
Findings of the Association for Computational Linguistics: EACL 2024, pages 6681–6695
November 12-16, 2024 ©2024 Association for Computational Linguistics

A Training Data Recipe to Accelerate
A* Search with Large Language Models

Devaansh Gupta
devaansh@cs.ucla.edu

Nanyang Technological University
University of California, Los Angeles

Boyang Li
boyang.li@ntu.edu.sg

Nanyang Technological University

Abstract

Combining Large Language Models (LLMs)
with heuristic search algorithms like A* holds
the promise of enhanced LLM reasoning and
scalable inference. To accelerate training and
reduce computational demands, we investigate
the coreset selection problem for the training
data of LLM heuristic learning. Few meth-
ods to learn the heuristic functions consider
the interaction between the search algorithm
and the machine learning model. In this work,
we empirically disentangle the requirements
of A* search algorithm from the requirements
of the LLM to generalise on this task. Sur-
prisingly, we find an overlap between their re-
quirements; A* requires more accurate predic-
tions on search nodes near the goal, and LLMs
need the same set of nodes for effective gen-
eralisation. With these insights, we derive a
data-selection distribution for learning LLM-
based heuristics. On three classical planning
domains, maze navigation, Sokoban and slid-
ing tile puzzles, our technique reduces the num-
ber of iterations required to find the solutions
by up to 15×, with a wall-clock speed-up of
search up to 5×. The code has been made avail-
able at https://github.com/devaansh100/
a_star.

1 Introduction

Contrary to the view that Large Language Models
(LLMs) serve as a monolithic paradigm for intel-
ligence, the dual-process theory of cognitive sci-
ence (Stanovich and West, 2000; Kahneman, 2011)
posits that human cognition consists of two closely
collaborating systems, System 1 and System 2. Sys-
tem 1 exhibits typical traits of statistical learning
such as fast inference and slow adaptation to novel
problems. In comparison, System 2 can solve novel
problems and excels at logical reasoning, but per-
forms slow inference.

Recent analyses analogize LLMs to Sys-
tem 1 (Saha et al., 2024; Wang et al., 2024), as

LLMs perform poorly at novel, out-of-distribution
problem formulations (Wu et al., 2024) or problems
that require planning and reasoning (Valmeekam
et al., 2023; Tiong et al., 2024; Cheng et al., 2024;
Kambhampati et al., 2024). On the other hand, tree-
search methods like A* (Hart et al., 1968) and vari-
ants (e.g., Korf 1985; Kocsis and Szepesvári 2006),
provide classic solutions to logical reasoning and
planning, but they are unable to learn from past
experiences and limited in speed due to sequential
dependencies. Though it has been speculated that
Artificial General Intelligence requires both Sys-
tem 1 and System 2 capabilities (Saha et al., 2024;
Yu et al., 2024), how to fruitfully combining LLMs
with search techniques remains an open problem.

We study the problem of using LLMs to learn
A* heuristics, which are functions that estimate
the distance from a search node to the goal state.
However, it can be computational demanding to
train LLMs and to generate training data, as ground-
truth labels for training can only be obtained from
successfully solved problems. With this paper, we
aim to improve the efficiency of heuristic learning
by selecting a small subset of training data, known
as the coreset, which would lead to near-identical
A* performance as the whole dataset. To the best of
our knowledge, no previous work investigated the
coreset selection problem for A* heuristic learning.

A complication of coreset selection in the A*
+ LLM setup is that the two algorithms may im-
pose different requirements on training data. In
this work, we attempt to disentangle and individ-
ually quantify the requirements of the two algo-
rithms. We empirically test how different training
data would change the generalization of the LLM,
and how A* reacts to generalization errors in dif-
ferent positions of the search trajectory.

We divide the training trajectory into three
equally sized portions: the beginning, the middle,
and the end. First, we evaluate their effectiveness
as training data. This is inspired by research us-

6681

https://github.com/devaansh100/a_star
https://github.com/devaansh100/a_star

ing training data difficulty as a metric for coreset
selection (Paul et al., 2021). A natural definition
for difficulty in A* is the distance to goal, which
indicates how many decisions must be made before
reaching the goal. Intuitively, it should be more dif-
ficult to guess the exact distance to goal at a given
search node if the search node is in fact farther
away from the goal. Further, to simulate the effect
of LLM noise on A*, we inject random errors into
oracle heuristic values in the three portions and
observe effects on the search length.

We obtain interesting and unexpected findings.
For the LLM, training on the last portion, where
the search node is closest to the goal and the dis-
tances are easiest to fit, leads to the best generaliza-
tion among the three portions. Unexpectedly, A*
demonstrates a similar behavior; erroneous predic-
tions on the end portion are the most detrimental
to search efficiency, even though one might expect
earlier decisions to be more important in pruning
search nodes. These observations suggest that we
should prioritize training data from the last portion,
which would lead to overall good LLM generaliza-
tion and best accuracy on the end portion, which in
turn accelerates search.

Accordingly, we devise a planner-aware sam-
pling strategy for training data, which prioritizes
search nodes near the end. In addition, this sam-
pling strategy is general enough to be combined
with other coreset selection methods. The pro-
posed strategy incurs, on average, 9.5% fewer A*
search steps than uninformed baselines and, in
some cases, outperforms models trained with dou-
ble the amount of data.

Our contributions can be summarized as follows,

1. To the best of our knowledge, we are the first
work to study the coreset selection problem
for A* heuristic learning. Further, we propose
a mathematical criterion to select training data
based on their distance to goal.

2. We study the training data requirements for
the generalization of the the learned heuristic
function and how heuristic errors affect A*
performance, and identify a common require-
ment shared by the two algorithms.

3. Subsequently, we propose a general planner-
aware technique to select training data for
an LLM-based heuristic function. Our tech-
nique outperforms uniform pruning and exist-
ing baselines in extensive experiments.

2 Related Works

We review several research directions related to our
work. For a tabular summary of the works, see
subsection A.5.

2.1 Learning Heuristics for Planning

Machine Learning Techniques Learning for
planning problems that aims to reduce the search
length can be traced back at least to Yoon et al.
(2006); Fern et al. (2011). This task was posed
as a regression problem, learned with neural net-
works (Arfaee et al., 2011; ús Virseda et al., 2013).
Post their success, more recent works explored vari-
ous neural architectures and objective functions for
this problem (Chrestien et al., 2021; Groshev et al.,
2018; Kirilenko et al., 2023). However, existing
methods do not cater to specific requirements of
the search algorithm.

Search-aware Techniques Some works consider
the requirements of the search algorithm during
learning; Yonetani et al. (2021); Vlastelica et al.
(2019) reformulate each step of the planner as a dif-
ferentiable function, which can be optimized with
the loss calculated at the end of search. However,
propagating gradient through time can be compute-
intensive. Similarly, Speck et al. (2021); Orseau
et al. (2023); Orseau and Lelis (2021) learn heuris-
tics by performing reinforcement learning, which
could require significant trial-and-error. In this
work, we take an alternate data-centric approach to
optimize training data. With this, we can lower the
computational cost during training, while maintain-
ing the quality of the learned heuristic.

