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Abstract

As artificial intelligence reasoning abilities gain
prominence, generating reliable benchmarks
becomes crucial. The Abstract and Reason-
ing Corpus (ARC) offers challenging prob-
lems yet unsolved by AI. While ARC effec-
tively assesses reasoning, its generation-based
evaluation overlooks other assessment aspects.
Bloom’s Taxonomy suggests evaluating six
cognitive stages: Remember, Understand, Ap-
ply, Analyze, Evaluate, and Create. To ex-
tend ARC’s focus beyond the Create stage, we
developed MC-LARC, a multiple-choice for-
mat suitable for assessing stages like Under-
stand and Apply in Large Language Models
(LLMs). Our evaluation of ChatGPT4V’s ana-
logical reasoning using MC-LARC confirmed
that this format supports LLMs’ reasoning
capabilities and facilitates evidence analysis.
However, we observed LLMs using shortcuts
in MC-LARC tasks. To address this, we pro-
pose a self-feedback framework where LLMs
identify issues and generate improved options.
MC-LARC is available at https://mc-larc.
github.io/.

1 Introduction

Research on artificial intelligence with reasoning
capabilities is attracting attention, leading to the
proposal of benchmarks to measure such abilities.
The Abstraction and Reasoning Corpus (ARC) is
one such benchmark designed to evaluate reasoning
abilities. Each ARC task consists of 2–5 examples
where both input and output are provided, along
with one task where only the input is given. The
goal is to infer the rule from the examples and de-
duce the answer to the task. The input and output
grids in ARC can range from a minimum 1 × 1
grid to a maximum 30 × 30 grid, with each grid
filled with up to 10 different colors. Unlike exist-
ing reasoning benchmarks, ARC’s strength lies in
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its specialization in evaluating reasoning abilities
alone by reducing the amount of prior knowledge
and data required to solve the tasks.

However, ARC has limitations in that it is
an overly difficult benchmark requiring multiple
stages of reasoning to solve. According to Bloom’s
Taxonomy (Anderson et al., 2001), proposed in tra-
ditional educational theory, evaluation consists of
the following six stages: Remember, Understand,
Apply, Analyze, Evaluate, and Create. In this taxon-
omy, ARC assesses creation, which encompasses
all prior levels of cognitive processes, making it
difficult to pinpoint which specific stage may be
problematic when a solution is not reached. Even if
the logical reasoning process is correct, the entire
response is marked as wrong if there is a slight
error in the generated grid. This issue is also found
in derived datasets with reduced difficulty, such as
Mini-ARC (Kim et al., 2022) and 1D-ARC (Xu
et al., 2023). Although these datasets changed grid
sizes or reduced 2D arrays to 1D arrays, it remains
difficult to identify which part of the model’s rea-
soning process is flawed when the task is not solved
due to the evaluation format that includes creation.
Therefore, a new evaluation method is needed to
identify which step of reasoning is problematic in
solving ARC.

Therefore, this paper proposes a modified bench-
mark called MC-LARC to provide an intermedi-
ate step in solving ARC tasks. MC-LARC aims to
convert the evaluation format from generation to
selection, assessing the areas corresponding to Un-
derstand and Apply in Bloom’s Taxonomy. It con-
verts the dataset into a multiple-choice language
format by using Large Language Models (LLMs)
to generate four alternative options based on the
correct answer to ARC tasks. We conducted ex-
periments to investigate the impact of the transfor-
mation into multiple-choice form and found the
following two points: 1) The accuracy of LLMs on
ARC tasks increased from about 10% to 76%. This
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modification suggests a narrowing of ARC’s assess-
ment scope from multiple cognitive processes to
primary comprehension. 2) Evaluating the extent
of the inferential abilities of LLMs becomes more
clearly feasible. However, it was observed that
LLMs used shortcuts while solving MC-LARC,
finding the correct answer by considering the form
or internal context of the choices to eliminate in-
appropriate options, rather than utilizing reason-
ing abilities. To address this issue, we introduce a
self-feedback framework that leverages LLMs to
improve shortcuts. This method extends beyond
previous constraint-based augmentation by incor-
porating three additional steps: the LLM attempts
to solve the multiple-choice questions, articulates
the problem situations, and then refines the options,
thereby autonomously mitigating shortcuts.

