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Abstract

Iterative preference learning, though yielding
superior performances, requires online anno-
tated preference labels. In this work, we study
strategies to select worth-annotating response
pairs for cost-efficient annotation while achiev-
ing competitive or even better performances
compared with the random selection baseline
for iterative preference learning. Built on as-
sumptions regarding uncertainty and distribu-
tion shifts, we propose a comparative view to
rank the implicit reward margins as predicted
by DPO to select the response pairs that yield
more benefits. Through extensive experiments,
we show that annotating those response pairs
with small margins is generally better than
large or random, under both single- and multi-
iteration scenarios. Besides, our empirical re-
sults suggest allocating more annotation bud-
gets in the earlier iterations rather than later
across multiple iterations.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023a; OpenAI, 2024) have shown remarkable ca-
pabilities to understand and generate human lan-
guages, supporting applications such as question
answering, coding, and psychological counseling.
One of the keys to such success is to align LLMs
with human-desired behaviors through preference
learning. This is accomplished by annotating pref-
erence datasets and employing preference learn-
ing methods such as proximal policy optimization
(Schulman et al., 2017, PPO) and direct preference
optimization (Rafailov et al., 2023, DPO).

To continuously improve LLMs’ capability, re-
cent work underlines the significance of iterative
preference learning, which repetitively interleaves
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Figure 1: The workflow of online iterative preference
learning, in which we apply two levels of selection
before annotation.

between training the model and collecting online
preference annotations. For example, LLaMA-2
and Claude series benefited from iterative RLHF
training on human preference annotations that were
collected in batches on a weekly basis (Touvron
et al., 2023b; Bai et al., 2022); while multiple pa-
pers also reported that iterative DPO brings clear
performance gains (Xu et al., 2024; Yuan et al.,
2024; Xiong et al., 2024; Rosset et al., 2024; Wu
et al., 2024).

Despite their success, the process of collecting
and annotating such online preference datasets is
both time-consuming and costly. These methods
normally sample multiple responses per instruction
on a large new collection of instructions and sim-
ply annotate all the responses. The best and the
worst responses are selected to formulate a pair per
instruction to build a training corpus for the next
iteration (Touvron et al., 2023b; Yuan et al., 2024;
Dong et al., 2024; Wang et al., 2023). This leads
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us to ask whether there exist alternative annota-
tion strategies that are more cost-efficient. Besides,
existing methods normally allocate annotation bud-
gets evenly across multiple iterations, but it remains
unknown whether the model benefits from training
on more instances in earlier or later iterations. All
in all, we are interested in a research question: how
to make better use of limited annotation budgets to
aid online iterative preference learning.

In this paper, we address this question by con-
ducting a systematic study on iterative DPO based
on LLaMA-3-8B (AI@Meta, 2024). We study the
implicit reward margin as an informative indicator,
which serves a key role in DPO and other direct
preference learning methods (§3). Such a choice
is supported by the formulation of DPO, in which
the reward margin roughly represents prediction
uncertainty from the discriminative perspective or
distribution shift from the generative perspective.
We consider two levels of granularity, namely the
instance level and the corpus level, to rank reward
margins from a comparative view. Instance-level
selection aims to find a worth-annotating pair of
responses from N(N−1)

2 pairs if N responses are
sampled per instruction; while corpus-level selec-
tion considers filtering out those trios that do little
help for alignment tuning from a large set of trios
each consisting of an instruction and a pair of re-
sponses.

We conduct experiments in the single-iteration
case, in which the policy LLM goes through one
round of online training after being initially trained
on an offline dataset. We find that the smallest-
margin subset always works better than the largest-
and random-subsets, on either the instance level or
the corpus level. Upon further checking the rank-
ing accuracy and KL-divergences on each selected
subset, we show that our assumptions regarding
uncertainty and distribution shift are partly sup-
ported by our findings. We then generalize the
winning strategy, always-smallest, to the multi-
iteration case (§4). Experimental results demon-
strate that the always-smallest strategy yields con-
tinuous and significant improvements over multiple
iterations; while the always-random strategy sees
little to no gains upon training on more iterations.
After that, we explore three strategies, namely in-
crease, constant, and decrease, to allocate anno-
tation budgets to multiple iterations. Empirical
results suggest it is better to adopt decrease and
avoid increase.