2.2 Large Language Models in Search

Tree Creation by LLMs In contrast to our focus
on LLMs as heuristic functions, previous works
have also explored using LLMs as a world model
that directly generates the action given the environ-
mental state in search. Yao et al. (2024) uses such
a framework to build a tree and traverses it with
depth/breadth-first search, while Hao et al. (2023)
extends it to Monte Carlo Tree Search (MCTS),
where the LLM selects the tree node to be expanded
and generates its children.

LLMs with External Planners Besides a heuris-
tic, LLMs have been combined with external
planners in various capacities. For instance,
Valmeekam et al. (2023) uses an LLM with the

6682

LPG planner (Gerevini et al., 2002), which itera-
tively corrects errors in a plan. Seeding LPG with
an LLM plan has been shown to work better than a
random plan. LLMs have also been used to trans-
late tasks to formal languages for symbolic solvers
like PDDL (Liu et al., 2023) and ASP (Yang et al.,
2023). Combining such planners with LLMs has
also been explored in dynamic settings to incor-
porate environment feedback (Guan et al., 2023;
Dagan et al., 2023). While these works primar-
ily use off-the-shelf LLMs to improve symbolic
planners, our work aims to train an LLM.

Improving LLM-based Heuristics Shinn et al.
(2024) improved LLM heuristics by incorporating
failure states into the in-context-learning prompt.
This has further been incorporated into tree-based
frameworks (Zhou et al., 2023a). Such failure
states are discovered during the course of solving a
problem, and thus are restricted to that particular
problem instance. In contrast, we aim to train a
generic heuristic function that works for all prob-
lem instances in a domain. An alternate line of
work (Lehnert et al., 2024; Gandhi et al., 2024)
utilizes chain-of-thought prompting for LLM plan-
ning and trains the LLM on the traces of tree-search
algorithms, implicitly learning an improved heuris-
tic. In contrast, we explicitly learn the heuristic by
supervised learning.

2.3 Optimising Training Data

Coreset Selection involves pruning the training
dataset to only contain important datapoints, with-
out a significant drop in performance. While vari-
ous works exist for LLM pre-training (Paul et al.,
2021; Marion et al., 2023; Abbas et al., 2023), to
the best of our knowledge, we are the first work to
study this in the context of heuristic learning. Our
findings correlate with those of Zhou et al. (2023b);
Sorscher et al. (2022); easier data is required for
learning in the low-data regime.

3 Preliminaries

3.1 A* Search

A* is a tree-based search algorithm that aims to
find a path between a start node and any goal node
by building a tree T . The algorithm is presented
as Algorithm 1. The set of all tree nodes is de-
noted as N . For each node n, A* search keeps
track of two values, (i) historical cost g(n), which
is the distance between the start node and n and (ii)

heuristic h(n) which is an estimate of the true dis-
tance h∗(n) between n and the closest goal node.
Each node may be associated with a state s(n). An
action modifies the state, causing a transition to a
new node. For the search, A* maintains two lists,
the frontier list Pfrt and the closed list Pcld. At the
beginning, the closed list is empty and the frontier
list is initialised with the start node. The search is
terminated when either a goal state is encountered,
or Pfrt is empty. Each iteration performs two steps,
described below.

Selection This step picks the most-promising leaf
node in search tree, which has the least cost f(n) =
g(n)+h(n). All leaf nodes are stored in the frontier
list. If the state of the selected node is equal to
the goal state, the search is terminated. Else, the
expansion step is performed.

Expansion This step adds new children nodes
to the selected node, thereby expanding the search
tree. A child node is only added to the search tree
if and only if there does not exist a node with the
same state in either the frontier, or the closed list,
with a lower f(·) value. Finally, the selected node
is moved from the frontier to the closed list.

We define the search length S of A* as the length
of the closed list1 after termination of the search.
The use of h(n) makes A* an informed search algo-
rithm, significantly reducing the size of the closet
list compared to uninformed search. The path
from start to goal, defined as π = (n0, n1...nl),
is the sequence of l nodes from the start node
to the goal node. The start-to-goal path with
minimum length is called the optimal path, de-
noted by π∗. A* guarantees that the resulting path
will be optimal if the heuristic is admissible, i.e.,
h(n) ≤ h∗(n),∀ n ∈ N . It can be shown that with
h(·) = h∗(·) and non-trivial tie-breaking, A* will
act as an optimal policy with S = |π∗|. An inad-
missible heuristic, however, does not necessarily
create sub-optimal solutions.

3.2 Training Data for the Heuristic LLM

Our goal is train a language model θ, that, given a
node n, can predict the residual d∗(n) = h∗(n)−
h(n) between the perfect heuristic h∗(n) and a
quick estimate h(n). Given a series of similar
problem instances, we derive training data from
their A* search trees after a search is complete.
For each tree node n, computing the ground-truth

1which is equal to the number of search iterations

6683

Algorithm 1 A* Search

Pfrt ← {nstart}
Pcld ← {}
while |Pfrt| > 0 do

n← argminn∈Pfrt
f(n) ▷ Selection

if goal-state(s(n)) then
return n

end if
for c ∈ children(n) do ▷ Expansion

g(c)← g(n) + 1
f(c)← g(c) + h(c)
if (∄m ∈ Pfrt ∪ Pcld, s(c) = s(m)) or
(∃m ∈ Pfrt ∪ Pcld, s(c) = s(m) and
f(c) < f(m))

then
Tree T ← T ∪ {c}
Pfrt ← Pfrt ∪ {c}

end if
end for
Pfrt ← Pfrt − {n}
Pcld ← Pcld ∪ {n}

end while

d∗(n) would require running A* starting from
node n, which quickly becomes prohibitively ex-
pensive as the problem size grows. Following
Chrestien et al. (2021); ús Virseda et al. (2013),
we only consider nodes on the optimal path. Af-
ter the first A* run, their h∗(·) is trivial: for
any node nj ∈ π∗, h∗(nj) = |π∗| − j. For-
mally, the training sequences X are given by X =⋃

π∗
i ∼ΓN

i=0
{(nj , d

∗(nj)), nj ∈ π∗
i }.

3.3 Loss functions

We train the LLM with the L2 loss

LL2 = (fθ(n)− d∗(n))2 (1)

where fθ represents a forward pass of the LLM.
We use encoder-decoder transformers and add a
regression head ϕL2 on the decoder that predicts
d∗(n) given the ⟨BoS⟩ token as the input.

Additionally, since the LLM can be trained in a
text-to-text setting, we train a separate model with
the canonical autoregressive loss, given by:

LLM = − log p(d∗(n)|θ) (2)

With LLM , the pre-trained language model head
ϕLM is used.

3.4 Inference

Inference involves leveraging the trained LLM in
A* search. During the expansion step, children
nodes to be evaluated are converted into an LLM
prompt, from which the LLM predicts d(n). This
value is added to the quick estimate of h(n). No-
tably, only a single forward pass is performed per
expansion as we collate all children nodes as one
batch. Additionally, we cache these prompts, such
that if a state is revisited in another node m, d(m)
can simply be retrieved.