2 Related Works

2.1 Evaluation Methods for LLM Abilities
Based on Bloom’s Taxonomy

Bloom’s Taxonomy (Anderson et al., 2001) pro-
vides a hierarchical classification of cognitive skills
that educators can use to structure learning objec-
tives, assessments, and activities. The taxonomy
categorizes cognitive skills into six levels as illus-
trated in Figure 1, each representing a different
level of complexity and depth of understanding,
from the most basic (Remembering) to the most
advanced (Creating).

Evaluate

Analyze

Apply

Understand

Remember

Create

Recall fact and basic concepts

Explain ideas or concepts

Use information in new situations

Draw connections among ideas

Justify a stand or decision

Produce new or original work

define, repeat, list, memorize

classify, describe, explain, identify, recognize

execute, implement, solve, use, interpret, operate

differentiable, organize, relate, compare, examine, test

argue, defend, judge, select, support, critique, weigh

assemble, design, construct, conjecture, develop, formulate

Figure 1: The six cognitive skills in Bloom’s Taxonomy.
These skills start with basic tasks like recalling facts and
understanding concepts at the bottom and progress to
creating original work based on a deep understanding of
a concept at the top. Image credits: Center for Teaching,
Vanderbilt University (Armstrong, 2010).

By utilizing Bloom’s Taxonomy, educators and
researchers can more effectively design, evaluate,
and enhance learning experiences and assessments,
ensuring that they address all levels of cognitive

skills, from basic recall of information to the cre-
ation of new and original work.

Shojaee-Mend et al. (2024) employed Bloom’s
Taxonomy to assess the cognitive levels of neuro-
physiology questions answered by large language
models, revealing strengths in basic knowledge
recall and weaknesses in higher-order reasoning
and knowledge integration. Similarly, Joshi et al.
(2024) used this taxonomy to analyze the cogni-
tive depth of recommendations made by ChatGPT
and Bard for teaching Parallel Coordinate Plots.
Human-expert evaluations showed that ChatGPT’s
suggestions were generally more appropriate and
effective across various cognitive stages, while
Bard’s recommendations were often less reliable.
Additionally, the BloomGPT project (Spanos et al.,
2024) structured a ChatGPT-powered web appli-
cation around Bloom’s Taxonomy, enhancing stu-
dents’ cognitive and metacognitive learning in an
undergraduate history course. Expert evaluations
indicated that the application effectively supported
diverse cognitive processes.

2.2 Benchmarks for Abstraction Tasks

Abstraction and Reasoning Corpus (ARC)
The Abstraction and Reasoning Corpus (ARC)
benchmark (Chollet, 2019) was created for the pur-
pose of measuring intelligence in computer sys-
tems. This benchmark requires inference based on
complex prior knowledge such as arithmetic abili-
ties, geometric understanding, and topological un-
derstanding. The goal is to derive common rules
from examples and apply them to infer the appropri-
ate output image for a given test input image. Each
task provides 2–5 pairs of example input and out-
put images. The original ARC benchmark consists
of 400 training set, 400 evaluation set, and 200 test
set. Moreover, the ARC benchmark is represented
as 2D matrices.

Language-Complete ARC (LARC) The LARC
(Acquaviva et al., 2022) dataset consists of 400
ARC training data, each accompanied by 1) a de-
scription of the input image and 2) a natural lan-
guage description of the rules between the input
and output images. Both the input description and
the output description must be language-complete.
Language-complete refers to having sufficient rele-
vant information even when neither input nor out-
put images are provided. In other words, humans
should be able to understand the task sufficiently
based solely on the description of LARC without
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the presence of images. A language-complete ARC
is shown in the Refined LARC in Figure 2.

