
Findings of the Association for Computational Linguistics: EACL 2024, pages 697–705
November 12-16, 2024 ©2024 Association for Computational Linguistics

Categorial Grammar Supertagging via Large Language Models

Jinman Zhao and Gerald Penn
Department of Computer Science

University of Toronto
Toronto, Canada

jzhao,gpenn@cs.toronto.edu

Abstract

Supertagging is an essential task in Categorical
grammar parsing and is crucial for dissecting
sentence structures. Our research explores the
capacity of Large Language Models (LLMs) in
supertagging for both Combinatory Categorial
Grammar (CCG) and Lambek Categorial Gram-
mar (LCG). We also present a simple method
that significantly boosts LLMs, enabling them
to outperform LSTM and encoder-based mod-
els and achieve state-of-the-art performance.
This advancement highlights LLMs’ potential
in classification tasks, showcasing their adapt-
ability beyond generative capabilities. Our find-
ings demonstrate the evolving utility of LLMs
in natural language processing, particularly in
complex tasks like supertagging.

1 Introduction

In natural language processing (NLP), many down-
stream tasks utilize the syntax representation such
as Categorial Grammar (CG) of sentences (Sug-
imoto and Yanaka, 2022; Tian and Song, 2022).
Those syntax trees are typically obtained through
a two-step process (Xu et al., 2015; Bhargava and
Penn, 2020; Tian et al., 2020; Clark et al., 2018):
tag assignment, and tree construction. The step for
assigning tags to words is called supertagging.

One possible way to improve the performance
of supertagging is using LLMs. LLMs (Brown
et al., 2020; Touvron et al., 2023; Chowdhery et al.,
2023) have experienced many breakthroughs in re-
cent years and have been applied in various NLP
tasks (Wan et al., 2023; Wang et al., 2023). How-
ever, their application to CG supertagging has re-
ceived little attention. Indeed, a conventional point
of view is that, because most LLMs are decoder-
based, they are more suitable for generation tasks
rather than classification tasks. Previous studies
have shown that LLMs tend to underperform in
classification tasks (e.g. Yu et al., 2023). Smaller
encoder-based models, like RoBERTa (Liu et al.,

2019), operating in supervised settings have demon-
strated the ability to match or even surpass the
performance of much larger and more resource-
intensive decoder-based generative LLMs (Yu et al.,
2023). Because CG supertagging is a classifica-
tion task, modern techniques have only adopted
encoder-based models (Tian et al., 2020; Kogka-
lidis and Moortgat, 2023; Yamaki et al., 2023). The
capability of LLM-based supertagging methods has
not been fully explored.

In this work, we study the ability of LLMs for
CG supertagging. We compare different LLMs and
present a novel method for improving their perfor-
mance at supertagging tasks. Without applying our
new method, we find that LLMs are less accurate
than standard BiLSTM-based supertaggers. This is
because the architecture of encoder/BiLSTM-based
models allows them to extract features of context
provided by subsequent words, making them more
advantageous than LLMs. We find that this disad-
vantage of LLMs can be addressed by repeating
the input sentences. This new method enhances the
capability of decoder-based models in supertagging
tasks. The main contributions of our works are:

• We evaluate supertagging tasks using different
LLMs via in-context learning and fine-tuning
and show that LLMs are good CCG/LCG su-
pertagging reasoners.

• We propose a simple finetuning method to
make Llama2 finetuning performance State-
of-the-art.

2 Related Work

CCG Supertagging Bangalore and Joshi (1999)
was the first work to introduce the term "supertag"
for LTAG. The original CCG supertagger (Clark,
2002; Clark and Curran, 2007), employed a max-
imum entropy approach. Starting from Xu et al.
(2015), researchers began to apply sequential neu-
ral networks to tag each lexicon, also eliminating

697



the need for POS tags as inputs. From RNNbased
(Xu et al., 2015) to LSTM based (Lewis et al.,
2016; Bhargava and Penn, 2020; Clark et al., 2018)
and transformer based (Tian et al., 2020; Yamaki
et al., 2023). Also, some works use graph struc-
ture (Kogkalidis and Moortgat, 2023; Prange et al.,
2021). Yamaki et al. (2023) is the state-of-the-art
formatting CCG as a recursive composition in a
vector space. This work is more focused on parsing
instead of supertagging, it needs the information of
parsing during training while others only require
sentences and supertags.

