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Abstract

In the video-language domain, recent works in
leveraging zero-shot Large Language Model-
based reasoning for video understanding have
become competitive challengers to previous
end-to-end models. However, long video un-
derstanding presents unique challenges due
to the complexity of reasoning over extended
timespans, even for zero-shot LLM-based ap-
proaches. The challenge of information redun-
dancy in long videos prompts the question of
what specific information is essential for large
language models (LLMs) and how to leverage
them for complex spatial-temporal reasoning in
long-form video analysis. We propose a frame-
work VideoINSTA , i.e. INformative Spatial-
TemporAl Reasoning for zero-shot long-form
video understanding. VideoINSTA contributes
(1) a zero-shot framework for long video un-
derstanding using LLMs; (2) an event-based
temporal reasoning and content-based spatial
reasoning approach for LLMs to reason over
spatial-temporal information in videos; (3) a
self-reflective information reasoning scheme
based on information sufficiency and prediction
confidence while balancing temporal factors.
Our model significantly improves the state-of-
the-art on three long video question-answering
benchmarks: EgoSchema, NextQA, and Inten-
tQA, and the open question answering dataset
ActivityNetQA. Code is released here.

1 Introduction

Large language models (LLMs) have demon-
strated remarkable reasoning abilities, even in long-
context situations (Chen et al., 2024; Mao et al.,
2023; Kojima et al., 2022). These advancements
have spurred interest in video reasoning. Previous
works bridging video and text modalities depend
on meticulously designed models suffering large-
scale pretraining. This challenge is pronounced

* Equal contribution.
‡ Corresponding author.

with videos, a data format characterized by a vast
volume of information scaling with length. Con-
sequently, these models exhibit limited generaliz-
ability across datasets and struggle to scale to long
video within a single model (Sun et al., 2019; Yang
et al., 2022). More recent models have gradually in-
tegrated LLMs’ reasoning abilities by introducing
lightly tuned adaptation layers (Yang et al., 2022;
Zhang et al., 2023b; Lin et al., 2023a). However,
they still struggle with the length of the videos.
Recently, to avoid expensive training costs, early
attempts have proposed a zero-shot solution by rea-
soning over semantic representations of video con-
tent using LLMs (Zhang et al., 2023a; Wang et al.,
2024a; Choudhury et al., 2023). These approaches
have become strong competitors to earlier end-to-
end models. Nonetheless, long-form video under-
standing, which demands advanced reasoning over
extended timespans, remains challenging even for
LLM-based methods.

Even in light of these tryouts, many challenges
remain unsolved: (1) Information Quality. Videos
contain vast information even with some redun-
dancy due to minor visual changes. Identifying
the most crucial piece of information and extract-
ing it effectively is essential to enhance the quality
of data within the context window manageable by
LLMs. How can we achieve this extraction? (2)
Neglect of Spatial and Temporal Characteristics.
Videos inherently exhibit temporal and spatial char-
acteristics. How can we effectively preserve and
convey this spatial-temporal information to support
LLM reasoning? Especially, how do LLMs pro-
cess temporal dynamics in videos? (3) Complexity
of Reasoning with Unbalanced Information over
Temporal Span. In long videos, the significance of
information along the video temporal axis varies
greatly. LLMs’ implicit "intuition" to process all
the information is insufficient. How do we develop
an explicit reasoning algorithm for unbalanced in-
formation considering temporal factor?
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To address these challenges, we propose a
framework VideoINSTA, i.e. INformative Spatial-
TemporAl reasoning for zero-shot long-form video
understanding, aiming to build a compound system
extracting essential information from long-form
videos – leveraging spatial-temporal reasoning and
temporal-aware self-reflective reasoning to handle
complex information with LLMs.

VideoINSTA is a zero-shot framework for
reasoning with LLMs, augmented with visual-
language tools. First, this framework empha-
sizes event-based temporal reasoning by propos-
ing an automatic temporal segmentation method
C-DPCKNN, which segments long videos into mul-
tiple events. Besides, it derives the global tem-
poral information with the help of a unified tem-
poral representation tool UniVTG (Qinghong Lin
et al., 2023) and utilizes a temporal grounding
scheme allowing the event to inherit the local tem-
poral information. Second, this framework empha-
sizes content-based spatial reasoning by improv-
ing video captions with various visual-language
captioning tools to extract richer spatial informa-
tion. Specifically, event captioning is compensated
by object detection and action caption as spatial
information. A follow-up summarization serves
as implicit spatial reasoning in a chain-of-thought
manner. Third, this framework proposes Iterative
Information Reasoning with LLMs, which itera-
tively merges the temporal and spatial information
derived in the previous stages based on the self-
evaluation of LLMs on the information sufficiency
and prediction confidence.

Experiments have showcased remarkable im-
provements in existing long-form video question-
answering tasks compared to end-to-end video-
language models as well as other zero-shot LLM-
based video understanding compound systems. Be-
sides, VideoINSTA handles long videos with an
average length of 3 minutes and is easily extensi-
ble for longer videos in a zero-shot manner. This
framework also shows excellent results both on
multi-choice and open-question answering tasks.
The main contributions are summarized as follows:

• VideoINSTA: A zero-shot framework for
long-form video understanding with state-
of-the-art performance. We propose a new
zero-shot and extensible framework based on
LLMs augmented with visual-language tools.

• Spatial-temporal reasoning on videos with
LLMs. We propose event-based temporal

reasoning and content-based spatial reason-
ing with LLMs utilizing extracted spatial-
temporal information for understanding long-
form videos.

• Self-reflective information reasoning with
LLMs considering temporal factors. Our
framework contributes to an iterative reason-
ing scheme for LLMs to merge and reason
on the spatial-temporal information in a self-
reflective manner while considering the tem-
poral factors.

2 Related Works

Video Question Answering with LLMs Long
video question answering involves predicting the
correct answer given videos and queries, and op-
tional multi-choice options. With advancements
in LLMs and their long-context reasoning abili-
ties, video understanding using LLMs has been
explored in various works (Xu et al., 2023; Maaz
et al., 2023; Jin et al., 2024a; Yu et al., 2024; Lin
et al., 2023b; Zhang et al., 2023c; Huang et al.,
2024; Wang et al., 2023a). However, even with
lightly tuned adaptation layers, scaling training
costs increase significantly with video length. Re-
cently, zero-shot methods like (Wang et al., 2022b)
use image descriptors for video understanding
tasks. Besides, LLoVi (Zhang et al., 2023a) and
VideoAgent (Wang et al., 2024a), which use ex-
tensive captioning and iterative keyframe selec-
tion respectively, have aimed to achieve training-
free video understanding. Additionally, works
such as ProViQ (Choudhury et al., 2023) and
MoReVQA (Min et al., 2024) investigate zero-
shot understanding using neuro-symbolic program-
ming. LangRepo (Kahatapitiya et al., 2024a) has
a structured language repository to maintain tex-
tual video representations. TraverLER (Shang
et al., 2024) iteratively gathers relevant informa-
tion from keyframes with multiple LLMs and
VideoTree (Wang et al., 2024b) is an extension
of LLoVi with tree-based information searching
scheme. Unlike these approaches, we allows LLMs
to directly reason on extracted spatial-temporal in-
formation without neuro-symbolic programming.

Spatial-Temporal Reasoning on Video Spatial-
temporal reasoning in video has been a topic of
continuous discussion (Hussein et al., 2019; Wang
et al., 2021; Xiao et al., 2023; Wu et al., 2021; Zhu
et al., 2022; Jin et al., 2024a; Li et al., 2022; Xiao
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et al., 2022, 2024; Zhai et al., 2020) due to the
dual characteristics of video data. Most previous
approaches compress information and perform rea-
soning within the embedding space. Additionally,
recent works have highlighted LLMs’ capabilities
in temporal (Tan et al., 2023; Han et al., 2023; Yuan
et al., 2024; Liao et al., 2024; Ding et al., 2024;
Xiong et al., 2024) and spatial reasoning (Ranas-
inghe et al., 2024b; Wu et al., 2024b; Ko et al.,
2023; Sharma et al., 2024; Yamada et al., 2023; Wu
et al., 2024a). However, applying LLMs’ spatial-
temporal reasoning abilities to video remains under-
explored. Our work innovatively harnesses these
abilities, augmenting them with spatial-temporal
reasoning methods as tools, to effectively analyze
long-form videos both spatially and temporally.