Modified Benchmark with Transformed Evalu-
ation Format Abstract and reasoning tasks often
face problems in setting task objectives due to their
attempt to measure unclearly defined reasoning
abilities. Therefore, there have been previous stud-
ies that tried to perform new tasks by modifying
or expanding existing tasks. Bongard-LOGO (Nie
et al., 2020) is an example of simplifying a complex
task. Bongard (Bongard, 1968), one of the Visual
Reasoning benchmarks, is a task that expresses
the difference between two given abstract image
groups as a natural language description. It has long
been a notable task as it requires high abstraction
and reasoning ability to solve the problem, but it
had limitations in analyzing the cause when a spe-
cific model could not solve it, as it is a description
task requiring natural language processing abilities.
To address this, Bongard-LOGO transformed the
type of Bongard problem from a description task
to a classification task. On the other hand, there
are also cases where simple tasks were changed
into complex tasks. VQA (Antol et al., 2015) is a
task that evaluates how well one can answer when
given an image and a question. However, VQA
only assesses whether the given image and natu-
ral language problem is well understood, making
it unsuitable for evaluating reasoning abilities. To
overcome this limitation, a modified benchmark,
TGIF-QA (Jang et al., 2017), which added ques-
tions requiring reasoning about visual images, was
proposed. Thus, especially in the field of Visual
Reasoning, attempts are being made to establish
intermediary results through task transformation.

3 MC-LARC: Generation to Selection

We created MC-LARC through the following two
steps: 1) manually refining the existing LARC, and
2) utilizing ChatGPT4 to generate wrong options
based on LARC.

Refining Process The original LARC had no-
table quality issues, as shown in Figure 2. These
issues mainly involved 1) inconsistent expressions
for the same concept and 2) insufficient details in
the provided explanations. For example, the upper
part of Figure 2 shows different ways of represent-
ing the same concepts, causing confusion. This
inconsistency could lead to issues when using lan-
guage models to augment incorrect options, as the

ARC example

Imprecise Analogy

Fill in the first, second and last with blue and fill in 

the other three with yellow.

Original LARC

Refined Answer in MC-LARC

Precise Analogy

Fill in the pixel with blue if the input is symmetrical, 

and with orange if it is not.

Flawed Analogy Refinement

Refined by Experts

Inconsistent Expression

Example: Color

grey, pink, yellow, brown pink, yellow,  -> browndark red

Figure 2: Two main issues of LARC. (Upper) Inconsis-
tent terminology: Varied expressions for identical con-
cepts (e.g., ‘brown’ described as ‘dark red’). (Lower) In-
sufficient problem-solving information: Original LARC
descriptions lack critical details for ARC task comple-
tion (e.g., symmetry identification). Expert revisions fill
in these missing details.

model might generate responses that deviate from
the intended context of the problem. Moreover,
the task explanations often lacked the essential in-
formation needed to complete them successfully.
These shortcomings arose because the dataset was
compiled by numerous non-experts through Ama-
zon Mechanical Turk.

In addition to the issues highlighted in Figure 2,
there were further cases of inconsistency through-
out the dataset. These inconsistencies involved not
only color but also shape representations and grid
manipulation operations. The presence of these
multiple issues complicates the process of generat-
ing new datasets based on LARC, emphasizing the
challenges of relying on flawed data sources.

To address these issues, we conducted a refining
process to enhance quality. This process prioritized
ensuring consistency in expressions and rectifying
erroneous representations. Figure 2 provides an
overview of this refining process.

Designing Distractors with ChatGPT4 Based
on the given output description of refined LARC,
we generated four distractors through ChatGPT4,
as illustrated in Figure 3. However, allowing un-
restricted generation of distractors led to issues
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      Color the tallest blue, the second tallest green, the third tallest red, and the shortest yellow.

      Color the shortest red, the second shortest blue, the third shortest green, and the shortest yellow.

      Color the shortest green, the second shortest red, the third shortest yellow, and the shortest blue.

      Color the shortest blue, the second shortest red, the third shortest green, and the shortest yellow.

Visualized ARC example Language Descriptions of ARC by Experts 
Description for Input Image

In the input, you can see...
Several different lengths of gray bars that rise vertically.

Description for Output Image

Five Options for MC-LARC

Input Output

Four Distractors Generated by ChatGPT4

To make the output, you have to...

      Color the tallest blue, the second tallest red, the third tallest green, and the shortest yellow.
To make the output, you have to...

Figure 3: MC-LARC structure. Visualized ARC example (blue) with five options - one correct solution and four
distractors. Refined LARC by experts (green) and GPT-4 generated distractors based on refined LARC description
(red). The solver must infer common rules from the ARC example to select the best-matching option.

such as creating out-of-context choices unrelated
to the task. To address this problem, we improved
by adding constraints during the prompt level. The
constraints added to the prompt are as follows:

• In Context Vocabulary: To generate plausi-
ble distractors, it was necessary to limit the
expressions within the context that aligns with
the ARC domain. To achieve this, two contex-
tual constraints were imposed. One involved
adding descriptions about the ARC environ-
ment, while the other entailed mentioning spe-
cific words that should not be used.