2 Preliminaries

In this section, we give a brief review of direct
preference learning methods (§2.1) and iterative
DPO (§2.2). Then we present the preliminary setup
of this work (§3.2).

2.1 Direct Preference Learning
Recently, several works have bypassed the need
to train a separate reward model, thus mitigating
the instability issue of PPO training (Dong et al.,
2023; Rafailov et al., 2023; Zhao et al., 2023).
Among them, DPO gives a closed-form solution de-
rived from the Bradley-Terry (BT) model (Bradley
and Terry, 1952) to optimize a reward function
from which the optimal policy is deterministically
mapped:

LDPO(πθ, πref) = −E(x,yw,yl)∼D [log σ(ρ)] (1)

where

ρ = β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

(2)

Throughout this work, we use DPO as the default
preference learning method due to its closed-form
theoretical guarantee and stability during training.

2.2 Online Iterative DPO
Online iterative DPO is shown to be effective by
multiple recent work (Xu et al., 2024; Yuan et al.,
2024; Xiong et al., 2024; Rosset et al., 2024; Wu
et al., 2024; Swamy et al., 2024; Tran et al., 2023;
Ye et al., 2024; Guo et al., 2024; Tajwar et al.,
2024; Calandriello et al., 2024). Most of them
repetitively interleave between training the model
and collecting online preference annotations.

In this work, we assume a practical scenario
where one round of supervised fine-tuning (SFT)
and offline DPO has been implemented before
the subsequent online iterations, given the avail-
ability of many open-sourced preference learning
datasets (Maas et al., 2011; Stiennon et al., 2020;
Bai et al., 2022; Ethayarajh et al., 2022; Nakano
et al., 2022; Lambert et al., 2023; Cui et al., 2023).
Formally, we denote the SFT checkpoint as πref
and the initial offline-tuned DPO checkpoint as π0

θ .
Our adopted iterative DPO framework repetitively
applies the following Step-i:

Step-i

• Given a set of M instructions, N responses
are sampled from πi−1

θ for each instruction.
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πref and πi−1
θ are used to predict the implicit

reward*, log πi−1
θ (y|x)
πref(y|x) .

• Some strategies are applied to select a sub-
set of preference instances. The selected in-
stances, each consisting of an instruction and
two responses, are then annotated by an oracle
preference annotator, e.g., human experts.

• The annotated instances are fed into πi−1
θ and

πref to train πi
θ.

Among all these sub-steps, our work focuses
on how to select a proper subset of preference in-
stances before annotation. We present an illustra-
tion of the workflow in Figure 1.

3 Margin-based Selection within One
Iteration

We begin by analyzing the data selection strategies
within a single iteration. Existing methods (Tou-
vron et al., 2023b; Yuan et al., 2024; Xiong et al.,
2024; Rosset et al., 2024; Wu et al., 2024) anno-
tate all generated instances for the next iteration.
We question whether other strategies could achieve
better performance with the same amount of an-
notation budgets. We thus explore a simple yet
intuitive metric for data selection, the reward mar-
gin between the chosen and the rejected responses.
The reward margin ρ serves as the key component
of the DPO loss function†:

LDPO(πθ, πref) = −E(x,yw,yl)∼D [log σ(ρ)] (3)

where

ρ = β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)︸ ︷︷ ︸

reward margin

(4)

= β log
πθ(yw|x)
πθ(yl|x)︸ ︷︷ ︸

policy log ratio

−β log
πref(yw|x)
πref(yl|x)︸ ︷︷ ︸

reference log ratio

(5)

There exist multiple interpretations for ρ. The most
straightforward one is to regard ρ as the reward
margin between yw and yl as predicted by a pair-
wise RM. However, ρ is much more intriguing than
that because it directly models the output logits of

*Such a definition is only valid under the case of reward
margins so that the partition term is canceled.