3 VideoINSTA: Informative
Spatial-Temporal Reasoning with Large
Language Models

In this section, we explain our VideoINSTA frame-
work shown in Figure 1 following its three-phase
methodology: event-based temporal reasoning,
content-based spatial reasoning, and self-reflective
information reasoning with LLMs.

3.1 Event-based Temporal Reasoning

The event-based temporal reasoning, as shown in
Figure 2, consists of two sequential sub-steps dif-
ferentiated by whether the query Q is a known,
specifically, query-agnostic temporal segmentation
and query-aware temporal grounding.

3.1.1 Query-agnostic Temporal Segmentation
KNN (Guo et al., 2003) Clustering has been a
widely used algorithm for temporal segmentation
for separating event clips in video. For exam-
ple, (Zhou et al., 2024) utilizes KNN and ChatU-
niVi (Jin et al., 2024a) utilizes DPCKNN (Du
et al., 2016), a density-based clustering algorithm
to merge frames belonging to the same events.
However, these methods are designed specifically
for embedding-based reasoning. They share a com-
mon fallback that frames or even tokens belong-
ing to the same cluster scatter across the video
span, causing blended boundaries between events,
and frames from different events are interleaved
thus not fulfilling the temporal order. Therefore,
we propose a consecutive clustering algorithm C-
DPCKNN for automatic event parsing on videos
with clear boundaries.

Event Center Given a ith frame in a video, we
first use the vision encoder of CLIP (Radford et al.,
2021) to provide its visual tokens Z = {zi}Li=1,
where L is the number of visual tokens within each
frame. Then we apply mean-pooling over all to-
kens to obtain the frame-level representation fi.
Specifically, we first compute the local density ρmi
as Eq. 1. Then we compute the distance index δi
as Eq. 2 of each frame fi. We set frames with the
highest ρi× δi, i ∈ [1, 2, . . . ,M ] as cluster centers,
where M is the total sampled frames in a video.

ρi = exp


− 1

K

∑

zk∈KNN(zi,Z)

∥zk − zi∥2

 (1)

δi =

{
minj:ρj>ρi ∥zj − zi∥2 , if ∃j s.t. ρj > ρi

maxj ∥zj − zi∥2 , otherwise.
(2)

Event Clustering Given K cluster centers, we
cluster consecutive frames in both, forward and
backward directions. We deprecate setting other
frames directly to their nearest cluster center based
on Euclidean distances of the embeddings which
causes interleaved event frames and blurred bound-
aries that are counterintuitive to how events are
separated and sequenced in an untrimmed video.
Instead, we set the event boundary according to the
critical points with the K − 1 minimum density
values, i.e. minimum density peaks ∆ = {δi}K−1

i=1 ,
indicating drastic changes in the frame content and
denote the set of indexes of the frames in the cluster
as E. We treat each cluster as a critical event and
parse the events consistent with the frame order.

Event Segmentation To set clear boundaries
for each event, we store the indexes of boundary
frames with K − 1 minimum density peaks as
I = {Ii}K−1

i=1 to set the event set E = {Ei}Ki=1

with respective starting and ending boundaries
{(0, I1), . . . , (IK−1, IEOV )}K−1

i=1 , IEOV denotes
the ending index of video. The video is then parsed
into respective event clips.

3.1.2 Query-agnostic Temporal Grounding

Aside from automatic query-agnostic temporal seg-
mentation, we introduce query-aware temporal
grounding – providing semantic temporal repre-
sentations to support richer informative reasoning.
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Figure 1: Framework of VideoINSTA. VideoINSTA consists of three phases. (1) Event-based Temporal Reasoning.
Temporal Segmentation parses the video into events via proposed C-DPCKNN clustering, and Temporal Grounding
derives semantic temporal information inherited from the global relevance of each event. (2) Content-based Spatial
Reasoning. Action Captions are derived for each clip by video captioners as basic spatial information. Compensated
with Object Detections, the spatial information is summarized to derive query-focused spatial information. (3)
Self-reflective Information Reasoning. The previously derived spatial-temporal information is merged according to
their information sufficiency in descending order and the LLM performs multi-round predictions after information
merging until it comes to a confident self-evaluation.

Global Temporal Relevance Derivation We
first derive the initial global temporal informa-
tion, specifically, the relevance of the whole video
given the query, with the help of the zero-shot
unified video-language temporal grounding model
UniVTG (Qinghong Lin et al., 2023). Given a
video V and a question query Q, UniVTG di-
vides the original V into fine-granular clips V =
{vi}Lv

i=1 and evaluates each vi with triple evalua-
tors (fi, bi, si)Lv

i=1, where Lv is the number of fine-
grained clips. si ∈ [0, 1] are continuous salience
scores determining the relevance between the vi-
sual content of the video and the query Q spanning
from totally irrelevant to highly correlated; fi are
the foreground indicators for query-based moment
retrieval, and bi are the boundary intervals for mo-
ment localization.

Local Temporal Relevance Inheritance As Uni-
VTG derives global temporal relevance informa-
tion for the whole video, we propose Local Inher-
itance which assigns query-aware global tempo-
ral relevance information to the automatically and
query-agnostic parsed event clips E = {Ei}Ki=1

as local temporal relevance information. Specif-
ically, a boundary-based inheritance scheme is
performed. We rank fine-grained clips {vi}Lv

i=1

with predicted boundaries {bi}Lv
i=1 based on their

{fi}Lv
i=1 probabilities and returns the Top-k clips

as query-aware moment retrieval predictions and
return their boundaries {bi}ki=1 given a question
V and a query Q. Then, we take boundary inter-
sections between I and {bi}ki=1 and calculated the
percentage of {bi}ki=1 allocated in each event Ei.
The relevance percentage is translated into seman-
tic representations for LLMs to reason. Hence, the
temporal information is transformed as prompt P t.

3.2 Content-based Spatial Reasoning

The second phase of VideoINSTA contributes spa-
tial reasoning with spatial information extraction.
A common bottleneck from previous works on
LLM-based video understanding is the redundant
and inaccurate information in describing videos,
especially overloading the LLMs’ context window
when processing long videos. It is necessary to
address the importance of information density of
the spatial information for LLMs to reason, espe-
cially for long-form videos. VideoINSTA shows
that actions and objects occurring in the videos are
the most crucial components. For each event clip
in E = {Ei}Ki=1, we derive informative prompts
with action captions Pa = {P a

i }Ki=1 and object
captions Po = {P o

i }Ki=1, detailed as follows.
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Figure 2: Illustration of Temporal Reasoning in
VideoINSTA. In Temporal Segmentation, the proposed
C-DPCKNN sets clear borders with minimum density
peaks. In Temporal Grounding, each event inherits the
global relevance information derived from UniVTG ac-
cording to these borders. The inherited local temporal
information is transformed into semantic prompts, em-
powering temporal reasoning in VideoINSTA.

3.2.1 Action Captioning
We leverage generative visual-language models
(VLMs) to convert the video context to language
descriptions. To ensure zero-shot quality of the ex-
tracted spatial information and as a fair comparison
to other approaches, we utilize LaViLa (Zhao et al.,
2023a) – pre-trained on Ego4D dataset (Grauman
et al., 2022), following (Zhang et al., 2023a) – on
ego-centric videos, to create automatic video narra-
tions. The auto-generated narrations densely cover
long videos while reserving temporal synchroniza-
tion of the visual information and descriptions of
the video actions within the event clip. For exo-
centric videos, we follow (Wang et al., 2024a)
utilizing CogAgent (Hong et al., 2024) to provide
descriptions of the sequential video frames with
a special focus on events and actions, denoted as
Pa = {P a

i }Ki=1, as in Appendix D.2.