• Length of Options: When generating dis-
tractors for lengthy options, there were cases
where LLM produced relatively short options,
leading to easily solvable problems. Therefore,
we restricted the LLM to generate incorrect
options of similar lengths to the correct op-
tions.

• Format: When creating distractors, we en-
sured that the opening phrases of the sentences
exactly matched the correct answer option’s

‘To make the output, you have to...’. If the
opening phrases of the incorrect options vary,
it could lead to selecting the correct answer
based on the format rather than the meaning
of the sentence.

We analyzed to determine the extent of MC-
LARC’s refinement process impact. Table 1 illus-
trates the word count differences between correct
and incorrect options before and after refinement.
Notably, adding constraints significantly decreased

Table 1: Word count statistics before and after refine-
ment, comparing correct and incorrect options. The
mean word count for incorrect options increased from
approximately 29 to 37, greatly reducing the gap with
the correct options’ 39 and making them more similar.

Word Count
Statistics Before After

Correct 39.73 ± 28.13 39.08 ± 26.61
Incorrect 29.01 ± 18.93 37.34 ± 22.40

the disparity in average word count and variance be-
tween correct and incorrect options. This reduction
in disparity serves to mitigate potential shortcuts
based on option length.

Table 2: Similarity metrics before and after refinement,
comparing correct and incorrect options. The increase
in Jaccard similarity (Leskovec et al., 2020) and the de-
crease in Levenshtein distance (Levenshtein, 1966) in-
dicate that the similarity between options has improved
after the refinement process.

Similarity Metrics

Metric Statistic Before After

Jaccard Similarity Mean 0.404 0.777 ↑
Variance 0.021 0.017

Levenshtein Distance Mean 0.439 0.129 ↓
Variance 0.021 0.009

Table 2 presents the Jaccard similarity and Lev-
enshtein distance between correct and incorrect op-
tions. A higher Jaccard similarity indicates greater
textual similarity, while a lower Levenshtein dis-
tance signifies increased similarity. The increased
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similarity between correct and incorrect options
post-refinement suggests a convergence in sentence
structure. This convergence helps prevent shortcuts
based solely on option formatting.

4 Experiments

4.1 Evaluating MC-LARC’s Efficacy

This section evaluates the effectiveness of MC-
LARC in assessing lower-level cognitive skills,
focusing on understanding and application in rea-
soning tasks. For this purpose, we presented all
MC-LARC problems to the ChatGPT4V model
five times, resulting in an accuracy of about 76%
for the total 400 tasks. Considering that the accu-
racy of LLMs on ARC tasks is around 10% (Qiu
et al., 2024), this is certainly a high score. To inves-
tigate the implications of this difference, we con-
ducted an additional experiment where we asked
the LLM for the reasoning behind selecting each
option. Results revealed a strong correlation be-
tween answer accuracy and reasoning validity, as
illustrated in Figure 4. Instances of correct answers
with incorrect explanations, or incorrect answers
with valid reasoning, were negligible. This indi-
cates reduced errors such as generating correct
answers through incorrect reasoning processes or
providing inconsistent answers, which often occur
when LLMs directly solve ARC tasks (Lee et al.,
2024). Furthermore, the LLM’s explanations reflect
its understanding of the ARC task by following the
problem-solving process within the options. While
the multiple-choice format of MC-LARC does not
directly assess the complex pattern recognition,
rule extraction, abstraction, and application to new
situations required by ARC, it allows for the obser-
vation of intermediate steps in the ARC problem-
solving process. Consequently, MC-LARC allows
for a closer analysis of the LLM’s fundamental
understanding and reasoning process.

To validate MC-LARC’s reliability as an evalu-
ation metric, we assessed consistency in LLM re-
sponses. Table 3 presents these results. KR-20 and
Cronbach’s Alpha values exceeding 0.9 indicate
strong internal consistency. The ANOVA analysis,
showing a small F-statistic and p-value above 0.05,
demonstrates consistent evaluation across items
without significant variation. These findings con-
firm MC-LARC as a highly reliable test for assess-
ing respondents’ abilities.