For θ trained with LLM , we perform top-k de-
coding, with k = 52, along with self-consistency
(Wang et al., 2022), predicting 3 sequences, as this
works slightly better in practice.

The exact prompt inputs for the encoder have
been provided in subsection A.2.

3.5 Problem Domains

We conduct our experiments on three problems
domains. Each domain comprises of the in-
distribution (IID) and out-of-distribution (OOD)
test sets for a total of six datasets.

Maze Navigation is a standard maze puzzle that
involves finding an unobstructed path from the start
to the goal state. The state of a node s(·) is charac-
terized by the position of the player on the board.
The quick admissible heuristic function used in the
training data (and reference solutions) is the Man-
hattan distance between the player and the goal
positions. Training and validation is performed on
sequences derived from mazes of size 20×20. The
IID test split consists of mazes of the same size,
while OOD split consists of mazes of size 30× 30.

Sokoban is a puzzle game involving a player
pushing one or more boxes to fixed docks. This
puzzle is considerably harder than maze, since a
few wrong moves can lead to deadlocked states.
The state of a node is characterized by the posi-
tion of the player on the board, and the position
of the boxes. Note that all boxes and docks are
identical. The quick admissible heuristic function
used is the sum of the minimum Manhattan dis-
tance between the player position and a box, and
the sum of Manhattan distances between the boxes
and their assigned docks. Boxes are assigned to
docks by solving the minimum cost assignment

2This value was arbitrarily chosen and fixed for all experi-
ments. It allows the LLM to make additional choices, without
straying too much from the greedy one

6684

problem with the Hungarian algorithm. Training,
validation and IID testing is performed on 2-box
problems, while OOD tests are on a mixture of
problems with 2, 3 or 4 boxes.

Sliding Tile Puzzle (STP) is a puzzle consisting
of a square board with distinct tiles and one empty
space. The task is to move tiles into the empty
space to reach a goal configuration. The state of
a node is given by the current configuration of the
board, and the quick admissible heuristic used is
the sum of the Manhattan distance of each tile to
its target position. Training, validation and the IID
test sets comprise of 3×3 puzzles while the OOD
test set consists of harder 4×4 and 5×5 puzzles.

The exact generation and composition of the
datasets is described in subsection A.1. In LLM
prompts, we use ASCII encoding of the problems
shown in Figures 2, 3 and 4.

3.6 Metrics
We use several metrics defined by Lehnert et al.
(2024), (i) inverse-length-ratio (ILR) to measure
the differences in the search length, (ii) success
weighted by cost (SWC) to measure the differences
in solution length and (iii) optimal %, to measure
the percentage of problems solved optimally. ILR
measures the average inverse ratio between the
search length S̃ of an A* solution, to the optimal
reference S∗. It is computed as

ILR =
1

N

N∑

i=0

S∗i
S̃i

(3)

ILR can be averaged over various sets. ILR-on-
solved is averaged over all puzzles in the test set
and ILR-on-optimal is averaged over all puzzles
whose solutions are optimal. Suboptimal solutions,
found with inadmissible heuristics, are often dis-
covered before optimal ones, leading to a lower
S, but a higher ILR; due to this, ILR-on-optimal
allows us to measure the informativeness of the
heuristic on equal, minimum length solutions.

SWC measures the average inverse ratio between
the start-to-goal path length |π̃| of an A* solution,
to that of an optimal reference, denoted by |π∗|.

SWC =
1

N

N∑

i=0

|π∗
i |
|π̃i|

(4)

To measure computational cost, we propose a
new metric, inverse time ratio, which is defined as
the average inverse ratio between the wall-clock

Set with h∗(·) σ ILR-on-solved ILR-on-optimal SWC Optimal %

All - 2.7356 2.7356 1.0000 100

Initial
2

1.7314 1.7717 0.9896 84.9
Middle 1.8911 1.9309 0.9908 86.4

End 2.2248 2.2617 0.9919 87.9

Initial
4

1.0842 1.1912 0.953 46.1
Middle 1.1604 1.2924 0.9516 46.2

End 1.5439 1.7389 0.9520 46.3

Initial
6

0.8579 0.9827 0.9229 28.6
Middle 0.9192 1.0811 0.9232 29.3

End 1.2157 1.5287 0.9202 28.1

Table 1: Experimental results with the oracle heuristic
on the validation puzzles of maze navigation.

time of an A* solution W̃T and a reference solu-
tion WT ∗,

ITR =
1

N

N∑

i=0

WT ∗
i

W̃T i

(5)

4 Disentangling A* and Heuristic
Learning

4.1 Understanding Requirements of A*

Prediction errors by the LLM in the learned heuris-
tic function are inevitable. In this section, we aim
to examine two research questions: (i) how the
prediction errors in the learned heuristic function
affects the search length S , and (ii) how they affect
optimality of the solutions.

Specifically, we start with the oracle heuristic
h∗(n) and artificially introduce error in different
sections of the search trajectory in order to observe
effects on S and optimality. The search tree is
divided into three sets—initial, middle and end.
A node n is placed in the initial set if its cost
places itself in the first third of the optimal path:
g(n) < |π∗|/3. Alternatively, it may be placed in
the middle set if |π∗|/3 ≤ g(n) < 2|π∗|/3, and in
the end set if g(n) ≥ 2|π∗|/3. We introduce zero-
mean Gaussian error by drawing a random value
fromN (0, σ) and adding it to h∗(n). In each exper-
iment, we introduce errors in two of three sections
and use the oracle in one section. We use maze
as the domain of experiment and obtain the oracle
heuristic h∗(·) by running Dijkstra’s algorithm on
the maze, starting from the goal.

Results The results are shown in Table 1. The
rows All, Initial, Middle, and End indicate the tree
section where the oracle is utilized, and All means
the oracle is always used. Clearly, the oracle heuris-
tic gives the best performance, but that is not easy

6685

Figure 1: Validation MAE of a model trained on splits containing nodes from the initial, middle, end, all sets, and
their corresponding exclusion sets. A lower value shows better generalisation.

Test Splits→ IID OOD

Train Split Domain ILR-on-solved ILR-on-optimal SWC Optimal % ILR-on-solved ILR-on-optimal SWC Optimal %

All

Maze

1.5666 1.5654 0.9972 97.60 1.3320 1.3309 0.9965 96.00
Initial 0.9101 0.9101 1.0000 100.0 0.8193 0.8193 1.0000 100.0
Middle 0.8370 0.837 1.0000 100.0 0.8059 0.8059 1.0000 100.0

End 1.2081 1.2033 0.9974 97.40 1.1018 1.1055 0.9957 95.40
∼ Initial 1.2117 1.2132 0.9989 99.00 1.0581 1.0594 0.9992 98.80
∼Middle 1.6053 1.6151 0.9907 92.80 1.2476 1.2360 0.9950 94.40
∼ End 0.9202 0.9202 1.0000 100.0 0.9198 0.9198 1.0000 100.0

All

Sokoban

8.3800 8.8785 0.9761 73.94 11.1967 11.7906 0.9815 74.46
Initial 0.6658 0.6661 0.9967 93.66 0.5940 0.5917 0.9956 90.12
Middle 0.9710 1.0049 0.9901 83.80 0.8148 0.8399 0.9904 84.34

End 3.0312 3.0642 0.9965 93.66 2.7465 2.7721 0.9986 96.39
∼ Initial 6.1912 6.5422 0.9862 82.04 9.2832 9.8333 0.9893 83.86
∼Middle 9.7389 9.9559 0.9578 56.69 16.3567 18.1764 0.9650 61.45
∼ End 2.8397 2.9638 0.9854 80.28 2.9484 3.0910 0.9854 78.07

Table 2: Experimental results by training on different splits of data, demonstrating the importance of the end split
for generalisation to A* search on both, maze and Sokoban.

to achieve by a learned model. Amongst other ex-
periment conditions, with the same σ, using h∗(·)
on nodes in the end set performs the best on both
ILR-on-solved and ILR-on-optimal. Moreover, the
absolute differences in performance by using h∗(·)
in the middle and end sets are larger than the dif-
ferences between middle and initial. These perfor-
mance gaps are larger with a higher σ.