†ρ is also the key role in many other direct prefer-
ence learning methods, such as IPO (Azar et al., 2023,
LIPO = (ρ− 1)2) and SLiC (Zhao et al., 2023, LSLiC =
max {0, 1− ρ}).

πθ and πref as implicit rewards, which represent
the mixture of the two generative distributions.

Instead of staring at a single margin value that
provides little insight for data selection, we con-
sider ranking a set of reward margins. We assume
the highest- or lowest-ranking subset might be of
use to find the worth-annotating instances. We do
not have a formal theory to support this assumption,
but there are some intuitions from two points of
view, i.e., discriminative and generative, associated
with the mixed nature of DPO that optimizes a pair-
wise discriminative function that is built upon the
output logits of generative LLMs. We will show
empirical evidence to support these intuitions in
§3.5.

Uncertainty Upon regarding the policy model
as a pairwise discriminative model, reward mar-
gins reflect the model’s confidence in the predic-
tion, so the most or least confident instances might
be of extra use (Culotta and McCallum, 2005;
Schröder et al., 2022). Specifically, Bai et al.
(2022) showed that the calibration curve of a prefer-
ence model roughly matches the logistic function,
acc = 1/(1+e−ρ), for models ranging from 108 to
1010 parameters, demonstrating that reward margin
is a good proxy of uncertainty.

Distribution Shift As shown in Eq (5), reward
margins represent the difference between the log
ratios of the policy and the reference model; such a
difference might correlate with the degree of gen-
erative distribution shift from the reference model
to the policy. For example, if yw and yl lie in a
similar distribution to that of the dataset where πθ
was trained on, there should be a clear gap between
the two log ratios since πθ has been trained to yield
a higher generative probability for yw than yl while
πref has not. On the contrary, yw and yl may have
not been effectively learned by πθ if the two log ra-
tios were almost canceled and the margin is small,
in which case πθ and πref show similar generative
behaviors to distinguish yw from yl

Given the above assumption that it might be use-
ful to rank reward margins, the question then be-
comes how to define a good set of preference pairs
on which we can get an informative ranking. In the
next section, we will discuss two levels of granu-
larity to define potentially useful sets for ranking.

3.1 Strategy Variants
We explore two levels of granularity to rank reward
margins to select worth-annotating instances. The
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(a) Evaluated the gold RM. (b) Evaluated by GPT-4.

Figure 2: Results on AlpacaEval-2.0 with different instance-level strategies and different training set sizes.

(a) Evaluated by the gold RM. (b) Evaluated by GPT-4.

Figure 3: Results on AlpacaEval-2.0 with different corpus-level strategies and different training set sizes.

instance-level selection ranks the margins of re-
sponses sampled from the same instruction; while
the corpus-level selection applies to the set of re-
sponse pairs of the entire corpus.

Instance-level Existing online preference learn-
ing methods that rely on human annotations nor-
mally send multiple responses for annotating per
instruction and select the best and the worst to com-
pose a pair. However, it would be too costly to
adopt this brute force strategy that asks a human
expert to read and rank all N responses. We thus
investigate the margins between any two responses
to select a worth-annotating pair among N(N−1)

2
pairs, so that the cost remains the same as in N = 2
while the diversity of responses is promoted.

Corpus-level Given a set of instances, each con-
sisting of an instruction and a pair of responses, it
is intuitive to discriminate between the instances
that are beneficial from those less beneficial or even
counterproductive. We thus explore to rank the re-

ward margins between pairs of responses over the
entire corpus, seeking an informative partition.

The two levels of selection can be applied con-
secutively: One may first select the smallest-
margin response pair for each instruction, then
gather all such instances together to form a cor-
pus, and finally select the largest-margin subset
on the corpus level. We do not consider all the
combinations of the two levels due to prohibitive
computational costs. Instead, we assume one to
be random selection when experimenting with the
other.