3.2.2 Object Detections
Spatial awareness enhances reasoning by incor-
porating structural and contextual object descrip-
tions of an image (Chen et al., 2023; Ranasinghe
et al., 2024b). We leverage the high-fidelity VLM
CogAgent (Hong et al., 2024) to extract objects
from video frames as interactive subjects, aiding
LLMs’ spatial understanding. The VLM identifies
a fixed number of prominent objects per frame. To
maintain temporal consistency within an event clip,
objects are sequentially stored as semantic repre-
sentations (Fig. 3) for LLM reasoning, denoted as
Po = {P o

i }Ki=1, as in Appendix D.2.

Figure 3: Spatial Reasoning in VideoINSTA.

3.2.3 Query-dependent Summarization
Given a query, we prompt the LLMs to get a
query-based summarization of the spatial informa-
tion. The query-based summarization serves as
an implicit Chain-of-Thought (Wei et al., 2023)
for LLMs to reason over the spatial informa-
tion, focusing on the query about long clips.
The summarization step Ps = {P s

i }Ki=1 =

{(sumLLM(P a
i , Q), sumLLM(P o

i , Q))}Ki=1 con-
tains action summarizations focusing on event in-
formation and object summarizations focusing on
environment information, as in Appendix D.2.

3.3 Informative Reasoning with
Self-Reflection

Inspired by Reflexion (Shinn et al., 2023), the third
phase of VidoeINSTA proposes a self-reflective
information reasoning scheme – with LLMs to rea-
son on spatial-temporal information collected in
the previous stages. Particularly, we balance be-
tween information sufficiency and the temporal
order. Two evaluation scores are defined as inter-
mediate metrics in our algorithm.

Informative Score. The LLM is required
to generate an Informative Score SI ={
SI
i

}K

i=1
∈ [1, 2, 3] for each clip indicat-

ing [not sufficient,marginal sufficient, sufficient],
which is an initial evaluation of the information suf-
ficiency of the prompts derived in previous stages.

Confidence Score. The LLM is re-
quired to generate a Confidence Score
SC =

{
SC
i

}K

i=1
∈ [1, 2, 3] for each

question-answering round indicating
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Algorithm 1: VideoINSTA
Input :Video V , Question Q, Options {o0, o1, o2, o3, o4}
Parameter :Number of segments K ∈ N+

Output :Final Prediction answer ∈ {o0, o1, o2, o3, o4}
1 V ′ ← ∅; // for clip descriptions and informative scores
2 E ← temporal_segmentation(V,K);
3 T ← temporal_grounding(V,Q);
4 A← action_captions(V );
5 O ← object_detections(V );
6 for Ei ∈ E do
7 Pa

i ← inherit(A,Ei);
8 Po

i ← inherit(O,Ei);
9 P t

i ← inherit(T,Ei);
10 Psa

i ← summarize(Pa
i , Q);

11 Pso
i ← summarize(Po

i , Q);
12 Pi ← (Pa

i , Po
i , P t

i , P
sa
i , Pso

i );
13 SI

i ← informative_eval(Pi, Q, (o0, o1, o2, o3, o4));
14 V ′.insert((Pi, S

I
i )); // i-th clip description and info

score

15 end
16 V ′′ ← sort_descending(V ′, key = V ′.SI ); // by info scores
17 L← ∅; // for merged clip descriptions without info scores

18 for Ei ∈ V ′′ do
19 Pi, S

I
i ← Ei;

20 L.insert(Pi);
21 if i ̸= |V ′′| − 1 and SI

(i+1) = 3 then
22 continue;
23 end
24 else
25 L′ ← sort_temporally(L);
26 PL′ ← concatenate(L′);
27 answer, prompt, completion←

QA(PL′ , Q, (o0, o1, o2, o3, o4));

28 SC
i ← self_reflect(prompt, completion);

29 if SC
i = 3 then

30 break;
31 end
32 end
33 end
34 return answer;

[not confident,marginal confident, very confident],
which is a self-evaluation of the answer prediction.

Self-reflective reasoning. The algorithm shown
in Alg. 1 starts with an initial evaluation step for
the LLM to derive an informative score for each
clip. Then, the informative states are sorted in
descending order according to their informative
scores and maintained in a list. Within the same
informative level, the prompts are ordered tempo-
rally. Then, the algorithm performs a multi-round
self-reflective scheme, specifically merging infor-
mative clips and evaluating the question-answering
confidence. In the first round, sufficient informa-
tive states are merged and prompted to the LLM for
question-answering. Then, the LLM is required to
derive a confidence score. If the LLM is not confi-
dent enough about its prediction, a further clip with
a lower informative score is merged into the state
which gets temporally re-ordered. The alternating
merge-and-evaluate scheme ends until all clips are
merged or the prediction confidence reaches the
top value. The VideoINSTA is detailed in Alg. 1
and on the right of Figure. 1.

4 Extensibility of the Framework

Extensible API tools VideoINSTA is a general
framework for informative spatial-temporal reason-
ing on videos and maintains the extensibility to
improve both, the temporal reasoning and spatial
reasoning phases by acquiring informative prompts
from different expert tools through APIs. For ex-
ample, expert temporal segmentation models can
be utilized for better event parsing in the tempo-
ral reasoning phase in VideoINSTA. Expert spatial
models like high-fidelity captioning models and
object detectors can provide more accurate infor-
mative prompts for the spatial reasoning phase.

Open Question Answering Apart from single-
choice question answering, VideoINSTA can also
be easily adapted to open question answering. We
tested VideoINSTA on AcitivityNet-QA (Yu et al.,
2019), which is a dataset for open-ended ques-
tion answering over complex web videos. Follow-
ing (Maaz et al., 2024), we also conduct evaluation
in a zero-shot manner, employing LLM-assisted
evaluation to assess the predictions’ accuracy of
VideoINSTA.

5 Experimental Setup

In this section, we describe the experimental
setup of the VideoINSTA framework. We present
quantitative results and a qualitative analysis on
the EgoSchema (Mangalam et al., 2024), Next-
QA (Xiao et al., 2021), and Intent-QA (Li et al.,
2023a) benchmarks.

EgoSchema EgoSchema is a benchmark for
long-form video understanding, featuring 5,000
single-choice questions derived from egocentric
videos. A distinctive feature of this dataset is
the length of its videos, each lasting 180 seconds.
EgoSchema comprises only a test set, with a subset
of 500 questions having available labels.

NextQA The NExT-QA dataset includes 5,440
natural videos that feature object interactions in
daily life, accompanied by 48,000 single-choice
questions. The average length of the video is 44
seconds. In line with standard practices, our zero-
shot evaluation is focused on the validation set.

IntentQA IntentQA focuses on intent reasoning.
It contains 4,303 videos and 16K single-choice
question-answer pairs focused on reasoning about
people’s intent in the video. The videos are more
than 44 seconds in average length. We perform a
zero-shot evaluation on the test set.
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Evaluation Metrics Since each dataset features
single-choice questions and VideoINSTA generates
option predictions directly, we utilized accuracy as
the evaluation metric.

Baselines The baselines include recent represen-
tative LLM-based zero-shot video understanding
methods – including LLoVi, VideoAgent, ProViQ
and MoReVQA – and other baselines include su-
pervised end-to-end models, see Table 1.

Experiment Design To comprehensively ana-
lyze VideoINSTA, there are two research questions.
RQ1: How is the performance of the proposed
VideoINSTA framework compared to the exist-
ing end-to-end models and LLM-based compound
systems? RQ2: How do the components of the
VideoINSTA affect its effectiveness?

Implementation Details Following LLoVi and
VideoAgent, we utilize the LaViLa model re-
trained on Ego4D, filtering out videos that overlap
with EgoSchema to ensure zero-shot evaluation.

6 Experimental Results

6.1 Main Results
Comparison with State-of-the-arts To answer
the RQ1, our average results over multiple run from
Table 1 achieve state-of-the-art performance, sur-
passing all types of existing end-to-end models,
proprietary models, and zero-shot compound sys-
tems across three datasets.