Large Language Models for NLP tasks Re-
cently, there has been a trend toward using LLMs
for NLP tasks. For instance, Wan et al. (2023)
employs in-context learning on GPT-3 for Rela-
tion Extraction(RE). Wang et al. (2023); Xie et al.
(2023) adapts LLMs to the Named Entity Recogni-
tion (NER) task. LLMs have also been employed
for other tasks such as text summarization (Goyal
et al., 2023) and sentiment analysis (Sun et al.,
2023). However, Pangakis et al. (2023) argue that
LLM enhances text annotation but requires human
validation due to varying task effectiveness.

3 Method

In this section, we will show the methodologies
employed to utilize LLMs for supertagging. The
focus will be on two primary aspects: In-context
learning and fine-tuning a generative LLM.

3.1 In-context Learning for CG Supertagging

For the prompts, we structure them into three main
components:

1. Task instruction: This aims to leverage the
LLM’s capabilities for specialized tasks by
providing clear instructions, context for un-
derstanding, and a directive for the expected
output.

2. Exemplar for few-shot learning: For few-
shot learning, it is essential to provide the
LLM with several examples. These examples
serve as a guide for the model, demonstrating
how to perform the task.

3. Input sentence that we want to do supertag-
ging.

Appendix A illustrates the detail of the prompt we
use.

3.2 Fine-tuning for CG Supertagging

The specificity of CG supertagging highly relies on
the order. For instance, S/NP indicates the neces-
sity for an NP (noun phrase) to the right, whereas
S\NP signifies the need for an NP to the left. Given
this, the auto-regressive nature of LLMs, which pro-
cess sentences solely from left to right once, may
not be entirely sufficient for understanding the com-
plexity of CG supertagging. From this perspective,
we feed the input sequence to the model multiple
times to enhance comprehension(note this only in-
creases the length of each input, not the quantity of
the test data). We use "CG supertagging task." as
the instruction. Figure 1 is an example of a single
training data. We fine-tuned LLM in a manner akin
to traditional language model training, focusing on
minimizing the cross-entropy loss.

Figure 1: This is a demonstration of the text of each
training data of LLM during fine-tuning.

The intuition behind extending the length of each
training data by repeating the input text is rooted
in the combinatorial nature of CG. In CG, each
word’s supertag is contextually related to both the
preceding and subsequent words. This intricacy
makes it essential to provide a model, especially in
a decoder-only architecture, with an extended se-
quential context to adequately capture the relation-
ships between a word and its surrounding words.

By doubling the input length, for example, we
create a continuous, extended context that more
naturally mirrors the combinatorial interactions in-
herent in CG.

3.3 Linearization

Overall, we use the sequential text that consists
of {category word} pairs to represent the supertag-
ging result. We also use two different methods to
represent the categories.

Classification Based Supertagging can be re-
garded as a classification problem, so we have con-
structed a bijective mapping ID() from categories
to integers, using these integers to represent the
various classes (i.e., categories). This method sim-

698



plifies the representation of a wide range of cate-
gories by assigning each unique category a specific
integer, thereby facilitating easier processing and
classification by models. Below is an example with
ID(NP ) = 1 and etc:

{1 Google} {2 sells} {3 but} {1 Microsoft}
{2 buys} {1 shares} {4 .}

Generation Based While classification-based
text aligns it with traditional classification prob-
lems, this approach has a limitation: it cannot gen-
erate new classes. Moreover, even if the model
produces a new class represented by an integer, the
numeric form does not convey what the specific
category is. We also experimented with keeping
the entire category in string form, as demonstrated
in the following example:

{NP Google} {(S\NP)/NP sells} {conj but} {NP
Microsoft} {(S\NP)/NP buys} {NP shares} {. .}

For ICL, we only feed generation-based exem-
plars because CG usually contains a massive num-
ber of categories(more than 1000). This can lead
to difficulties for LLMs in distinguishing between
the various classes.

Due to the space limitation, we put the compari-
son of two linearizations in Appendix F.0.1.

4 Result

4.1 Experimental Setup
Model Selection We use the following classical
open and closed models:

• GPT-3.5 (Ouyang et al., 2022).

• GPT-41.

• Llama2 (Touvron et al., 2023) 7B/13B.

Dataset Selection For CCG we use CCG-
bank (Hockenmaier and Steedman, 2007)2 and re-
bank (Honnibal et al., 2010) for evaluation. For
LCG, we use LCGbank (Bhargava et al., 2024).

Statistics of CCGbank/CCGrebank/LCGbank
are demonstrated in Appendix B.