Margin Normalization The length bias issue has
been shown to prevail among RLHF methods, in-
cluding DPO (Park et al., 2024; Meng et al., 2024).
In our experiments, we also find the margin-based
rankings of response pairs on the corpus level vary
significantly between the length-normalized and
un-normalized versions. We thus consider length
normalization to mitigate possible length bias dur-
ing ranking. Specifically, in addition to the un-
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normalized experiments, we also conduct experi-
ments with the following normalized margin:

ρ̂ =
1

|yw|
log

πθ(yw|x)
πref(yw|x)

− 1

|yl|
log

πθ(yl|x)
πref(yl|x)

(6)

3.2 Experimental Setup

3.2.1 Synthetic Oracle
We aim to analyze annotation efficiencies in itera-
tive preference learning, in which online preference
annotations are collected in batches. However, ob-
taining the true “gold standard” preference labels
from human annotators can be costly, and may be
inconsistent if the group of annotators varies across
batches. Inspired by Gao et al. (2022), we instead
employ a synthetic setup where the ground truth
is determined by the outputs of a reliable reward
model, which we term as gold RM. This gold RM is
regarded as the alternative of human experts across
all our experiments in terms of both annotation and
evaluation, despite it is not the real ground truth.

3.2.2 Training
We adopt LLAMA-3-8b-base (AI@Meta, 2024) to
initialize the policy LLM and PairRM (Jiang et al.,
2023) as the gold RM. We sample 10,000 instances
from UltraFeedback (Cui et al., 2023), which are
then used to train πref and π0

θ . The instructions
from the remaining UltraFeedback are kept for sub-
sequent iterations. We use πref as the reference
model for DPO training across all iterations. The
training hyper-parameters are listed in Appendix
A.

3.2.3 Evaluation
We evaluate the policy LLMs on AlpacaEval-
2.0 (Li et al., 2023) and use the outputs generated
by GPT-4 as the reference to compare against. We
aim to get findings from the judgments predicted
by the gold RM. Such findings are approximations
for the industrial scenario where human experts
take the place of our gold RM. One concern with
this synthetic setup is the reward hacking issue,
in which the policy overfits the preferences of the
gold RM since the gold RM remains fixed after
all (Gao et al., 2022; Rafailov et al., 2024). We
investigate whether this issue exists in our experi-
ments by additionally evaluating with the standard
AlpacaEval-2.0 protocol, i.e., GPT-4‡ as the eval-
uator. A model is deemed as “hacked” if it shows

‡GPT-4-1106-preview

improvements when evaluated by the gold RM but
degrades when evaluated by GPT-4. It should be
noted that the judgments predicted by the gold RM
are still considered accurate proxies under the syn-
thetic setup upon being hacked, though they would
diverge from real human preferences.

Overall, we consider two criteria: (1) How well
does the model align with the gold RM which is
regarded as the “ground truth” in our experiments?
(2) How does the model perform under general
evaluation?

3.3 Empirical Workflow
Our workflow starts from π0

θ and a set of 20,000 in-
structions sampled from UltraFeedback (Cui et al.,
2023):

Step 1 N = 8 responses are sampled from
π0
θ for each instruction. πref and π0

θ are used to
predict the implicit reward (without the partition
term), log

π0
θ(y|x)

πref(y|x) , and the normalized version,
1
|y| log

π0
θ(y|x)

πref(y|x) .

Step 2 Margin-based strategies are adopted to
select a subset of preference pairs. The selected
pairs are then annotated using the gold RM.

• Instance-level: For each prompt, the pref-
erence pairs with the {largest & smallest}
margin are selected among all the response
pairs. A random baseline is also included
for comparison, in which the selected pair
is simply the first two responses. All such
prompt-chosen-rejected trios are collected to
formulate a dataset.

• Corpus-level: Given a set of instances where
each instance consists of a prompt and two re-
sponses, those pairs with the {largest & small-
est} margins are selected. Similarly, a random
baseline is included.

• Margin Normalization: Length normaliza-
tion is enabled and disabled, respectively, for
all the variants adopted.

Step 3 The collected subset is fed into π0
θ and

πref to obtain the online trained policy, which then
gets evaluated.

