b

a

∂Lε

∂gε
η(x)dx+

ˆ b

a

∂Lε

∂g′ε
η′(x)dx (53)

dJε
dε

∣∣∣∣
ε=0

= (

ˆ b

a

∂Lε

∂gε
η(x)dx+

ˆ b

a

∂Lε

∂g′ε
η′(x)dx)

∣∣∣∣
ε=0

(54)

dJε
dε

∣∣∣∣
ε=0

= (

ˆ b

a

∂Lε

∂gε
η(x)dx)

∣∣∣∣
ε=0

+(

ˆ b

a

∂Lε

∂g′ε
η′(x)dx)

∣∣∣∣
ε=0

(55)
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D.2 Snell’s law: from Fermat’s principle

T =
(x2 + a2)

1
2

v1
+

(b2 + (l − x)2)
1
2

v2
(56)

T =
(x2 + a2)

1
2

v1
+

(b2 + l2 − 2lx+ x2)
1
2

v2
(57)

dT

dx
=

d

dx
(
(x2 + a2)

1
2

v1
+

(b2 + l2 − 2lx+ x2)
1
2

v2
)

(58)

dT

dx
=

d

dx
(
(x2 + a2)

1
2

v1
)+

d

dx
(
(b2 + l2 − 2lx+ x2)

1
2

v2
)

(59)

d

dx
(
(x2 + a2)

1
2

v1
) =

x

v1(x2 + a2)
1
2

(60)

d

dx
(
(b2 + l2 − 2lx+ x2)

1
2

v2
) =

x− l

v2((x− l)2 + b2)
1
2

(61)

dT

dx
=

x

v1(x2 + a2)
1
2

+
x− l

v2((x− l)2 + b2)
1
2

(62)

D.3 Maxwell-Boltzmann: energy distribution
2

|p|2d|p| = m(2mE)
1
2dE (63)

d3p = 4π|p|2d|p| (64)

d3p = 4πm(2mE)
1
2dE (65)

fp(p) = (2πmkT )−
3
2 e−

p2

2mkT (66)

fp(p)d
3p = (2πmkT )−

3
2 e−

p2

2mkT d3p (67)

fp(p)d
3p = (2πmkT )−

3
2 e−

p2

2mkT 4πm(2mE)
1
2dE

(68)

fE(E)dE = fp(p)d
3p (69)

fE(E)dE = (2πmkT )−
3
2 e−

p2

2mkT 4πm(2mE)
1
2dE

(70)

fE(E) = 2(
E

π
)
1
2 (

1

kT
)
3
2 e−( E

kT
) (71)

D.4 Wave equation: stress pulse in a bar

∂2

∂t2
u(x+h, t) =

KL2

Mh2
(
u(x+2h, t)−2u(x+h, t)

+ u(x, t)
)

(72)

lim
h→0

∂2u(x+ h, t)

∂t2
= lim

h→0

KL2

Mh2
(
u(x+ 2h, t)

− 2u(x+ h, t) + u(x, t)
)

(73)

lim
h→0

u(x+ 2h, t)− 2u(x+ h, t) + u(x, t)

h2
=

∂2u(x, t)

∂x2
(74)

lim
h→0

∂2u(x+ h, t)

∂t2
=

KL2

M

∂2u(x, t)

∂x2
(75)

lim
h→0

∂2u(x+ h, t)

∂t2
=
∂2u(x, t)

∂t2
(76)

∂2u(x, t)

∂t2
=
KL2

M

∂2u(x, t)

∂x2
(77)
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