While there does not seem to be a clear trend
between SWC and Optimal % amongst the three
sets, both these metrics go down with increasing
σ. This is not surprising, since with higher error,
the heuristic will be inadmissible more frequently,
thereby increasing the probability of finding longer,
suboptimal solutions.

Implications The most important implication of
these experiments is that, if we can only minimize
errors of the heuristic function on one section of

the search trajectory, we should choose the end
section, which is closest to the goal. Doing so
yields the highest ILR. Speculatively, erroneous
decisions earlier in the trajectory may be corrected
later, if we can make good decisions near the end
of the search process.

4.2 Understanding Generalization of
Heuristic Learning

In this section, we explore how training on pairs of
(node, distance-to-goal) affects the generalization
of the heuristic-learning LLM. We create four train-
ing splits by uniformly sampling nodes on the opti-
mal path from the initial, middle, and end sections
of the path. The all set contains nodes uniformly
sampled from all three sections. Additionally, we
also create exclusion sets, which excludes one of
the three sections, and these sets are denoted as

6686

∼initial,∼middle and∼end. For instance,∼initial
contains only data sampled from the middle and
end sets. All training splits have the same size.

We adopt the following evaluation metrics: (i)
mean absolute error (MAE) on validation splits
containing nodes from each of the aforementioned
splits, and (ii) ILR achieved by applying the trained
models as heuristic functions for A*. While (i)
directly evaluates the generalization of the model,
(ii) provides a more realistic test of how well the
trained model works with A*.

Each training split contains 12k and 8k nodes
in total for maze and Sokoban, respectively. All
models are initialized with code-t5-small. Hyper-
parameter details are mentioned in subsection A.3.

Results The results are shown in Figure 1 and
Table 2. First, as we expect, each split generalizes
the best to itself, but shows poor generalization
to the others. All achieves the best generalisation
to each split. Second, on ILR, End performs the
best when combined with A*. However, this is still
inferior to the performance of All. This confirms
that the trends observed with the oracle heuristic
corroborate with those seen with the LLM.

Amongst the exclusion sets, we observe that
∼End achieves the worst generalization and the
worst ILR in both domains and both IID and OOD
test splits. The comparison between the other two
sets is mixed; ∼Middle and ∼Initial have good
ILR performance (with ∼Middle being particularly
strong), but both lag on MAE, when compared with
All. There also does not seem to be a clear winner
between ∼Middle and ∼Initial, since they exhibit
opposite trends on both the domains.

Implications Heuristics learned from the end set
performs the best on MAE and well on ILR, show-
ing that we need the end set in the training mix.
These nodes can be considered easier than others
because it is easy to foresee the distance to goal
when one is positioned nearer the goal. However,
the good performance of∼Middle and∼Initial sug-
gests that easy nodes by themselves are not enough,
and we should expose the model to some difficult
nodes from the other sets, which are further away
from the goal, in order to optimize ILR.

5 Proposed Solution

The Utility of a Node in Accelerating Search
We propose to quantify the utility of a node in

reducing the search length as,

C(n) = log(
|π∗|

|π∗| − g(n)
) (6)

C(·) assigns higher values to nodes closer to the
goal. While there can be nodes with g(n) ≥ |π∗|,
since they are never added to the tree, C(·) is not
defined for them. Considerations and other choices
for C(·) are discussed in subsection A.4.

Planner-aware Sampling We have shown that
accurate prediction of the heuristic for nodes near
the goal will lead to maximal reduction of the
search length. Additionally, we want to include
nodes from the initial and middle sets as well, to op-
timize ILR performance. Thus, we propose to sam-
ple from a distribution D(·) that prioritises these
nodes, based on Equation 6 (as opposed to a uni-
form distribution), given by,

D(n, τ) = SoftMax

(
1

τ
C(n)

)
, ∀n ∈ π∗ (7)

where τ denotes temperature. Increasing τ in-
creases the hardness of the training dataset, thereby
increasing the number of nodes sampled from the
initial and middle sets.

Combining with Baselines Planner-aware sam-
pling can be trivially combined with any coreset
selection baseline to enhance it for this task. This
is done by first sampling two sets of nodes (with-
out replacement), once using any coreset selection
baseline Ψ, and another with D(n, τ). Post this,
the nodes can be resampled from the union of these
two sets, where nodes appearing in both the sets are
twice as likely to get sampled than those appearing
in only a single set. This procedure is summarised
in Algorithm 2.

Algorithm 2 Algorithm to combine planner-aware
sampling with a coreset selection baseline Ψ.

Assume m nodes are sampled from a problem,
S1 ← {ni ∼ Ψ(n) | i ∈ [1,m]}
S2 ← {ni ∼ D(n, τ) | i ∈ [1,m]}

P(ni)←
{

2
|S1|+|S2| , ni ∈ S1 ∩ S2

1
|S1|+|S2| , otherwise

X ← {ni ∼ P(S1 ∪ S2)) | i ∈ [1,m]}

6 Experiments

Sampling from D(n, τ) is compared with uniform
sampling U(n). LL2 is compared in Table 3 and

6687

Test Splits→ IID OOD

Train Split Domain ILR-on-solved ILR-on-optimal SWC Optimal % ILR-on-solved ILR-on-optimal SWC Optimal %

Full-data

Maze

1.6739 1.6756 0.9967 97.0 1.2755 1.2730 0.9967 95.8
X ∼ U(n) 1.5666 1.5654 0.9972 97.6 1.3320 1.3309 0.9965 96.0
X ∼ D(n, 2) 1.7029 1.7035 0.9958 96.6 1.3365 1.3354 0.9964 95.0
X ∼ SD 1.6412 1.6453 0.9941 95.2 1.2823 1.2821 0.9980 97.6

X ∼ SD +D(n, 2) 1.7182 1.7245 0.9927 94.6 1.3568 1.3521 0.9968 96.4

Full-data

Sokoban

11.6416 12.5933 0.9834 79.93 14.7093 15.2655 0.9847 77.83
X ∼ U(n) 8.3800 8.8785 0.9761 73.94 11.1967 11.7906 0.9815 74.46
X ∼ D(n, 0.8) 10.2077 10.8168 0.9808 75.70 13.7706 13.7546 0.9828 77.11
X ∼ SD 10.8579 11.5282 0.9702 68.66 14.9133 15.4475 0.9757 71.58

X ∼ SD +D(n, 5) 11.5184 11.8487 0.9732 68.66 15.8553 15.9748 0.9772 72.05

Full-data

STP

4.1509 4.5750 0.9806 77.4 1.5012 1.5374 0.9860 84.4
X ∼ U(n) 3.4040 3.7777 0.9755 72.8 1.3054 1.3789 0.9859 85.2
X ∼ D(n, 5) 3.4758 3.9686 0.9765 73.8 1.4265 1.4606 0.9946 93.0
X ∼ SD 3.5372 4.2400 0.9617 60.6 2.4353 2.7080 0.9804 77.4

X ∼ SD +D(n, 5) 4.2779 4.7384 0.9723 70.6 1.7050 1.8955 0.9694 69.6

Table 3: Experimental results with LL2 by sampling from the D(n, τ) distribution. Best scores are in bold.