3.4 Results
smallest > random > largest We evaluate the
single-iteration performances trained on differ-
ent numbers of instances, with instance-level and
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(a) (b) (c)

Figure 4: Some statistics about the selected subset using different strategies combined. The collected subsets are
used to train π1

θ under the single-iteration setting.

Ranking
Selected

Largest Smallest

Instance-level 50.75±0.51 47.83±2.10

Corpus-level 49.51±1.15 49.08±2.26

Table 1: Win rates of length-normalization models
against the un-normalized counterparts with several vari-
ants, as evaluated by the gold RM. The win rates are
averaged over multiple runs with different numbers of
instances.

corpus-level ranking. The win rates against GPT-4
outputs on AlpacaEval, as evaluated by the gold
RM and GPT-4, are shown in Figures 2 and 3. We
first observe that annotating more data does not nec-
essarily lead to more performance gain. This shows
that it is necessary to strategically select data for
annotating. Selection with smallest margins yields
consistent improvements over the random baseline,
regardless of the instance- or corpus-level rank-
ings. In contrast, selection with largest margins
shows negative effects, which may be caused by
overfitting to the confident instances. Such results
conform with our intuitions in §3.

Instance-level As shown in Figure 2, the three
ranking schemes show consistent gaps across dif-
ferent numbers of samples, suggesting that it is
not enough to just sample N > 2 responses for a
prompt but one also needs to pay attention to select
the proper preference pair. In our experiments, we
show it is beneficial to select the preference pair
with the smallest margin among all N(N−1)

2 pairs.

Corpus-level In Figure 3, the curve labeled as
largest significantly improves in terms of win rate
between 15,000 and 20,000 samples. The only
difference between the two is adding the 5,000

samples with the smallest margins to the training
set. In comparison, the curve labeled as smallest
shows a significant drop from 15,000 to 20,000
samples; and the only difference is including the
largest-margin 5,000 samples in the training set.
Taking both together, our experiments suggest in-
cluding the smallest-margin subset while discard-
ing the largest-margin subset during corpus-level
data selection.

Length Normalization Table 1 shows the aver-
aged win rates of the normalized models against
the un-normalized ones across multiple runs. We
emphasize smallest since we found it to be the
best strategy for both levels of selection. On the
instance level, un-normalization shows clear im-
provement over the normalized counterpart; while
on the corpus level, the superiority persists but is
not significant. Overall, our experiments suggest
using the un-normalized reward formulation for
both levels of granularity.

3.5 Analysis

Figure 4 shows some statistics on the selected sub-
sets, including reward margin (as predicted by π0

θ

and πref ), ranking accuracy, and KL-divergence.

Uncertainty As shown in Figure 4b, the accura-
cies generally follow a good calibration trend, i.e.,
ranking accuracy gradually increases as the reward
margin increases. For example, corpus-random
instance-smallest and corpus-smallest instance-
random, with ranking accuracies of 55.04% and
54.06%, have been shown to yield better alignment
performances than corpus-random instance-largest
and corpus-largest instance-random, whose rank-
ing accuracies are 63.10% and 60.72%. Therefore,
our uncertainty assumption, that the model benefits
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(a) Evaluated the gold RM. (b) Evaluated by GPT-4.

Figure 5: Multi-iteration results on AlpacaEval-2.0 with always-random and always-smallest strategies, respectively,
across three follow-up iterations, with 5k instances (originally 10k instructions) per iteration. A single-iter baseline,
which is trained by using all the instructions with the always-smallest strategy within a single round, is also included
for comparison.

more from training on the set with a higher degree
of uncertainty, is partly supported.

Distribution Shift Since the reward function of
DPO directly models the generative distribution
of the LLMs, the reward margin measures the dif-
ference between the generative behaviors of the
policy and the reference model, which may corre-
spond to the distribution shift between the to-be-
annotated instances and the already-trained ones.
We measure the degree of distribution shift us-
ing KL-divergences and sketch them on different
groups of data points in Figure 4c. It is observed
that there is a rough trend, with smaller reward mar-
gins more likely come smaller KL-divergences, i.e.,
smaller distribution shifts. For example, the corpus-
largest instance-largest strategy, with a reward
margin of 21.51, yields a KL-divergence of 16.18,
which is much higher than the KL-divergences of
other strategies that have smaller reward margins
as well.