Tuning Method and Hyperparameter We use
LoRA (Hu et al., 2021) for tuning our model. Hy-
perparameters are listed in Appendix C. The train-
able parameter of LoRA is much smaller than full
fine-tuning.

1https://platform.openai.com/docs/
models/gpt-4-and-gpt-4-turbo

2https://catalog.ldc.upenn.edu/
LDC2005T13

Prompt Acc ReAcc
GPT-3.5 zero-shot 24.6 25.4

five-shot 36.0 38.4
GPT-4 zero-shot 37.2 41.8

five-shot 53.2 57.3

Table 1: ICL results for CCGbank via different LLMs.
All numbers are in percentage.

4.2 In-context Learning Result

We have observed that LLMs do indeed possess a
certain capacity for supertagging inference. Table 1
summarizes the performance of various LLMs. For
accuracy, we employ an absolute accuracy met-
ric, which reflects instances where the category
generated by the LLM matches the ground truth
exactly. We are interested in exploring whether
LLMs can capture the syntax of sentences. Thus,
we introduce a relative accuracy(ReAcc) metric(for
ICL only). In calculating relative accuracy, we
disregard the contents within "[]"; for example,
we treat "NP[nb]/N" and "NP/N" as equivalent.
This approach allows us to evaluate the models’
understanding of syntactic structures. Although
exact matches are ideal, a high degree of similar-
ity in category prediction—especially in the con-
text of CCG’s extensive(more than 1000 class) sys-
tem—still demonstrates significant supertag capa-
bility.

Additionally, in the ICL, GPT-4 significantly
outperforms other models. Llama2 series models
generated output either unreadable or nonsense.
Appendix E contains the ICL output of Llama. So
we did not put Llama2 results here. GPT-4 appears
to possess a certain level of supertagging capability,
achieving a 57.3% ReAcc rate in a 5-shot setting,
which indicates its ability to capture the structure
of a sentence. For the details of output cleaning,
please refer to Appendix D.

4.3 Fine-tuning Result

4.3.1 Main Result
We demonstrate the main results in Table 2, where
all Llama2-based models repeat the forward se-
quence 5 times and the output is generation-based.
For LoRA, we set rank=256. We found that our
method outperformed all previous supertaggers
across these banks.

For CCGbank, the best case is Llama2-13B
+ LoRA. Fine-tuning this configuration required
roughly 15 GPU hours on 2xA100s. Our word-

699

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://catalog.ldc.upenn.edu/LDC2005T13
https://catalog.ldc.upenn.edu/LDC2005T13


Model Acc LF
Clark et al. (2018) 96.1 -
Bhargava and Penn (2020) 96.00 90.9
Liu et al. (2021) 96.05 90.87
Prange et al. (2021) 96.09 -
Prange et al. (2021) 96.22 90.91
Tian et al. (2020) 96.25 90.58
Kogkalidis and Moortgat (2023) 96.29 -
Yamaki et al. (2023) 96.6 92.12
Llama2 7B + Full 96.1 -
Llama2 7B + LoRA 96.36 -
Llama2 13B + LoRA 96.64 92.05

Model Acc
Kogkalidis et al. (2019) 90.68
Prange et al. (2021) 94.83
Kogkalidis and Moortgat (2023) 95.07
Yamaki et al. (2023)† 95.48
Llama2 13B + LoRA 95.5

Model Acc Parsable
Kogkalidis and Moortgat (2023)† 95.81 92.47
Llama2 13B + LoRA 96.25 99.17

Table 2: Fine-tuning results for CCGbank (top), CCGre-
bank (middle), and LCGbank (bottom). All numbers
are in percentage. † are our replication.

level accuracy archives state-of-the-art. We have
also presented results for parsing (LF) using our su-
pertags with the C&C parser(Clark, 2015). Yamaki
et al. (2023) focuses more on parsing rather than su-
pertagging and includes learning derivations during
training, achieves higher LF scores than our work.
However, our parsing performance has exceeded
all other prior works, confirming the robustness of
the supertags generated by our method.

For LCG, its derivations are slightly different
from those of CCG, and there is no correspond-
ing annotation in the LCGbank. Therefore, we
compare our method to the second-best supertag-
ger (Kogkalidis and Moortgat, 2023) on the CCG-
Bank and rebank. We employ the parser from Zhao
and Penn (2024) for parsing performance. The re-
sults show a significant improvement in word-level
supertag accuracy. From a parsing perspective,
92.47% of the sentences tagged by Kogkalidis and
Moortgat (2023) are parsable, whereas 99.17% of
the output from our tagger is parsable. These re-
sults further confirm our model’s ability to learn
syntax.