Test Splits→ IID OOD

Base Model Train Split Domain ILR-on-solved ILR-on-optimal SWC Optimal % ILR-on-solved ILR-on-optimal SWC Optimal %

codet5-base
X ∼ U(n)

Maze

1.7218 1.7245 0.9965 97.0 1.2841 1.2722 0.9970 96.4
X ∼ D(n, 2) 1.8112 1.8142 0.9957 96.8 1.3460 1.3422 0.9977 97.2

codet5-large
X ∼ U(n) 1.2963 1.2966 0.9995 99.6 1.1531 1.153 0.9994 99.2
X ∼ D(n, 1) 1.6920 1.6982 0.9964 97.4 1.3101 1.3088 0.9980 97.6

t5-small
X ∼ U(n) 1.5447 1.5483 0.9967 97.2 1.3287 1.3276 0.9975 97.0
X ∼ D(n, 2) 1.5785 1.5818 0.9957 96.4 1.3404 1.3378 0.9974 97.0

codet5-base
X ∼ U(n)

Sokoban

10.8858 11.1579 0.9770 71.83 14.4553 14.4831 0.9810 74.70
X ∼ D(n, 2) 10.6828 11.1692 0.9791 73.94 15.0611 15.2904 0.9828 76.39

codet5-large
X ∼ U(n) 10.3732 10.7997 0.9788 74.3 12.8759 12.9480 0.9830 76.39
X ∼ D(n, 2) 10.3778 10.7343 0.9850 80.99 13.0179 12.9534 0.9891 83.37

t5-small
X ∼ U(n) 10.8294 11.1671 0.9707 70.07 11.4536 11.2696 0.9882 80.96
X ∼ D(n, 2) 10.9260 10.9835 0.9803 75.00 12.4921 12.7784 0.9865 78.80

Table 4: Experiments with LL2, showing the effects of planner-aware sampling on various models.

LLM is compared in Table 10. Also note that while
subsampling, STP is trained on 8k nodes.

Baselines We add a full-data baseline, which
does not subsample and trains on all nodes on the
optimal path. It is trained on 22.3k nodes for maze,
26.3k for Sokoban and 23.7k for STP. To the best of
our knowledge, there are no search-aware coreset
selection methods. Hence, we adopt as a baseline
an LLM-based coreset selection method, SemD-
eDup (SD) (Abbas et al., 2023), which discards
semantically similar data points from the training
dataset. On top of SD, we apply Algorithm 2 to
make it search-aware (SD +D(n, τ)).
Results The results are shown in Table 3. Sam-
pling from D(n, τ) consistently outperforms uni-
form sampling on ILR by an average of 4.4% on
maze, 5.7% on STP, and a much larger margin of
12.5% on Sokoban. On maze, D(n, τ) also outper-
forms the full-data baseline on OOD data, which is
trained on 46.5% more data points. These results
also extend to LLM , where D(n, τ) outperforms
U(n) by an average of 5%.

In terms of metrics of solution optimality (SWC

and Optimal %), D(n, τ) remains competitive and
is marginally better than the baselines, by an aver-
age of 0.24%. Interestingly, training on all the data
gives higher performance on optimality metrics,
which could be a consequence of lower validation
error, due to more training data.

Notably, the SD coreset selection baseline, de-
veloped for LLMs, also performs quite well. How-
ever, SD augmented with D(n, τ) outperforms all
other methods, except on STP OOD, by an average
of 8.75%.

Model Scale and Pre-training To test the effec-
tiveness of our method while scaling up the LLM,
we demonstrate similar trends of D(n, τ) outper-
forming U(n) in Table 4. We experiment with
two larger models, codet5-base (220M) and codet5-
large (770M). Notably, the performance of larger
models is not always better than that of smaller
models. This could be attributed to the fact that our
experiments have been performed in the low-data
regime and large models cause overfitting. Study-
ing the effects of scaling up data with parameters
is left for future works. The learned heuristics with

6688

Domain Test Split ITR-on-solved ITR-on-optimal

Model : LL2

Sokoban
IID 0.8167 0.8735

OOD 5.9441 5.9215

Maze
IID 5.122e− 3 5.127e− 3

OOD 5.062e− 3 5.079e− 3

Model : LLM

Sokoban
IID 0.2626 0.2611

OOD 2.7250 2.3978

Maze
IID 1.958e− 3 1.963e− 3

OOD 2.090e− 3 2.096e− 3

Table 5: Speed-ups in wall-clock search time achieved
by using the trained language model as a heuristic.

larger models are more optimal, suggesting less
error in the predictions. We also experiment with
a natural language pre-trained model, t5-small in
Table 4 to verify the generality of our method.

Time Cost of LLM Inference It is well accepted
in the planning domain that a more informative
heuristic is more expensive to compute (Bylander,
1994). While LLMs incur additional time during in-
ference, the learned heuristic is informative enough
to amortize the extra time cost. We use ITR as the
evaluation metric, which shows speed-ups in wall-
clock search time from the LLM-free A* search.
An ITR value > 1 implies that the solution found by
the LLM heuristic is faster than the base heuristic.

Experiments are performed on the best models,
trained withD(n, τ) sampling. We show the results
in Table 5. Due to its difficulty, Sokoban has a
high number of explored nodes in each problem.
With the LLM heuristic, the ITR on the OOD test
split, with the hardest problems is > 1. On the
IID set, with easier problems having shorter search
lengths, the ITR is close to 1, but does not surpass it.
Similarly, the ITR is < 1 on maze, which consists
of easier problems with low S. Since the number
of nodes is already quite low, a reduction doesn’t
necesarily bring about speed-ups. With this, we can
conclude that using an LLM as a heuristic for tree
search is most beneficial for harder OOD problems,
which is also where LLMs struggle the most with
conventional Chain-Of-Thought reasoning.

Interestingly, LLM is almost 2.5× slower on
average than LL2, despite the ILR being only 1.1×
worse. This suggests that while ϕLM is capable
of learning an informative heuristic, the forward
pass through the larger linear layer, along with
stochastic decoding, significantly affect efficiency.