Noticeably, VideoINSTA with ChatGPT3.5
surpasses the other zero-shot LLM-based base-
lines LLoVi and VideoAgent with ChatGPT-4.
Our method demonstrates spatial-temporal infor-
mative reasoning to serve as the foundational frame-
work for zero-shot video reasoning, opening a new
state-of-the-art in the video question-answering do-
main.

Open Question Answering We measure the ac-
curacy by utilizing an LLM to evaluate the gen-
erated prediction by comparing it to the ground
truth answer and assigning a true or false value ac-
cordingly. Table 2 shows the results with Llama-3.
VideoINSTA achieves more than double the per-
formance compared to the baseline LLoVi with
151.3% relative improvement.

6.1.1 Ablation on Main Stage
We undertake ablation studies on EgoSchema to
evaluate the contribution of each phase in VideoIN-
STA with three distinct variations: VideoINSTA

w/o TA (without event-based temporal reasoning),
VideoINSTA w/o S (without content-based spa-
tial reasoning), and VideoINSTA w/o IN (without
self-reflective information reasoning). We further
investigate event-based temporal reasoning and the
contribution of the query-unaware temporal seg-
mentation (VideoINSTA w/o TA-Seg.) and the
query-aware temporal inheritance (VideoINSTA
w/o TA-Inhr.). Figure 5 concludes that all phases
in the VideoINSTA framework contribute to dis-
tinct performance improvements including the two
sub-steps in the temporal reasoning. The whole
pipeline enables VideoINSTA to outperform exist-
ing methods.

6.2 Ablation on Temporal Reasoning

Clustering in Temporal Segmentation To evi-
dently prove the effectiveness of our proposed C-
DPCKNN, we conduct experiments on variants
VideoINSTA w. TA-Seg. (Uniform), w. TA-Seg.
(KNN), w. TA-Seg. (DPCKNN) and w. TA-Seg.
(C-DPCKNN) on both EgoSchema and NExT-QA.
The quantitative results of this comparison are il-
lustrated in Figure 6. The results validate that our
proposed C-DPCKNN method for query-unaware
temporal segmentation is superior to the other ap-
proaches. Additionally, the worse performance
of Uniform, KNN, and DPCKNN highlights that
improper segmentation can severely impact sub-
sequent reasoning steps. We conclude that they
have the same drawback of improper segmentation,
further validating the effectiveness of C-DPCKNN.

Figure 4: Ablation on different temporal segmentation
of VideoINSTA methods.

Number of Events in Temporal Segmentation
To further explore the impact of C-DPCKNN in
temporal segmentation within our temporal reason-
ing framework, we conducted a series of experi-
ments on the EgoSchema dataset. We varied the
number of event clips K from the set {2, 4, 8}. For
each configuration, we kept the implementation
of other components in VideoINSTA consistent.
Empirical results reveal an optimal critical value
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Method
Dataset EgoSchema NExT-QA IntentQA

Random Chance 20.0 20.0 20.0
Supervised State-of-the-Art
LongViViT (Papalampidi et al., 2023) 56.8 - -
MC-ViT-L (Balažević et al., 2024) 62.6 65.0 -
Training-Free State-of-the-Art
LLM System
PaLM-2 (Anil et al., 2023) MoReVQA (Ranasinghe et al., 2024a) 51.7† 69.2 -
FlanT5-3B (Raffel et al., 2020) SeViLA (Yu et al., 2024) 25.7 63.6 60.9

Mistral-7B (Jiang et al., 2023) LangRepo (Kahatapitiya et al., 2024b) 60.8 54.6 53.8
MVU (Ranasinghe et al., 2024a) 60.3 55.2 -

Llama2-7B (Touvron et al., 2023) LLoVi (Zhang et al., 2023a) 34.0 - -
Llama2-13B (Touvron et al., 2023) LLoVi (Zhang et al., 2023a) 40.4 - -

Llama2-70B (Touvron et al., 2023) LLoVi (Zhang et al., 2023a) 50.6 - -
VideoAgent (Wang et al., 2024a) 45.4 - -

GPT-3 (Brown et al., 2020) ViperGPT (Surís et al., 2023) - 60.0 -

GPT-4V (OpenAI, 2024a) IG-VLM (Kim et al., 2024) 59.8 68.6 64.2
GPT-4V (Balažević et al., 2024) 63.5 - -

Llama3-8B (Dubey et al., 2024) LLoVi (Zhang et al., 2023a) (ours) 47.6 46.6 48.9
VideoINSTA 52.6 58.3 53.0

ChatGPT-4 (OpenAI, 2024a)

LLoVi (Zhang et al., 2023a) 61.2 67.7 64.0
AssistGPT (Gao et al., 2023) - 58.4 -
VideoAgent (Wang et al., 2024a) 60.2 71.3 -
VideoAgent (Fan et al., 2024) 62.8 70.8 -
TraveLER (Shang et al., 2024) - 68.2 -
VideoTree (Wang et al., 2024b) 66.2 73.5 66.9

VideoINSTA 65.0 72.3 72.8

ChatGPT-3.5 (OpenAI, 2024a)

LLoVi (Zhang et al., 2023a) 58.8 - -

ProViQ (Choudhury et al., 2023) 57.1 63.8‡ -
VideoAgent (Wang et al., 2024a) - 48.8 -
VideoTree (Wang et al., 2024b) 57.6 - -
VideoINSTA 62.8 67.9 64.4

Table 1: Video Reasoning Results. The best accuracy (%) is highlighted in orange and the second best in yellow
for each training-free (zero-shot or few-shot) method respectively. Note that we are strictly zero-shot without using
in-context examples in our prompts. The best result among all methods is bold and the second best is underlined.

LLM Model Accuracy (%)
Llama-3-8B-Instruct

(AI@Meta, 2024)
LLoVi 14.75

VideoINSTA 37.06 (151.3% ↑)

Table 2: Accuracy performance of VideoINSTA on open
question answering dataset ActivityNet-QA.

for the number of events K, as shown in Figure
5(b). EgoSchema videos are characterized by their
uniform length of 3 minutes, with a high temporal
certificate - a metric indicating the proportion of
necessary informative segments to the total video
duration. The empirical findings suggest that K in-
tuitively corresponds to the actual number of events
observed in the videos.

6.3 Ablation on Spatial Stage

Spatial Captioners We provide an ablation study
over captioners comparing CogAgent vs. LLaVA-
1.5 (Liu et al., 2023) on NExT-QA, indicating that

Figure 5: Ablation Studies on EgoSchema. (a) All three
phases contribute to VideoINSTA. (b) K = 4 is the
best empirical clustering number for EgoSchema.

a better captioner leads to better information qual-
ity as CogAgent is a captioner with higher fidelity
since it was especially designed for Graphical User
Interface understanding and navigation, which re-
quires fine-granular perception. Therefore, CogA-
gent facilitates better informativeness in tasks in-
volving visual and linguistics.
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LLM Object Captioner Accuracy
ChatGPT-3.5

(OpenAI, 2024a)
CogAgent 0.679
LLaVA-1.5 0.628

Table 3: Performance metrics for different captioners
using ChatGPT3.5 on the NExT-QA dataset.

Figure 6: The Upper figure illustrates the intermediate
results of DPCKNN clustering with blended boundaries
among clusters. The bottom figure illustrates clearer
event boundaries with the proposed C-DPCKNN.

6.4 Qualitative Analysis

Event Segmentation with Clear Borders We
visualize the temporal segmentation performance
on EgoSchema. As seen in Figure 6, the upper
figure illustrates the intermediate clustering re-
sults with the original DPCKNN. According to
the results, frames clustered to the same event are
scattered across the video, and the event bound-
aries are blended, which is counter-intuitive to how
untrimmed videos present their content. The bot-
tom figure illustrates the results of how our pro-
posed C-DPCKNN utilizes density peaks as sharp
boundaries. This qualitative visualization shows
that events are parsed correctly around clustering
centers and the respective borders align to the re-
gions with high fluctuations among frame features.