ARC example
In all the given image files, there 
is a red square in the input grid 
on the left, and in the output grid 
on the right, the red square is 
filled with the pattern of 
another colored object that is 
present in the input grid.

...

Therefore, the common rule is to 
fill in the red square with the 
pattern of the other colored 
object.

Correct Explanation

ARC example Wrong Explanation
In each of the given examples, the 
colored pattern from the input grid 
(on the left) has been duplicated 
twice vertically -> in 
the output grid (on the right). 



This creates two exact copies of 
the pattern, one above ->  
the other, resulting in a vertically   
->  extended version 
of the original pattern. 



The duplication maintains the 
same colors and positions relative 
to each other, just expanded 
vertically -> .

(horizontally) 

(next to)

(horizontally)

(horizontally)

Figure 4: A result of requesting an explanation of the
experiments with provided images. (Upper) Shows an
example where the answer to MC-LARC is correctly
chosen. (Lower) Demonstrates the incorrect answers
due to failure to infer the correct solution.

Table 3: Analysis of response consistency reliability
in experiments with and without ARC images. Based
on the LLM solving 400 MC-LARC tasks five times.
Higher KR-20 (Kuder and Richardson, 1937) and Cron-
bach’s Alpha (Cronbach, 1951) indicate greater inter-
nal consistency. Higher ANOVA p-values and lower
F-statistics (Scheffe, 1999) suggest less significant dif-
ferences between attempts, indicating more consistent
responses across trials. ↑ and ↓ arrows indicate better
consistency in the respective condition.

Metric With Image Without Image

KR-20 0.918 0.922 ↑
Cronbach’s Alpha 0.917 0.921 ↑
ANOVA p-value 0.862 ↑ 0.712
ANOVA F-statistic 0.324 ↓ 0.532

4.2 Problems on Augmentation

However, we discovered an interesting finding:
LLMs use a shortcut to solve MC-LARC. As
shown in Figure 6, we uncovered this fact through
a comparative experiment analyzing the results and
processes of LLMs solving the problems with and
without providing the ARC images. MC-LARC
should be solved by inferring the rule from the
given images and choosing the correct option, but
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Repeated Expression



(green, input, empty, yellow)

Correct Answer

Contradiction

ARC example
To make the output, you have to...

 Examine the  pattern in the input. 

      Identify any empty areas of blocks enclosed by the pattern

      and fill those enclosed parts with yellow

 Examine the green pattern in the  . 

      Identify any empty areas of blocks enclosed by the pattern

      and fill those enclosed parts with yellow

 Examine the green pattern in the input. 

      Identify any empty areas of blocks enclosed by the pattern

      and fill those enclosed parts with 

 Examine the green pattern in the input. 

      Identify any empty areas of blocks enclosed by the pattern

      and fill those enclosed parts with yellow

 Examine the green pattern in the input. 

      Identify any   areas of blocks enclosed by the pattern

      and fill those enclosed parts with yellow.

grey

output

brown

full

Multiple-choice of MC-LARC Explanation from LLM

Input output

Figure 5: LLM problem-solving methodology in MC-LARC. 1) Option analysis: Identifies recurrent expressions.
2) Vocabulary consistency check: Excludes options with divergent terminology 3) ARC domain compatibility
assessment: Eliminates options with semantic contradictions incompatible with the ARC task.

Table 4: Comparison of MC-LARC solving perfor-
mance between ChatGPT4V and humans, with and
without images. It shows mean accuracy from five ex-
periments. For more detailed information on the human
evaluation, please refer to Section 5.2.

Image Solver Accuracy (%)

With
ChatGPT4V 76.05 ± 1.34

Human 90.75 ± 2.85

Without
ChatGPT4V 64.61 ± 2.17

Expected Value 20.00

the LLM achieved an accuracy of 65% even when
the task was provided without images.

To analyze how the LLM solved MC-LARC
without the problem images, we additionally asked
the LLM to explain the reasoning behind its an-
swers. As shown in Figure 5, we found that the
LLM inferred the correct option by 1) choosing the
option with the most repeated expressions and 2)
eliminating self-contradictory options.