Training Target Between LL2 and LLM mod-
els, the former consistently outperforms the latter
on the IID test split, while on OOD, the results
are mixed, with LLM being slightly better, atleast
with uniform sampling on Sokoban. Since LLM
is more aligned with the pre-training of the base
model, its effect could be stronger, thus improving
generalisation beyond the training data.

Another interesting observation is that the hyper-
parameter τ used with D(n, τ) is usually higher
for LLM , suggesting that it has a higher prefer-
ence for data points in the initial set, which can be
considered harder than other nodes.

7 Conclusion

In this work, we study the training data require-
ments to learn a strong heuristic for A* search.
We find that accurate prediction of heuristics for
nodes close to the goal are the most important for
A* speed. Similarly, generalization of the LLM
heuristic requires training on nodes near the goal.
Based on these insights, we propose a mathemat-
ical model to select search nodes as training data.
This results in substantially reduced search lengths
and significant wall-clock speedups on hard prob-
lems. Our study lays the groundwork for boot-
strapped heuristic learning, which learns heuristic
functions for increasingly larger problems using
solved problems of smaller sizes. Referred to as
the data flywheel, such techniques hold promise to
scale up the capabilities of LLM + tree search3.

Acknowledgments

We gratefully acknowledge the support by the
Nanyang Associate Professorship, the National
Research Foundation Fellowship (NRF-NRFF13-
2021-0006), Singapore, and the Alibaba-NTU
Global e-Sustainability CorpLab (ANGEL) under
Project I2301E0026. Any opinions, findings, con-
clusions, or recommendations expressed in this
material are those of the authors and do not reflect
the views of the funding agencies.

Limitations

Our study is restricted to classical puzzle domains,
maze, Sokoban and stp. While we expect our
domain-independent analysis to generalise to other
problems, the same will need to be thoroughly
evaluated. Moreover, since our work focuses on

3https://twitter.com/DrJimFan/status/
1834279865933332752

6689

https://twitter.com/DrJimFan/status/1834279865933332752
https://twitter.com/DrJimFan/status/1834279865933332752

language models used as heuristics, it inherits the
bias and fairness concerns associated with language
models, which should be taken into consideration
when deploying such models. To the best of our
knowledge, there are no other negative impacts of
our work.

References
Amro Kamal Mohamed Abbas, Kushal Tirumala,

Daniel Simig, Surya Ganguli, and Ari S Morcos.
2023. Semdedup: Data-efficient learning at web-
scale through semantic deduplication. In ICLR 2023
Workshop on Mathematical and Empirical Under-
standing of Foundation Models.

Shahab Jabbari Arfaee, Sandra Zilles, and Robert C
Holte. 2011. Learning heuristic functions for large
state spaces. Artificial Intelligence, 175(16-17):2075–
2098.

Tom Bylander. 1994. The computational complexity of
propositional strips planning. Artificial Intelligence,
69(1-2):165–204.

Ziru Chen, Michael White, Raymond Mooney, Ali
Payani, Yu Su, and Huan Sun. 2024. When is tree
search useful for llm planning? it depends on the
discriminator. arXiv preprint arXiv:2402.10890.

Kewei Cheng, Jingfeng Yang, Haoming Jiang,
Zhengyang Wang, Binxuan Huang, Ruirui Li,
Shiyang Li, Zheng Li, Yifan Gao, Xian Li, Bing
Yin, and Yizhou Sun. 2024. Inductive or deductive?
rethinking the fundamental reasoning abilities of llms.
arXiv Preprint 2408.00114.

Leah Chrestien, Tomas Pevny, Antonin Komenda, and
Stefan Edelkamp. 2021. Heuristic search plan-
ning with deep neural networks using imitation, at-
tention and curriculum learning. arXiv preprint
arXiv:2112.01918.

Gautier Dagan, Frank Keller, and Alex Lascarides.
2023. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391.

Marco Ernandes, Marco Gori, et al. 2004. Likely-
admissible and sub-symbolic heuristics. In ECAI,
volume 16, page 613. Citeseer.

Alan Fern, Roni Khardon, and Prasad Tadepalli. 2011.
The first learning track of the international planning
competition. Machine Learning, 84:81–107.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin
Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. 2024. Stream of search (sos): Learn-
ing to search in language. arXiv preprint
arXiv:2404.03683.

Alfonso Gerevini, Ivan Serina, et al. 2002. Lpg: A
planner based on local search for planning graphs
with action costs. In Aips, volume 2, pages 281–290.

Edward Groshev, Maxwell Goldstein, Aviv Tamar, Sid-
dharth Srivastava, and Pieter Abbeel. 2018. Learn-
ing generalized reactive policies using deep neural
networks. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol-
ume 28, pages 408–416.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,
and Subbarao Kambhampati. 2023. Leveraging pre-
trained large language models to construct and utilize
world models for model-based task planning. Ad-
vances in Neural Information Processing Systems,
36:79081–79094.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh
Kabra, Sébastien Racanière, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom
Eccles, et al. 2019. An investigation of model-free
planning. In International conference on machine
learning, pages 2464–2473. PMLR.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4:100–107.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t
plan, but can help planning in llm-modulo frame-
works.

Daniil Kirilenko, Anton Andreychuk, Aleksandr Panov,
and Konstantin Yakovlev. 2023. Transpath: Learning
heuristics for grid-based pathfinding via transformers.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 12436–12443.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282–293, Berlin, Heidelberg.
Springer Berlin Heidelberg.

R. E. Korf. 1985. Depth-first iterative-deepening: an
optimal admissible tree search. Artificial Intelligence,
27:97– 109.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay,
Michael Rabbat, and Yuandong Tian. 2024. Be-
yond a*: Better planning with transformers via
search dynamics bootstrapping. arXiv preprint
arXiv:2402.14083.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+ p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

6690

https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/arXiv Preprint 2402.01817
https://arxiv.org/abs/arXiv Preprint 2402.01817
https://arxiv.org/abs/arXiv Preprint 2402.01817

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning
for pretraining llms at scale. arXiv preprint
arXiv:2309.04564.

Laurent Orseau, Marcus Hutter, and Levi HS Lelis.
2023. Levin tree search with context models. arXiv
preprint arXiv:2305.16945.

Laurent Orseau and Levi HS Lelis. 2021. Policy-guided
heuristic search with guarantees. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 12382–12390.

Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. Advances
in Neural Information Processing Systems, 34:20596–
20607.

Swarnadeep Saha, Archiki Prasad, Justin Chih-Yao
Chen, Peter Hase, Elias Stengel-Eskin, and Mohit
Bansal. 2024. System-1.x: Learning to balance fast
and slow planning with language models. arXiv
Preprint 2407.14414.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari Morcos. 2022. Beyond neural scal-
ing laws: beating power law scaling via data pruning.
Advances in Neural Information Processing Systems,
35:19523–19536.

David Speck, André Biedenkapp, Frank Hutter, Robert
Mattmüller, and Marius Lindauer. 2021. Learning
heuristic selection with dynamic algorithm configura-
tion. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 31,
pages 597–605.

Keith E. Stanovich and Richard F. West. 2000. Indi-
vidual differences in reasoning: Implications for the
rationality debate? Behavioral and Brain Sciences,
23(5):645–665.