Clear Segmentation for Correct Grounding
We further investigate how the two variants of
VideoINSTA w/. TA-Seg(KNN) and TA-Seg(C-
DPCKNN) affects the grounding descriptions. We
can find that the density-based clustering in C-
DPCKNN successfully captures the scene transi-
tions indicating the borders are set to where the
content changes drastically, when the man starts
to catch fish in a fishbowl in the bathroom as un-
derlined in Figure 7. The consequent actions of

†Obtained on the hidden test split of EgoSchema (5,000
tasks) instead of the public test split (500 tasks) as all the other
results.

‡Not obtained on the validation split of NExT-QA as the
other results, but on the test split.

Figure 7: Performance of C-DPCKNN leads to clearer
boundaries over KNN that contributes to exact semantic
representations for videos segments.

the man in gray before he went to the bathroom
are fully tracked in the same clip, leading to the
correct answer “C) sit down”. However, the KNN
method falsely sets the border causing important
information loss leading to the false answer “E)
pickup something”.

Spatially Informative Captions VLMs share a
tendency to focus on describing the actions and
events happning in the video clips or frames. How-
ever, the environment in videos and the interactions
between human and objects provide more trivial
but essential information for accurate reasoning in
a fine-grained level, to which the spatially informa-
tive reasoning with object detections contributes.
An example in IntentQA has the answer "Seat belt"
to the question "How did the people make sure that
the babies will not fall off the swing easily when
playing on them?". Basic video narrations will lead
to captions like "Some people are standing around
the babies and playing swings.", leading to a false
prediction of "Standing Around", while neglecting
the crucial factor for safety, which actually is the
object seat belt.

7 Conclusion

This work focuses on understanding long-form
videos with LLMs – particularly emphasizing
information quality, spatial-temporal reasoning,
and explicit complex reasoning across unbalanced
distributed information. The proposed training-
free framework VideoINSTA for long-form video
understanding showcases exceeding performance
over state-of-the-art end-to-end and zero-shot
LLM-based methods. It further reveals the poten-
tial on open question answering and the extensi-
bility of various visual-language tool-augmented
spatial-temporal reasoning approaches.
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Limitation

The limitation of VideoINSTA lies in its nature
as a compound system, centered around a large
language model (LLM) and incorporating various
visual-language tools to process spatial-temporal
information. If the number of tools or the rounds of
reasoning increase to some level, there is a height-
ened risk of inconsistency and randomness of gen-
erated intermediate thoughts, potentially introduc-
ing additional noise into the reasoning process.

Ethics Statement

VideoINSTA is tailored as a compound system
utilizing various visual-language tools for spatial-
temporal information extraction. This framework
might help with developing visual understanding
systems for assisting daily life since it has exceed-
ing results on the first-view dataset EgoSchema.
The risk of VideoINSTA might be inherited from
open-source LLMs, such as bias and hallucinations.
Besides, We only use AI assistants (e.g., ChatGPT)
to conduct experiments in this research.
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A Case Studies

Figure 8: Sucess case. The ambiguity between the an-
swer options C) and D) is highlighted in bold. The
ground truth answer option is marked with a bullseye
symbol and the prediction of the VideoINSTA frame-
work is indicated with a crosshair symbol. In this case,
they are overlapped.

Success Case As shown in Figure 8, the VideoIN-
STA framework effectively addresses the ambiguity
between the actions "cleaning dishes" and "clean-
ing the kitchen." While "cleaning the kitchen" ap-
pears broader and potentially applicable, "cleaning
dishes" is more specific to the actual video con-
tent. A human viewer, after watching the video
and reviewing the answer options, would likely
determine that the individual is focused solely on
cleaning dishes, rather than wiping kitchen surfaces
or completing other tasks. Thus, "cleaning dishes"
is the more accurate selection.

Failure Case Figure 9 shows the failure case.
The task is to determine whether the importance
of precision stems from the need to cut the wood
"evenly and consistently" (option B) or to the "cor-
rect size" (option D). A brief review of the video
might suggest that both options are plausible. How-
ever, watching the full video reveals that only a
single piece of wood is involved throughout, mak-
ing "cutting to the correct size" the more accurate
answer. The option of "cutting evenly and con-
sistently" would imply the presence of multiple
pieces, which is not the case, even when the wood
temporarily leaves the camera’s view. Unlike a
human, who intuitively recognizes that the reap-
pearing wood is still the same and that no other
pieces exist, VideoINSTA struggles to track it con-
sistently due to its lack of an environmental con-
ciousness and the inability to track object identity.

This shortcoming prevents VideoINSTA from rec-
ognizing that "cutting evenly and consistently" is
irrelevant in this scenario, leading to the selection
of an incorrect answer instead of the ground-truth
response.

Figure 9: Failure case. The ambiguity between the an-
swer options B) and D) is highlighted in bold. The
ground truth answer option is marked with a bullseye
symbol and the prediction of the VideoINSTA frame-
work is indicated with a crosshair symbol. In this case,
our algorithm fails to predict the ground truth option D
and aims for B) instead.

B More Related Works

Video Language Models With the in-depth in-
vestigation into Multi-modal Large Language Mod-
els(MLLMs) (Gu et al., 2023; Wu et al., 2023;
Cui et al., 2024), there has been growing at-
tention to bridging video modality to generative
large language models such as Video-llama (Zhang
et al., 2023c), Video-LLaVA (Lin et al., 2023b),
LanguageBind (Zhu et al., 2023), VideoChat (Li
et al., 2023b), ChatUniV (Jin et al., 2024b) Intern-
Video (Wang et al., 2022a), etc., which are depen-
dent on meticulously designed model structures, or
adaptation layers. They suffer from large- scale
pertaining, or requiring proper datasets for instruc-
tion tuning such as InternVid (Wang et al., 2023b).
Therefore, a line of work utilizing LLM as a com-
pound system center or agent-based reasoning for
video understanding has been introduced, which
we discussed extensively in our baselines in Sec. 2
and experiments 1. Another line of work, focusing
on low-resource and even zero-shot understanding
of videos emerges, such as LLaVA-Next (Liu et al.,
2024), E3M (Bao et al., 2024), LongVLM (Weng
et al., 2024), C2C (Li et al., 2024), (Choi et al.,
2024), etc, where they enlight the task more lightly.
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C Supplementary Statistics

Dataset Statistics We report the split that we
use for our experiments in Table 4, the number of
tasks in those splits – i.e. the number of question-
answer-pairs – as well as the number of videos
within those splits. Furthermore, we report the
average, minimum and maximum video length in
seconds of the videos in the corresponding split –
these numbers can vary from the ones for the whole
datasets.

Datasets Split #Tasks #Videos Avg. Length Min. Length Max. Length
EgoSchema Public Test 500 500 180.0 180.0 180.0
NExT-QA Validation 4,996 570 42.2 10.0 180.0
IntentQA Test 2,134 576 44.9 6.0 180.0

ActivityNet-QA Test 8,000 800 112.1 3.0 285.7

Table 4: Dataset statistics.

Pre-trained model versions and statistics As
shown in Table 5, we abbreviate Large Language
Model with LLM, Vision Language Model with
VLM, Visual Temporal Grounding Model with
VTGM, and Vision Encoder with VE. Please refer
to the implementation details for the exact hyper-
parameters that we use, since they vary for some
different experiments and use cases.

Models Version Type #Params Context
ChatGPT 3.5 gpt-3.5-turbo-1106 LLM N/A 16k
ChatGPT 4 gpt-4-1106-preview LLM N/A 128k

Llama3 meta-llama/Meta-Llama-3-8B-Instruct LLM 8B 8k
UniVTG CLIP-B/32 Pretraining (Finetuned) VTGM N/A N/A
LaViLa Fair Checkpoint (Zhang et al., 2023a) VLM N/A 0

CogAgent THUDM/cogagent-vqa-hf, lmsys/vicuna-7b-v1.5 VLM 18B N/A

Table 5: Pre-trained model versions and statistics.