4 Training for Multiple Iterations

Given our findings in the single-iteration case in
§3, we would like to know how well the win-
ning strategies generalize to multiple iterations
(Q4.1). Besides, recent work reported continuous
improvements with multiple iterations for iterative
DPO (Wu et al., 2024; Dong et al., 2024). They
all adopted an evenly distributed strategy to allo-
cate annotation budgets across iterations. A natural
question is, whether the model benefits from train-
ing on more instances in earlier or later iterations,
rather than always training on the same amount
(Q4.2). The background experimental setup fol-

lows that of §3.2.

4.1 Empirical Workflow
The multi-iteration workflow starts from π0

θ and a
set of instructions from UltraFeedback. We divide
the instructions into 3 sets for 3 rounds of iteration,
where the i-th round uses Mi instructions. Specifi-
cally, for the i-th round of iteration, the following
steps are implemented:

Step 1 N = 8 responses are sampled from πi−1
θ

for each instruction. πref and πi−1
θ are used to

predict the implicit reward, log πi−1
θ (y|x)
πref(y|x) .

Step 2 We design experiments to answer the two
questions, Q4.1 and Q4.2.
Q4.1: Always-smallest versus Always-random:

• Always-smallest: We first select the response
pair with the smallest reward margin among
all N(N−1)

2 = 28 pairs per instruction. All
the instructions and selected response pairs
are collected to formulate a corpus, on which
a corpus-level ranking is then applied to se-
lect the 50% × Mi = 5, 000 instances with
the smallest reward margins. The selected
instances are annotated by the gold RM and
then used as the training set for the current
iteration. We adopt the un-normalized reward
formulation.

• Always-random: On the instance level, we
simply select the first two responses to for-
mulate a pair for each instruction. All the
instructions and selected response pairs are
collected to formulate a corpus, among which
50% × 10, 000 = 5, 000 of the instances are
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Allocation
Evaluator

Gold RM GPT-4

Increase 19.06 12.05
Constant 19.57 13.11
Decrease 19.41 13.49

Table 2: Results on different strategies (increase, con-
stant, and decrease) to allocate annotation budgets
across multiple iterations. We evaluate the win rates
against GPT-4 outputs using the gold RM and GPT-4 as
evaluators. The largest numbers are bolded.

randomly sampled. The sampled instances are
fed into the gold RM for annotation and then
used as the training set.

Q4.2: Increase versus Constant versus Decrease:
We adopt the always-smallest strategy in this setup.
After three rounds of iteration, each allocation strat-
egy is trained on 30,000 instances. The numbers
of instructions used for the three iterations for each
case are as follows (M1 → M2 → M3):

• Increase: 5,000 → 10,000 → 15,000;
• Constant: 10,000 → 10,000 → 10,000;
• Decrease: 15,000 → 10,000 → 5,000.

Step 3 The collected subset is fed into πi−1
θ and

πref to obtain πi
θ, which then gets evaluated.

4.2 Results

Answer to Q4.1 Figure 5 shows the win rates of
always-smallest and always-random. The always-
random baseline yields moderate improvements in
the first one or two iterations but finally drops down
upon being further optimized; while the always-
smallest strategy gives consistent and significant
improvements across three iterations. This sug-
gests that the selection of response pairs for anno-
tation plays a crucial role in facilitating continuous
improvements for online iterative DPO. Besides,
the single-iter-30k baseline lags behind always-
smallest, indicating the effectiveness of corpus-
level selection.

Answer to Q4.2 Table 2 shows the results with
different allocation strategies. Considering the re-
sults from both evaluators, decrease is slightly bet-
ter than constant and much better than increase.
This may result from the fact that the data quality
in later iterations depends on the policy trained in
earlier iterations, so it is better to allocate more
data in the beginning to obtain a better policy.