Takeshi Takahashi, He Sun, Dong Tian, and Yebin Wang.
2019. Learning heuristic functions for mobile robot
path planning using deep neural networks. In Pro-
ceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 29, pages
764–772.

Anthony Tiong, Junqi Zhao, Boyang Li, Junnan Li,
Steven Hoi, and Caiming Xiong. 2024. What are we
measuring when we evaluate large vision-language
models? an analysis of latent factors and biases. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 3427–3454, Mexico

City, Mexico. Association for Computational Lin-
guistics.

Jes ús Virseda, Daniel Borrajo, and Vidal Alcázar. 2013.
Learning heuristic functions for cost-based planning.
Planning and Learning, 4.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models-a criti-
cal investigation. Advances in Neural Information
Processing Systems, 36:75993–76005.

Marin Vlastelica, Anselm Paulus, Vít Musil, Georg
Martius, and Michal Rolínek. 2019. Differentiation
of blackbox combinatorial solvers. arXiv preprint
arXiv:1912.02175.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024. Lite-
search: Efficacious tree search for llm.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2024. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. In NAACL.

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou-
pling large language models with logic programming
for robust and general reasoning from text. arXiv
preprint arXiv:2307.07696.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Ryo Yonetani, Tatsunori Taniai, Mohammadamin
Barekatain, Mai Nishimura, and Asako Kanezaki.
2021. Path planning using neural a* search. In In-
ternational conference on machine learning, pages
12029–12039. PMLR.

Sung Wook Yoon, Alan Fern, and Robert Givan. 2006.
Learning heuristic functions from relaxed plans. In
ICAPS, volume 2, page 3.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024.
Distilling system 2 into system 1. arXiv 2407.06023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023a. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

6691

https://arxiv.org/abs/2407.14414
https://arxiv.org/abs/2407.14414
https://doi.org/10.1017/S0140525X00003435
https://doi.org/10.1017/S0140525X00003435
https://doi.org/10.1017/S0140525X00003435
https://doi.org/10.18653/v1/2024.naacl-long.188
https://doi.org/10.18653/v1/2024.naacl-long.188
https://doi.org/10.18653/v1/2024.naacl-long.188
https://arxiv.org/abs/arXiv Preprint 2407.00320
https://arxiv.org/abs/arXiv Preprint 2407.00320
https://arxiv.org/abs/2407.06023

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Pree-
tum Nakkiran. 2023b. What algorithms can trans-
formers learn? a study in length generalization. arXiv
preprint arXiv:2310.16028.

A Appendix

A.1 Data Generation
Maze We generate mazes with a modified Prim’s
algorithm4. The start and goal states are randomly
chosen until the following criteria are met, (i)
length of the optimal plan > Ol, (ii) ratio between
length of closed set after search and length of op-
timal plan is > α = 3.5. If either of these are not
met within 10 tries, a new maze is generated. Cri-
terion (i) ensures that the start and goal positions
are not too close and (ii) ensures that there are suf-
ficient number of additional expanded nodes. It
serves as a surrogate for the measure of hardness
h∗(ns)/h(ns) where ns is the start node, proposed
in Takahashi et al. (2019). The surrogate is used
since it is more aligned with the chosen metrics
(ILR) in this work. However, this method only cre-
ates a maze with a single path to the goal. To get
multiple paths, each node is designated to either
be closer to the start, or to the goal, and walls are
randomly broken at the boundary of these groups5.

Sokoban This dataset is adapted from the open-
source boxoban dataset, proposed in Guez et al.
(2019). For the training puzzles, we randomly shuf-
fle the provided training set from the "unfiltered"
split, followed by subsampling B boxes per puzzle.
We use the same filters as maze, but with different
hyperparameters. The IID test split uses the same
criteria, but samples puzzles from the testing set of
boxoban. To reduce the data creation time, we con-
strain the number of iterations required by A* to
solve a puzzle between βmin and βmax. The OOD
split is curated to contain a mix of harder puzzles
with varying number of boxes, length of optimal
plans and higher number of iterations. All puzzles
have size 10× 10, Ol = 20 and α = 6.

STP We generate 3×3 puzzles by randomly gen-
erating a sequence of tiles, checking if it is solvable
with A*. For puzzles with a width greater than 3,
we start from the goal configuration and perform
20 - 30 random moves to scramble the puzzle, from
the goal state. For all puzzles, α = 6, Ol = 20,
βmin = 0 and βmax = 5k. To keep the symbols in

4https://github.com/john-science/mazelib
5https://stackoverflow.com/a/22308159

the puzzle uniform between training and inference,
the generation of puzzles is done with digits, how-
ever, they are fed to the model as alphabets. For
each puzzle, we uniformly sample without replace-
ment the required number of alphabets, sort them
alphabetically and assign them to the digits.

The exact statistics are in Table 6, Table 7 and
Table 8.

Split # puzzles Size Ol

Train 750 20× 20 20
Val 750 20× 20 20

Test IID 500 20× 20 20
Test OOD 500 30× 30 30

Table 6: Dataset statistics for maze.

Split # puzzles B βmax βmin

Train 1000 2 7k 0
Val 1000 2 7k 0

Test IID 284 2 7k 0

Test OOD

15 2 14k 7k
100 3 7k 0
100 3 14k 7k
100 4 7k 0
100 4 14k 7k

Table 7: Dataset statistics for Sokoban.

Split # puzzles Size

Train 1000 3× 3
Val 1000 3× 3

Test IID 500 3× 3

Test OOD
250 4× 4
250 5× 5

Table 8: Dataset statistics for STP.

A.2 Prompts
The language models have been trained on a regres-
sion task with context prompts, which are provided
below. Since the experiments are performed with
code models, we tailor the prompt accordingly. The
same prompt is used for both domains, shown in
Figure 5, with the puzzle representations and leg-
end in Figure 2 for Sokoban and Figure 3.

A.3 Hyperparameters and Model Choice
All models are trained for 40 epochs, with a learn-
ing rate of 1e− 4, batch size of 64 and optimized

6692

https://github.com/john-science/mazelib
https://stackoverflow.com/a/22308159

##########
######
##.#
. $
$
#######
#@ #######
#######
#######
##########
legend = "@ - player , # - wall ,

. - empty docks , ' ' - empty
cell , $ - box , X - box on dock
, O - player on dock"

Figure 2: Puzzle representation and legend of a training
puzzle from Sokoban.

with Adafactor. We implement early stopping, with
the model chosen by best performance on valida-
tion MAE, computed every epoch. Training is per-
formed on 1 NVIDIA A6000 Ada GPU.

Codet5-small was chosen for experiments since,
(i) it is a compute-efficient, powerful LM, and (ii)
we believed the code-pretraining would be benefi-
cial to the code-like representation of our problem.

A.4 Additional Ablations
Choice of C(·) Theoretically, any increasing
function can be used for C(·). Practically, however,
some factors need to taken care of. For instance,
we cannot use eg(n), since it’s large first derivative
will assign a very high contribution value to nodes
near the goal. Thus, when used for sampling, it
will concentrate all the probability mass near the
goal, preventing us from augmenting the training
set with harder nodes, further away from the goal.