Method EgoSchema NExT-QA
w. TA-Seg. (Uniform) 0.600 (±0.004) 0.644 (±0.006)
w. TA-Seg. (KNN) 0.609 (±0.003) 0.640 (±0.004)
w. TA-Seg (DPCKNN) 0.601(±0.001) 0.647 (±0.001
w. TA-Seg. (C-DPCKNN) 0.628 (±0.001) 0.679 (±0.009)

Table 6: Ablation on different temporal segmentation
of VideoINSTA methods on EgoSchema and NExT-QA
datasets.

D Implementation Details

D.1 Experiment Setup
We split a dataset into equal-sized chunks and run a
sub-experiment on each of them for parallelization
purposes. We collect and aggregate the results of
all sub-experiments afterward to obtain the final
experiment result. We use the types of GPU servers:
NVIDIA RTX A6000 GPU, NVIDIA A100-PCIE-
40GB, Quadro RTX 8000, NVIDIA RTX 3090.

D.1.1 Details of Llama3
When we refer to Llama3, we use the instruction-
tuned version meta-llama/Meta-Llama-3-8B-
Instruct (AI@Meta, 2024), which is available
on HuggingFace (HuggingFace, 2024). We use
greedy sampling – comparable with a temperature
of 0.0 – throughout all our experiments.

D.1.2 Details of ChatGPT
When we refer to ChatGPT 3.5, we use the
instruction-tuned version gpt-3.5-turbo-1106, and
when we refer to ChatGPT 4, we use the
instruction-tuned version gpt-4-1106-preview Ope-
nAI, 2024a,b. Following (Zhang et al., 2023a), we
use a temperature of 1.0 for the summarization.

D.1.3 Details of LaViLa
For our experiments on EgoSchema, we use LaV-
iLa (Zhao et al., 2023b) as the action captioner.
Following (Zhang et al., 2023a), we use their re-
trained model checkpoint to avoid data leakage and
ensure a fair comparison. We uniformly sample
4 frames from each consecutive 1s-interval of the
video to obtain a caption.

D.1.4 Details of CogAgent
Following (Wang et al., 2024a), we leverage the
VLM CogAgent (Hong et al., 2024) as the action
captioner for our experiments on NExT-QA, Inten-
tQA and ActivityNetQA. Moreover, we use it as
the label-free object detector for our experiments
on all datasets. Specifically, we use the model
THUDM/cogagent-vqa-hf together with the tok-
enizer lmsys/vicuna-7b-v1.5, which are available
on HuggingFace (HuggingFace, 2024).

D.1.5 Details of UniVTG
We leverage UniVTG (Lin et al., 2023c) to get the
temporal grounding of a video and finally retrieve
the most important interval regarding the question
of a task. We use ViT-B/32 as the CLIP vision
encoder model version (Radford et al., 2021) to-
gether with their best-fine-tuned model checkpoint
(Showlab, 2024).

D.1.6 Details of C-DPCKNN
We use the CLIP vision encoder openai/clip-vit-
large-patch14 (Radford et al., 2021), which is
available on HuggingFace (HuggingFace, 2024).

D.2 Prompts
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You are given some language descriptions of a first-person view video. The video is
{length} seconds long. Each sentence describes a 1.0s clip. The descriptions are sequential
and non-overlapping which cover the whole video exactly. Here are the descriptions:
{interval_text}.\n Please give me a {words} words summary. When doing summarization, remember
that your summary will be used to answer this multiple choice question: {question}

Table 7: Action Captions Summarization Prompt Template for ChatGPT. Note that only linebreaks explicitly
indicated with "\n" are true linebreaks at runtime – the linebreaks of this document are just for more readability.
Parameters being filled at runtime are indicated with {coloured single curly brackets}.

You are given some language descriptions of a first person view video. The video is
{length} seconds long. Each sentence describes a 1.0s clip. The descriptions are sequential
and non-overlapping which cover the whole video exactly. Here are the descriptions:
{interval_text}.\n Please give me a summary of these action captions. Please write an
easy-to-read continuous text. You can use paragraphs, but do not use special formatting
such as bulleted or numbered lists. Please use {words} words for your summary. When doing
summarization, remember that your summary will be used to answer this multiple choice
question: {question}

Table 8: Action Captions Summarization Prompt Template for Llama3. The difference to the prompt template
for ChatGPT is highlighted in bold. Note that only linebreaks explicitly indicated with "\n" are true linebreaks
at runtime – the linebreaks of this document are just for more readability. Parameters being filled at runtime are
indicated with {coloured single curly brackets}.

You are given a list of the most eye-catching objects that were detected in each frame of
a video clip using a visual large language model. The list appears in the temporal order
of the frames. The video is {length} seconds long. Each sentence describes the objects
of a 1.0s clip. The object detections are sequential and non-overlapping which cover the
whole video exactly. Here are the object detections:\n\n{interval_text}.\n\nPlease give me
a {words} words summary of these object detections. When doing summarization, remember that
your summary will be used to answer this multiple choice question: {question}

Table 9: Object Detections Summarization Prompt Template for ChatGPT. Note that only linebreaks explicitly
indicated with "\n" are true linebreaks at runtime – the linebreaks of this document are just for more readability.
Parameters being filled at runtime are indicated with {coloured single curly brackets}.

You are given a list of the most eye-catching objects that were detected in each frame of
a video clip using a visual large language model. The list appears in the temporal order
of the frames. The video is {length} seconds long. Each sentence describes the objects
of a 1.0s clip. The object detections are sequential and non-overlapping which cover the
whole video exactly. Here are the object detections:\n\n{interval_text}.\n\nPlease give me
a summary of these object detections. Please write an easy-to-read continuous text. You can
use paragraphs, but do not use special formatting such as bulleted or numbered lists. Please
use {words} words for your summary. When doing summarization, remember that your summary
will be used to answer this multiple choice question: {question}

Table 10: Object Detections Summarization Prompt Template for Llama3. The difference to the prompt template
for ChatGPT is highlighted in bold. Note that only linebreaks explicitly indicated with "\n" are true linebreaks
at runtime – the linebreaks of this document are just for more readability. Parameters being filled at runtime are
indicated with {coloured single curly brackets}.
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# Video Question Answering
\n\nHi there! Now that you have studied the topic of video question answering for years, you
find yourself in the final exam of your studies. Please take your time to solve this task.
You can do it! You know everything that is required to master it. Good luck!

\n\n## What is Video Question Answering?
\n\nVideo Question Answering is a task that requires reasoning about the content of a video
to answer a question about it. In this exam, you will be given purely textual information
about a single clip of the video that has been extracted beforehand. Your task is to read
the information about the clip carefully and evaluate whether the given clip is needed to
answer the question about the video or not.

\n\n## Here is your task
\n\nPlease think step by step to evaluate the answerability of the given question and options
based on the given clip. The question is a single choice question with five answer options,
such that there is exactly one best answer option. Is the information in the given clip
sufficient to answer the given question with one of the given options? Please make sure to
include all relevant information in your evaluation.

\n\nPlease use the following criteria for evaluation:
\n 1. Irrelevant information {{’answerability’: 1}}: If information of this clip is not
even relevant to the question.
\n 2. Insufficient information {{’answerability’: 2}}: If information of this clip is
potentially useful to answer the question, but more clips are needed to confidently answer
the question.
\n 3. Sufficient information {{’answerability’: 3}}: If the information of this clip is
sufficient to answer the question and no other clip is needed.

\n\nPlease write your answerability X in JSON format {{’answerability’: X}}, where X
is in {{1, 2, 3}}.