5 Related Work

5.1 Iterative Preference Learning

Online iterative preference learning refers to the
framework in which response pairs are sampled
from the policy models and are then annotated
to become the training data to continuously im-
prove the policy model. Intuitively, it could mit-
igate the reward hacking issue or the distribution
shift issue (Gao et al., 2022; Rafailov et al., 2024)
Online iterative preference learning has been ver-
ified to be effective for alignment methods with
explicit rewards (Bai et al., 2022; Touvron et al.,
2023b) and for direct preference learning meth-
ods (Xu et al., 2024; Yuan et al., 2024; Xiong et al.,
2024; Rosset et al., 2024; Wu et al., 2024; Swamy
et al., 2024; Tran et al., 2023; Ye et al., 2024; Guo
et al., 2024; Tajwar et al., 2024; Calandriello et al.,
2024; Chen et al., 2024). Specifically, online di-
rect preference learning was first presented in Xu
et al. (2024). Dong et al. (2024) shows a system-
atic training pipeline and releases a strong policy
checkpoint based on LLAMA-3-8B-base. Another
line of work has investigated Nash equilibrium for
LLM alignment, which is shown to natively sup-
port online iterative training by theory (Wu et al.,
2024; Rosset et al., 2024; Munos et al., 2024).

5.2 Active Learning for NLP

Most active learning methods for NLP consider
either informativeness, such as prediction uncer-
tainty (Schröder et al., 2022; Margatina et al., 2021;
Zhang et al., 2022; Jiang et al., 2020) and gra-
dient (Settles et al., 2007), or representativeness,
such as representative of the unlabeled set (Settles
and Craven, 2008) and differences from already la-
beled instances (Kim et al., 2006; Zhao et al., 2020;
Erdmann et al., 2019; Gissin and Shalev-Shwartz,
2019). In this work, we draw intuitions from both
uncertainty (from the discriminative perspective)
and representativeness (from the generative per-
spective).

Active Learning for LLM Alignment Muldrew
et al. (2024) presented an active learning approach
to make better use of a limited preference labeling
budget. Their methods are based on the assump-
tion that the learning process is initialized from the
base LLM and the annotated dataset is extremely
small, thus the instances with large reward margins
can provide greater gradients and alter the model’s
weights more significantly.
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6 Conclusion

In this work, we investigated strategies to make
better use of limited annotation budgets for iter-
ative preference learning. Through extensive ex-
periments, we found that it is better to select the
response pairs with smaller predicted reward mar-
gins and to allocate more annotation budgets in
earlier iterations. We hope our findings could ben-
efit the community to obtain better models with
limited resources.

Limitations

We observe several limitations regarding this work:

• Our experiments are conducted under a
synthetic-oracle setting. Though this setting
has been widely adopted as a proxy of human
oracle annotations (Gao et al., 2022; Rafailov
et al., 2024) and we have included an exter-
nal evaluator (GPT-4) to avoid the potential
reward hacking issue, it is still possible that it
introduces some unknown biases to the empir-
ical findings.

• We did not consider the levels of annotat-
ing difficulty when measuring annotation cost.
Throughout this work, we consider annotation
cost to linearly correlate with the number of
to-be-annotated response pairs. However, in
practice, different pairs come with different
levels of difficulty for annotators.
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A Implementation Details

Training Setup Throughout this paper, we adopt
the set of hyper-parameters shown in Table 3. We
use 8× A100-40G GPUs for all the training, with
BF16 enabled.

Sampling Setup For sampling the responses for
online training, we adopt a temperature of 1.0 and
top-k sampling with k = 50. Both the max-prompt-
length and the max-generate-tokens are set to 512.
We enable BF16 during sampling.

Evaluation Setup We use greedy decoding to
generate the responses for AlpacaEval-2.0. Both
the max-prompt-length and the max-generate-
tokens are set to 512. We enable BF16 during
generation.
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Setting β Learning Rate Batch Size # Epoch

SFT NA 2e-5 128 1.0
DPO 0.1 5e-7 128 1.0

Table 3: Training Hyper-parameters.
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