Furthermore, we found that LoRA’s outcomes

were superior to those of full fine-tuning. The accu-
racy for Llama2-7B full fine-tuning on CCGbank
is 96.1%, which is worse than the performance of
Llama2-7B + LoRA.

4.3.2 Impact of Repeating Times

In this experiment, we selected the setting of rank 8
+ generation-based output for CCGbank supertag-
ging. We chose to showcase this combination
because, in this setup, the model initially used
only one forward sequence, both Llama2-7B and
Llama2-13B’s performance was even lower than
the classical BiLSTM with ELMo word embed-
ding (the baseline in Bhargava and Penn (2020))
model. However, simply by increasing the number
of repetitions of the forward sequence, Llama2-
13B’s performance surpassed that of the BERT-
based model (Tian et al., 2020). This improvement
underscores the importance of repeating input in
LLM text analysis. It suggests that the repetition
of input sequences can help the model better under-
stand and analyze the text, leading to more accurate
and reliable results. See Figure 2 for the detailed
performance.

Figure 2: Demonstration of the impact of the number of
repeating.

For all other factors that influence the model’s
performance, we put analysis in Appendix F.

5 Conclusion

We examine LLM’s ability to perform supertag-
ging tasks. We find that providing repeating input
to LLMs can boost their performance. Our results
show that generative models may also be applied
to capture the syntax of natural languages. Future
works may re-evaluate the capability of decoder-
based auto-regressive models on other classifica-
tion problems.

700



Acknowledge

We would like to express our gratitude to Aditya
Bhargava for his invaluable contributions to the
replication of the models in prior research.

Limitation

Due to the limitation of GPU resources, our re-
search did not explore the potential of larger mod-
els. This decision inevitably limits the breadth
of our experimentation and potentially the ceiling
of accuracy we might have achieved. Employing
models with a greater number of trainable parame-
ters and adopting advanced tuning strategies could
very likely enhance model performance. However,
such approaches demand significantly more com-
putational resources. The trade-off between the
potential gains in accuracy and the substantial in-
crease in required resources presents a critical con-
sideration. This limitation underscores a broader
challenge within the field: balancing the pursuit of
state-of-the-art performance with the practicalities
of computational resource availability and environ-
mental impact.

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2):237–265.

Aditya Bhargava, Timothy A. D. Fowler, and Gerald
Penn. 2024. Lcgbank: A corpus of syntactic anal-
yses based on proof nets. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, Turin, Italy.

Aditya Bhargava and Gerald Penn. 2020. Supertag-
ging with CCG primitives. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 194–204, Online. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised sequence
modeling with cross-view training. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1914–1925, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Stephen Clark. 2002. Supertagging for Combinatory
Categorial Grammar. In Proceedings of the Sixth
International Workshop on Tree Adjoining Gram-
mar and Related Frameworks (TAG+6), pages 19–24,
Universitá di Venezia. Association for Computational
Linguistics.

Stephen Clark. 2015. The java version of the c&c parser:
Version 0.95.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2023.
News summarization and evaluation in the era of
gpt-3.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Matthew Honnibal, James R. Curran, and Johan Bos.
2010. Rebanking CCGbank for improved NP inter-
pretation. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 207–215, Uppsala, Sweden. Association for
Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Konstantinos Kogkalidis and Michael Moortgat. 2023.
Geometry-aware supertagging with heterogeneous
dynamic convolutions. In Proceedings of the 2023
CLASP Conference on Learning with Small Data
(LSD), pages 107–119, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive type-logical su-
pertagging with self-attention networks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 113–123, Flo-
rence, Italy. Association for Computational Linguis-
tics.

701

https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://aclanthology.org/W02-2203
https://aclanthology.org/W02-2203
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
http://arxiv.org/abs/2209.12356
http://arxiv.org/abs/2209.12356
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://aclanthology.org/P10-1022
https://aclanthology.org/P10-1022
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://aclanthology.org/2023.clasp-1.13
https://aclanthology.org/2023.clasp-1.13
https://doi.org/10.18653/v1/W19-4314
https://doi.org/10.18653/v1/W19-4314


Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 221–231, San Diego,
California. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021.
Generating ccg categories. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13443–13451.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Nicholas Pangakis, Samuel Wolken, and Neil Fasching.
2023. Automated annotation with generative ai re-
quires validation.