\n\n## Here is the information about the video clip
\n\n### Information about one of four clips of the video
\n{lexical_node_state_representation}

\n\n### Question
\n\n{question}

\n\n### Five answer options
\n\n A) {option_0}
\n B) {option_1}
\n C) {option_2}
\n D) {option_3}
\n E) {option_4}

\n\n## Now it is your turn
\n\nPlease think step by step to provide your evaluation and provide the answerability X in
JSON format {{’answerability’: X}}, where X is in {{1, 2, 3}}:
\n\n

Table 11: Answerability Rating Prompt Template for ChatGPT. Note that only linebreaks explicitly indicated with
"\n" are true linebreaks at runtime – the linebreaks of this document are just for more readability. Parameters being
filled at runtime are indicated with {coloured single curly brackets}. JSON-formatting is indicated by {{double
curly brackets}}, as one level of brackets will be removed when the prompt template gets filled.

6596



# Video Question Answering
\n\nHi there! Now that you have studied the topic of video question answering for years, you
find yourself in the final exam of your studies. Please take your time to solve this task.
You can do it! You know everything that is required to master it. Good luck!

\n\n## What is Video Question Answering?
\n\nVideo Question Answering is a task that requires reasoning about the content of a video
to answer a question about it. In this exam, you will be given purely textual information
about a single clip of the video that has been extracted beforehand. Your task is to read
the information about the clip carefully and evaluate whether the given clip is needed to
answer the question about the video or not.

\n\n## Here is your task
\n\nPlease think step by step to evaluate the answerability of the given question and options
based on the given clip. The question is a single choice question with five answer options,
such that there is exactly one best answer option. Is the information in the given clip
sufficient to answer the given question with one of the given options? Please make sure to
include all relevant information in your evaluation. Moreover, make sure that you always
provide an answerability, even if it seems ambiguous or unsolvable.

\n\nPlease use the following criteria for evaluation:
\n 1. Irrelevant information {{’answerability’: 1}}: If information of this clip is not
even relevant to the question.
\n 2. Insufficient information {{’answerability’: 2}}: If information of this clip is
potentially useful to answer the question, but more clips are needed to confidently answer
the question.
\n 3. Sufficient information {{’answerability’: 3}}: If the information of this clip is
sufficient to answer the question and no other clip is needed.

\n\nPlease write your answerability X in JSON format {{’answerability’: X}}, where X
is in {{1, 2, 3}}.

\n\n## Here is the information about the video clip
\n\n### Information about one of four clips of the video
\n{lexical_node_state_representation}

\n\n### Question
\n\n{question}

\n\n### Five answer options
\n\n A) {option_0}
\n B) {option_1}
\n C) {option_2}
\n D) {option_3}
\n E) {option_4}

\n\n## Now it is your turn
\n\nPlease think step by step to provide your evaluation and provide the answerability X in
JSON format {{’answerability’: X}}, where X is in {{1, 2, 3}}:
\n\n

Table 12: Answerability Rating Prompt Template for Llama3. The difference to the prompt template for ChatGPT
is highlighted in bold. Note that only linebreaks explicitly indicated with "\n" are true linebreaks at runtime –
the linebreaks of this document are just for more readability. Parameters being filled at runtime are indicated
with {coloured single curly brackets}. JSON-formatting is indicated by {{double curly brackets}}, as one level of
brackets will be removed when the prompt template gets filled.

6597



# Video Question Answering
\n\nHi there! Now that you have studied the topic of video question answering for years, you
find yourself in the final exam of your studies. Please take your time to solve this task.
You can do it! You know everything that is required to master it. Good luck!

\n\n## What is Video Question Answering?
\n\nVideo Question Answering is a task that requires reasoning about the content of a
video to answer a question about it. In this exam, you will be given purely textual
information about one or more clips of a video that has been extracted beforehand. So
your task is to read the information about the video carefully and answer the question about it.

\n\n## Here is your task
\n\nBased on the given information about the most relevant clips of the video regarding the
question, please select exactly one of the given options as your best answer to the given
question. This is a single choice setting, such that there is exactly one best answer option.
Think step by step to find the best candidate from the given answer options regarding the
given question. Please write the letter of the best answer X in JSON format {{’best_answer’:
’X’}}, where X is in {{’A’, ’B’, ’C’, ’D’, ’E’}}.

\n\n## Here is the information about the video
\n\n### Information about the most relevant clips of the video regarding the question
\n{whole_video_state}

\n\n### Question
\n\n{question}

\n\n### Five answer options (please select exactly one)
\n\n A) {option_0}
\n B) {option_1}
\n C) {option_2}
\n D) {option_3}
\n E) {option_4}

\n\n## Now it is your turn
\n\nPlease choose the best option now. Think step by step and provide the best answer
(friendly reminder: in the requested JSON format {{’best_answer’: ’X’}}, where X is in {{’A’,
’B’, ’C’, ’D’, ’E’}}):
\n\n

Table 13: Question Answering Prompt Template for ChatGPT. Note that only linebreaks explicitly indicated with
"\n" are true linebreaks at runtime – the linebreaks of this document are just for more readability. Parameters being
filled at runtime are indicated with {coloured single curly brackets}. JSON-formatting is indicated by {{double
curly brackets}}, as one level of brackets will be removed when the prompt template gets filled.
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# Video Question Answering
\n\nHi there! Now that you have studied the topic of video question answering for years, you
find yourself in the final exam of your studies. Please take your time to solve this task.
You can do it! You know everything that is required to master it. Good luck!
\n\n## What is Video Question Answering?

\n\nVideo Question Answering is a task that requires reasoning about the content of
a video to answer a question about it. In this exam, you will be given purely textual
information about one or more clips of a video that has been extracted beforehand. So
your task is to read the information about the video carefully and answer the question about it.

\n\n## Here is your task
\n\nBased on the given information about the most relevant clips of the video regarding the
question, please select exactly one of the given options as your best answer to the given
question. This is a single choice setting, such that there is exactly one best answer option.
Think step by step to find the best candidate from the given answer options regarding the
given question. Please write the letter of the best answer X in JSON format {{’best_answer’:
’X’}}, where X is in {{’A’, ’B’, ’C’, ’D’, ’E’}}. Make sure that you always select the best
answer option, even if it seems ambiguous or unsolvable.

\n\n## Here is the information about the video
\n\n### Information about the most relevant clips of the video regarding the question
\n{whole_video_state}

\n\n### Question
\n\n{question}

\n\n### Five answer options (please select exactly one)
\n\n A) {option_0}
\n B) {option_1}
\n C) {option_2}
\n D) {option_3}
\n E) {option_4}

\n\n## Now it is your turn
\n\nPlease choose the best option now. Think step by step and provide the best answer
(friendly reminder: in the requested JSON format {{’best_answer’: ’X’}}, where X is in {{’A’,
’B’, ’C’, ’D’, ’E’}}):
\n\n

Table 14: Question Answering Prompt Template for Llama3. The difference to the prompt template for ChatGPT
is highlighted in bold. Note that only linebreaks explicitly indicated with "\n" are true linebreaks at runtime –
the linebreaks of this document are just for more readability. Parameters being filled at runtime are indicated
with {coloured single curly brackets}. JSON-formatting is indicated by {{double curly brackets}}, as one level of
brackets will be removed when the prompt template gets filled.
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# Assessment of Decision-Making
\n\nHi there! You are given an exam task and a students answer to the task.
\nYou are asked to assess the confidence level of the decision-making process in your
students answer based on the information provided in the exam task. Imagine you are the
teacher of the student and you want to know if you have provided enough information in the
task to make a well-informed decision. At the same time, you want to know if the student has
made a well-informed decision based on the information provided in the task.

\n\n## Here is the exam
\n\n{reasoning_history}

\n\n## Criteria for Evaluation
\n\n 1. Insufficient Information {{’confidence’: 1}}: If information is too lacking for
a reasonable conclusion.
\n 2. Partial Information {{’confidence’: 2}}: If information partially supports an
informed guess.
\n 3. Sufficient Information {{’confidence’: 3}}: If information fully supports a
well-informed decision.

\n\n## Assessment Focus
\nPlease evaluate based on the relevance, completeness, and clarity of the provided
information in the task in relation to the decision-making context of the students
answer.\nPlease provide the confidence in JSON format {{’confidence’: X}} where X is in {{1,
2, 3}}.\n\n

Table 15: Self-Reflection Prompt Template for ChatGPT. Note that only linebreaks explicitly indicated with "\n" are
true linebreaks at runtime – the linebreaks of this document are just for more readability. Parameters being filled
at runtime are indicated with {coloured single curly brackets}. JSON-formatting is indicated by {{double curly
brackets}}, as one level of brackets will be removed when the prompt template gets filled.