We show additional results for two more choices
for C(n), used in D(n, τ), in Table 9. Note that the
same τ used in the main body has been chosen, and
is not tuned. Despite that, we outperform uniform
sampling on most splits. This validates the gen-
eral idea of using an increasing function for C(n).
Choosing the best performing or most theoretically
justified one is left for future works.

A.5 Summary of Related Works
A summary of the related works has been provided
in Table 11.

#####################
#..@................#
###.#####.###.#######
#...#...#.#.#...#...#
#######.#.#.#.#####.#
#...........#.......#
###.#.#.#.#.#.#.#.#.#
#...#.#.#.#.#...#...#
#.#.#.#####.#.#.#.#.#
#.#...#.#...........#
###.#.#.#.#.###.#.#.#
#.........#...#.....#
#.#.#.#.#.#####.#.#.#
#.#.#.#.#.#.....#.#.#
#.###.#######.#.#.#.#
#...#.#X......#.....#
#.###.#.#.#.#.#.#.#.#
#...#.#.#.#.#.#.#...#
###.#####.###.#.###.#
#...#.....#...#.....#
#####################
legend = "@ - player , # - wall ,

. - empty cell , X - goal"

Figure 3: Puzzle representation and legend of a training
puzzle from the maze dataset.

puzzle_str = "i a h m v o u 0 y"
goal = "0 a h i m o u v y"
legend = "0 - empty space"

Figure 4: Puzzle representation and legend of a training
puzzle from the stp dataset.

6693

import torch
def get_improved_heuristic(heuristic: int , difference: int):

'''
A function that takes in the admissible A* heuristic and adds

to it the difference , to return a heuristic closer to the optimal
cost to the goal. The difference should be calculated keeping in

mind the optimal cost of the puzzle.
'''
return heuristic + difference

The difference is calculated by observing the {domain} puzzle and
deducing the optimal cost to goal. The heuristic is subtracted
from this optimal cost

{puzzle_legend}
puzzle_str = "{puzzle_str}"
improved_heuristic = get_improved_heuristic ({ heuristic},

Figure 5: Prompt used while training the language model. {curly braces} denote a placeholder.

Test Splits→ IID OOD

C(n) Domain ILR-on-solved ILR-on-optimal SWC Optimal % ILR-on-solved ILR-on-optimal SWC Optimal %

log(|π|∗
|π|∗−g(n))

Sokoban

10.2077 10.8168 0.9808 75.70 13.7706 13.7546 0.9828 77.11

|π|∗
|π|∗−g(n) 7.7467 7.7455 0.9806 78.87 11.9533 12.3032 0.9874 82.17

g(n)
|π|∗ 9.2398 9.9242 0.9787 74.65 11.5371 11.9224 0.9846 80.24

log(|π|∗
|π|∗−g(n))

Maze

1.7029 1.7035 0.9958 96.6 1.3365 1.3354 0.9964 95.0

|π|∗
|π|∗−g(n) 1.6119 1.6129 0.9961 96.6 1.2972 1.2949 0.9982 97.8

g(n)
|π|∗ 1.6560 1.6553 0.9964 96.8 1.2691 1.2706 0.9968 96.2

log(|π|∗
|π|∗−g(n))

STP

3.4758 3.9686 0.9765 73.8 1.4265 1.4606 0.9946 93.0

|π|∗
|π|∗−g(n) 3.0416 3.4088 0.9758 72.4 1.7935 1.8943 0.9885 86.6

g(n)
|π|∗ 3.6157 4.0441 3.7528 95.4 1.4051 1.4421 0.9865 87.0

Table 9: Experimental results by sampling from the D(n, τ), with different choices for C(·), with the LL2 model.

Test Splits→ IID OOD

Train Split Domain ILR-on-solved ILR-on-optimal SWC Optimal % ILR-on-solved ILR-on-optimal SWC Optimal %

Full-data
Maze

1.4752 1.4902 0.9925 94.0 1.2448 1.2467 0.9965 96.2
X ∼ U(n) 1.4979 1.5070 0.9897 92.2 1.1869 1.1769 0.9925 92.8
X ∼ D(n, 10) 1.5517 1.5628 0.9897 92.2 1.2426 1.2436 0.9940 93.0

Full-data
Sokoban

9.2978 10.4147 0.9594 60.92 14.8513 16.1940 0.9645 61.45
X ∼ U(n) 7.1347 7.4233 0.9607 61.62 12.4740 14.7325 0.9500 48.92
X ∼ D(n, 10) 7.8141 8.0857 0.9614 59.86 13.3144 12.4565 0.9558 52.53

Full-data
STP

4.3889 4.9981 0.9732 70.2 1.4297 1.6507 0.9353 57.0
X ∼ U(n) 3.1497 3.8005 0.9633 61.2 1.0486 1.3083 0.9404 69.0
X ∼ D(n, 3) 3.1795 3.7610 0.9662 63.4 1.0917 1.5482 0.9331 56.2

Table 10: Experimental results with LLM by sampling from the D(n, τ) distribution. Best scores are in bold.

6694

Research Field Relevance Related Works with Summary

Learning Heuristics for
Planning

In this work, we make use of previous
methods to learn heuristics for planning.
While These primarily studied neural ar-
chitectures for this problem, we fix the
architecture to an LM and study the data
requirements.

Machine Learning Perspective: These
works discuss classical ML techniques
to learn heuristics (Yoon et al., 2006;
Fern et al., 2011; Arfaee et al., 2011;
ús Virseda et al., 2013; Chrestien et al.,
2021; Groshev et al., 2018; Kirilenko
et al., 2023).
Planner Perspective: These incorpo-
rate planner properties to learn heuris-
tics.(Yonetani et al., 2021; Vlastelica
et al., 2019; Speck et al., 2021; Orseau
et al., 2023; Orseau and Lelis, 2021; Kir-
ilenko et al., 2023; Ernandes et al., 2004)

Heuristics with LMs The previous works studied learning
heuristics with classical machine learning
techniques, here we specifically discuss
how LMs are used in heuristic learning.

Tree-Search in LLMs: These discuss
how various algorithms like DFS, BFS,
MCTS can be combined with LLMs for
planning (Yao et al., 2024; Hao et al.,
2023; Chen et al., 2024).
LLMs with external planners: These
discuss how symbolic solvers can be aug-
mented with LLMs. (Valmeekam et al.,
2023; Gerevini et al., 2002; Liu et al.,
2023; Yang et al., 2023; Guan et al., 2023;
Dagan et al., 2023)
Improving LM-based heuristics: These
discuss how LM heuristics can be im-
proved via training or prompting(Shinn
et al., 2024; Zhou et al., 2023a; Lehnert
et al., 2024; Gandhi et al., 2024).

Optimising Training
Data

This is our problem statement for the plan-
ning task.

Coreset Selection: These works discuss
the data requirements for training LMs,
albeit for different tasks. To the best of
our knowledge, we are the first to study
coreset selection for planning (Paul et al.,
2021; Marion et al., 2023; Abbas et al.,
2023; Zhou et al., 2023b; Sorscher et al.,
2022).

Table 11: A tabular summary of the Related Works.

6695