Jakob Prange, Nathan Schneider, and Vivek Sriku-
mar. 2021. Supertagging the Long Tail with Tree-
Structured Decoding of Complex Categories. Trans-
actions of the Association for Computational Linguis-
tics, 9:243–260.

Tomoki Sugimoto and Hitomi Yanaka. 2022. Compo-
sitional semantics and inference system for tempo-
ral order based on Japanese CCG. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 104–114, Dublin, Ireland. Association
for Computational Linguistics.

Xiaofei Sun, Xiaoya Li, Shengyu Zhang, Shuhe Wang,
Fei Wu, Jiwei Li, Tianwei Zhang, and Guoyin Wang.
2023. Sentiment analysis through llm negotiations.

Yuanhe Tian and Yan Song. 2022. Combinatory gram-
mar tells underlying relevance among entities. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 5780–5786, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Supertag-
ging Combinatory Categorial Grammar with attentive
graph convolutional networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6037–6044,
Online. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
GPT-RE: In-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3534–3547, Singapore.
Association for Computational Linguistics.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023. Gpt-ner: Named entity recognition via large
language models.

Tingyu Xie, Qi Li, Jian Zhang, Yan Zhang, Zuozhu
Liu, and Hongwei Wang. 2023. Empirical study of
zero-shot NER with ChatGPT. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 7935–7956, Singapore.
Association for Computational Linguistics.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 250–
255, Beijing, China. Association for Computational
Linguistics.

Ryosuke Yamaki, Tadahiro Taniguchi, and Daichi
Mochihashi. 2023. Holographic CCG parsing. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 262–276, Toronto, Canada. As-
sociation for Computational Linguistics.

Hao Yu, Zachary Yang, Kellin Pelrine, Jean Fran-
cois Godbout, and Reihaneh Rabbany. 2023. Open,
closed, or small language models for text classifica-
tion?

Jinman Zhao and Gerald Penn. 2024. A generative
model for lambek categorial sequents. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation, Turin, Italy.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372.

702

https://doi.org/10.18653/v1/N16-1026
http://arxiv.org/abs/2306.00176
http://arxiv.org/abs/2306.00176
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.18653/v1/2022.acl-srw.10
https://doi.org/10.18653/v1/2022.acl-srw.10
https://doi.org/10.18653/v1/2022.acl-srw.10
http://arxiv.org/abs/2311.01876
https://doi.org/10.18653/v1/2022.findings-emnlp.424
https://doi.org/10.18653/v1/2022.findings-emnlp.424
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.emnlp-main.214
http://arxiv.org/abs/2304.10428
http://arxiv.org/abs/2304.10428
https://doi.org/10.18653/v1/2023.emnlp-main.493
https://doi.org/10.18653/v1/2023.emnlp-main.493
https://doi.org/10.3115/v1/P15-2041
https://doi.org/10.18653/v1/2023.acl-long.15
http://arxiv.org/abs/2308.10092
http://arxiv.org/abs/2308.10092
http://arxiv.org/abs/2308.10092
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372


Figure 3: This is a demonstration of an in-context learn-
ing prompt. The prompt is divided into three key com-
ponents: instruction, exemplar and input sentence.

A In-Context Learning Example

See Figure 3 for ICL CCG.

B CG Bank Statistics

See Table 3a for CCGbank, Table 3b for rebank
and Table 3c for LCGbank.

C Hyperparameter

We tune Llama2 on a platform provided by LLaMa-
Factory (Zheng et al., 2024), which uses PyTorch
and the Hugging Face library. For inference, the
temperature was set to 0 to enhance the stability of
the output. The learning rate was set at 3e-5, with
the max new tokens being 1024, and the learning
rate scheduler type is cosine. LoRA targets are
q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj
and down_proj. Use the valid set for tuning pur-
poses.

D Output Cleaning

The sequences generated by LLM during ICL may
not always be in the desired format due to the fol-
lowing several reasons:

• Tokenizer inconsistencies: For instance, some
tokens in the CCGbank that consist of two
consecutive words might be interpreted as a
single word by the LLM’s tokenizer.

Train Valid Test
Token # 929552 45422 55371
frequent(≥100) 919946 44973 54825
uncommon(≥10) 7549 354 442
rare(≥1) 2057 66 82
unseen(=0) 0 29 22
Sentence # 39604 1913 2407
Category # 1286 394 435

(a) Statistics of CCGbank.