# Assessment of Decision-Making
\n\nHi there! You are given an exam task and a students answer to the task.
\nYou are asked to assess the confidence level of the decision-making process in your
students answer based on the information provided in the exam task. Imagine you are the
teacher of the student and you want to know if you have provided enough information in the
task to make a well-informed decision. At the same time, you want to know if the student has
made a well-informed decision based on the information provided in the task.

\n\n## Here is the exam
\n\n{reasoning_history}

\n\n## Criteria for Evaluation
\n\n 1. Insufficient Information {{’confidence’: 1}}: If information is too lacking for
a reasonable conclusion.
\n 2. Partial Information {{’confidence’: 2}}: If information partially supports an
informed guess.
\n 3. Sufficient Information {{’confidence’: 3}}: If information fully supports a
well-informed decision.

\n\n## Assessment Focus
\nPlease evaluate based on the relevance, completeness, and clarity of the provided
information in the task in relation to the decision-making context of the students
answer.\nPlease make sure that you always provide a confidence, even if it seems ambiguous
or unsolvable. Please provide the confidence in JSON format {{’confidence’: X}} where X is
in {{1, 2, 3}}.\n\n

Table 16: Self-Reflection Prompt Template for Llama3. The difference to the prompt template for ChatGPT is
highlighted in bold. Note that only linebreaks explicitly indicated with "\n" are true linebreaks at runtime – the
linebreaks of this document are just for more readability. Parameters being filled at runtime are indicated with
{coloured single curly brackets}. JSON-formatting is indicated by {{double curly brackets}}, as one level of
brackets will be removed when the prompt template gets filled.
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You are given some language descriptions of a first person view video. The video is 63
seconds long. Each sentence describes a 1.0s clip. The descriptions are sequential and
non-overlapping which cover the whole video exactly. Here are the descriptions: The camera
wearer pours the water in the. The camera wearer picks a. The camera wearer washes the plate.
The camera wearer washes the. The camera wearer washes the. The camera wearer scrapes the
container. The camera wearer washes the plate. The camera wearer washes the. The camera
wearer washes the. The camera wearer washes the tray with the sponge. The camera wearer
washes the. The camera wearer washes the. The camera wearer washes the. The camera wearer
washes the spoon. The camera wearer picks a. The camera wearer picks the bowl. The camera
wearer washes the tray. The camera wearer washes the. The camera wearer washes the. The
camera wearer washes the bowl. The camera wearer washes the. The camera wearer washes the.
The camera wearer washes the. The camera wearer washes the. The camera wearer washes the
tray. The camera wearer rinses the. The camera wearer pours water in the. The camera wearer
rinses the. The camera wearer washes the tray. The camera wearer washes the. The camera
wearer rinses the tray. The camera wearer closes the. The camera wearer lifts the basin.
The camera wearer holds the tray with both. The camera wearer washes the. The camera wearer
opens the. The camera wearer washes the tray with the sponge. The camera wearer washes the
tray with the. The camera wearer closes the. The camera wearer holds the tray. The camera
wearer opens the container. The camera wearer scrubs the. The camera wearer scrubs the
sink. The camera wearer scrubs the sponge with a sponge scrub. The camera wearer scrubs the.
The camera wearer scrubs the. The camera wearer scrubs the tray with a. The camera wearer
wipes the board with a sponge. The camera wearer scrubs the board with a. The camera wearer
squeezes the sponge. The camera wearer washes the chopping board. The camera wearer scrubs
the chopping board with a. The camera wearer washes the chopping board. The camera wearer
washes the chopping board with the. The camera wearer washes the. The camera wearer rinses
chopping board. The camera wearer washes the chopping board. The camera wearer rinses the
chopping. The camera wearer washes the chopping board. The camera wearer rinses the sponge.
The camera wearer washes the chopping board with the. The camera wearer opens the sink. The
camera wearer closes the dish.
Please give me a 180 words summary. When doing summarization, remember that your summary
will be used to answer this multiple choice question: Taking into account all the actions
performed by the camera wearer, what can you deduce about the primary objective and focus
within the video content?

Table 17: Action Caption Summarization Prompt Example for ChatGPT.
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You are given a list of the most eye-catching objects that were detected in each frame of a
video clip using a visual large language model. The list appears in the temporal order of
the frames. The video is 63 seconds long. Each sentence describes the objects of a 1.0s
clip. The object detections are sequential and non-overlapping which cover the whole video
exactly. Here are the object detections:

Sink; Dish rack; Square dish. Sink; Dishwashing soap dispenser; Dish rack. Sink;
Dish soap dispenser; Dish rack. Sink; Soap dispenser; Plastic bottle. Sink; Hand; Pan.
Sink; Dish soap dispenser; Black pan. Sink; Dish soap dispenser; Plastic bottle. Sink; Dish
soap dispenser; Plastic container. Sink; Hand; Dish soap. Sink; Dishwashing spray bottle;
Dish rack. A sink; A dish rack; A person’s hands. A sink; A faucet; A dish rack. Sink;
Dishwashing soap dispenser; Dish rack. Sink; Dish rack; Soap dispenser. Sink; Plate with
food remnants; Hand. Sink; Cutting board; Spray bottle. A sink; A hand washing dish soap
dispenser; A red chopping board. A sink; A faucet; A spray bottle. A sink; A faucet; A
bottle of dish soap. A sink; A black dish or container; A red cutting board. Sink; Dish
soap dispenser; Plastic bottle. Sink; Hand; Plastic bottle. A sink; A faucet; A bottle of
dish soap. Sink; Dish soap dispenser; Cutting board. Sink; Hands; Plastic bottle. Sink;
Dishwashing soap dispenser; Plastic bottle. A black tray or dish; A white container or
bowl; A bottle of liquid soap. Sink; Faucet; Dishwashing soap dispenser. Sink; Faucet;
Dishwashing soap. A sink; A faucet; A dish rack. A black container; A white container; A
faucet. A sink; A faucet; A black object (possibly a pan or a lid). A black plate; A silver
dish rack; A silver sink with a faucet. A sink; A faucet; A dishwashing soap dispenser. A
sink; A faucet; A dish rack. Sink; Plate; Cleaning spray bottle. Sink; Plate; Cleaning
spray bottle. Sink; Plate; Dish soap. A sink; A white plate; A bottle of liquid. A white
plate; A sink; A bottle. A green lid or cover; A red cutting board; A black container or
pot. A white plate; A red cutting board; A bottle of cleaning solution. Plate; Sink; Dish
rack. Sink; Plate; Dish rack. Sink; Dish rack; Plastic container. A white plate or dish;
A metal dish rack; A sink. Sink; Dishwashing detergent bottle; Cutting board. A sink; A
plate or tray; A bottle of dish soap. Sink; Plate; Cleaning bottle. A plate; A sink; A
bottle of dish soap. A sink; A faucet; A bottle of dish soap. A sink; A dish rack; A
bottle of dish soap. A sink; A dish rack; A bottle of dish soap. A sink; A dish rack;
A bottle of dish soap. Sink; Plate; Cutting board. Sink; Plate; Soap dispenser. Sink;
Plate; Dish soap dispenser. Sink; Plate; Dish soap. Sink; Plate; Soap dispenser. A sink; A
dish rack; A bottle of dish soap. Sink; Plate; Dish soap. Sink; Dish soap dispenser; Red
cutting board. A green container with a lid; A black frying pan or skillet; A metal dish rack.

Please give me a 180 words summary of these object detections. When doing summarization,
remember that your summary will be used to answer this multiple choice question: Taking
into account all the actions performed by the camera wearer, what can you deduce about the
primary objective and focus within the video content?

Table 18: Action Caption Summarization Prompt Example for ChatGPT.
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