Train Valid Test
Token # 943204 46201 56395
frequent(≥100) 931037 45614 55698
uncommon(≥10) 9640 459 563
rare(≥1) 2527 97 107
unseen(=0) 0 31 27
Sentence # 39604 1913 2407
Category # 1574 478 538

(b) Statistics of CCG rebank.

Train Valid Test
Token # 1054937 45656 55641
frequent(≥100) 1046549 45339 55252
uncommon(≥10) 6607 246 296
rare(≥1) 1781 64 82
unseen(=0) 0 7 11
Sentence # 44871 1921 2416
Category # 1086 296 327

(c) Statistics of LCGbank.

Table 3: Statistics of various categorial grammar
banks, split by train/valid/test set. Note that for fre-
quent/uncommon/rare/unseen tokens, it is determined
by the number of occurrences(in train) of the token’s
category not the number of occurrences of the token
itself.

703



• Addition or omission of words: While these
modifications might not change the semantics,
they change the structure of the sentence.

• Word modifications: Alterations such as tense
changes, typo correction, switching from plu-
ral to singular form, or changing from upper-
case to lowercase.

We use the longest common subsequence (LCS)
algorithms solved by dynamic programming. The
process begins by identifying the LCS between the
prediction and the ground truth. Subsequently, we
only consider the categories for the words within
this sequence that are correctly predicted when cal-
culating accuracy. This accuracy is then divided by
the total token count. Example outputs are listed
in Table 4. To address these issues, we use the
longest common subsequence (LCS) algorithms
solved by dynamic programming. The process be-
gins by identifying the LCS between the predic-
tion and the ground truth. Subsequently, we only
consider the categories for the words within this
sequence that are correctly predicted when calcu-
lating accuracy. This accuracy is then divided by
the total token count, for CCG, as illustrated in
Table 3a, which in this context is 55,371.

This metric impacts accuracy to some extent,
especially in the ICL, where we’ve found that the
tokenizer is different than CCGbank.

Ground truth Generated output
{S/S No} {NP[nb]/N No}

{, ,} {, ,}
{NP it} {NP it}

{(S[dcl]\NP)/NP was} {NP/N is}
{(S\NP)\(S\NP) n’t} {NP n’t}

{N/N Black} {N Black}
{N Monday} {N monday}

{..} {..}

Table 4: Demo for computing accuracy after LCS. The
total token is 8, correct predictions are {, ,}, {NP it},{.
.}. So accuracy is 3/8.

E Llama Output

Table 5 demonstrates the output of Llama2-7B with
input sentence ‘Big investment banks refused to
step up to the plate to support the beleaguered
floor traders by buying big blocks of stock, traders
say.’.

Table 6 demonstrates the output of Llama2-7B
with input sentence ‘The 49 stock specialist firms
on the Big Board floor – the buyers and sellers of

last resort who were criticized after the 1987 crash
– once again could n’t handle the selling pressure
.’.

Table 7 demonstrates the output of Llama2-13B
with input sentence ‘Big investment banks refused
to step up to the plate to support the beleaguered
floor traders by buying big blocks of stock , traders
say .’.

F Impact of other factors

F.0.1 Impact of Linearization
Table 8 shows that generation-based has higher ac-
curacy. This experiment is under the setting that
tuning Llama2-7B with rank=2 and without repeat-
ing the input.

From Table 8, we can see that there isn’t a sig-
nificant difference between the two methods of
linearization; however, generation-based is slightly
better.

F.0.2 Impact of Rank
Figure 4 the impact of rank during tuning with
feeding input twice. We can see that rank and
accuracy are positively correlated, with accuracy
converging at a rank of 256.

Figure 4

F.0.3 Impact of Beam
Figure 5 demonstrates how the beam influences
the accuracy. While the beam increases, accuracy
grows.

704



Generated output
1. Big - N
2. investment - N
3. banks - N
4. refused - N/N
5. step - N
6. up - N
7. to - N
8. plate - N
9. support - N
10. beleaguer - N
...

Table 5: Llama2 output1.

Generated output
1. The - S
2. stock - N
3. specialist - N
4. firms - N
5. on - P
6. the - S
7. Big - N
8. Board - N
...

Table 6: Llama2 output2.

Generated output
1. "Big" - N
2. "investment" - N
3. "banks" - NP
4. "refused" - conj
5. "to" - prep
6. "step" - V
7. "up" - adv
8. "to" - prep
...

Table 7: Llama2 output3. With non-CCG primitives.

Linearization Acc(%)
Classification based 95.79

Generation based 95.83

Table 8: Result for different linearization methods.

Figure 5: Impact of beam.

705