We point out two problems in the generation pro-
cess: First, we notice an unintended pattern when
LLM generates the four distractors from the correct
answer. The correct option often contained words
that appeared most frequently across all choices.
As shown in Figure 5, the distractors describe terms
that differ from the common keywords shared by
the other four options, making it easier to identify
them as incorrect. This linguistic pattern could un-
intentionally hint at the correct answer. Second, not
providing image and context information for option
generation led to contradictory expressions, and we

Experiment 1: With Image
Part 1: Test Accuracy Part 2: Explanation

ARC Example Five Options

    Find

Common Rule

    Pick

Correct Option

1    3  4  52

 With Image - Part 1

+

Get Explanation

“Provide explanation 

about your choice”

Experiment 2: Without Image
Part 1: Test Accuracy Part 2: Explanation

Without Image - Part 1

+

Get Explanation

“Provide explanation 

about your choice”

ARC Example Five Options

    Pick

Correct Option

1    3  4  52

ChatGPT4V

ChatGPT4V

ChatGPT4V

ChatGPT4V

Figure 6: Experimental design overview. (Upper) Image-
based experiment: Utilizes visualized ARC examples.
(Lower) Text-only experiment: Excludes visual aids.
Both experiments comprise two parts. Part 1: ChatGPT4
MC-LARC problem-solving for accuracy assessment.
Part 2: Solution explanation alongside problem-solving,
building on Part 1 tasks.

confirmed that the LLM identified these distractors
by detecting semantic contradictions by compar-
ing the options. Therefore, from this experiment,
we can conclude that to evaluate reasoning ability
fairly, the process of generating choices should be
improved to avoid providing additional information
that could serve as a shortcut.
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 Solve MC-LARC without Images

ARC Example Five Options

1  2  3  4  5

    Pick

Correct Option

2Selected Option Get Explanation

“How to solve without images? 

Provide explanation.”

“Refine 

MC-LARC Options.”

 Get Explanation

Refined MC-LARC

2
Five Options

Prompt: Find Errors

Selection

1  2  3  4  5

 Refining MC-LARC Options

Prompt: Refine
Explanation

ARC ExampleSolution + Options

1    3  4  52

Figure 7: The self-feedback process for improving MC-LARC quality. 1) Initial problem-solving: LLM solves
MC-LARC without visual input. 2) Solution justification: LLM explains the reasoning process and finds errors of
options for Stage 1. 3) Comprehensive revision: LLM refines MC-LARC options considering ARC example images,
correct answers (solution), options, and Stage 2 explanation.

4.3 Improving Quality: Self-Feedback
Framework

From the two experiments above, we confirmed
that converting to a multiple-choice format has ad-
vantages as an inference problem in two aspects:
1) providing additional information to solve the
reasoning problem, and 2) allowing for a more
transparent evaluation of the reasoning process.
However, we also found cases where unintended
shortcuts were discovered, and to address this is-
sue, the process of augmenting choices needs to be
improved.

We conducted an additional experiment com-
paring the original MC-LARC with an improved
version using a self-feedback process inspired by a
previous study (Wang et al., 2024). As illustrated
in Figure 7, the self-feedback process consists of
three stages. First, the problem is solved without
the image. Next, the problem-solving process is
explained without the image to identify potential
shortcuts. Finally, new options are generated that
address the identified shortcuts. This framework
enhances the quality of options without adding ex-
plicit constraints.

Table 5: LLM performance on MC-LARC: Comparing
image presence and refinement effects on accuracy and
shortcut reduction. Refinement reduces ’without image’
accuracy towards ideal 20%, indicating fewer shortcuts.

Image Version LLM Accuracy (%)

With
Before 76.05 ± 1.34
After 62.50 ± 2.32

Without
Before 64.61 ± 2.17
After 43.75 ± 1.55 ↓

As shown in Table 5, the significant decrease
in accuracy without image after refinement (from
64.61% to 43.75%) suggests a substantial reduc-
tion in shortcuts. However, after the revision, the
average accuracy when an image was provided
dropped from 76.05% to 62.5%. This seems to
be due to the increased difficulty of the options, as
their similarity increased while reducing shortcuts.
In summary, after applying the self-feedback frame-
work, the accuracy gap between image-present and
image-absent conditions widened, indicating im-
proved option quality and reduced reliance on con-
textual cues. Conversely, the decrease in accuracy
for image-present conditions post-revision suggests
increased ambiguity among options.

5 Discussion

5.1 Criteria on Good Option and Bad Option

In essence, the central challenge revolves around
distinguishing between what constitutes a good
problem and what does not. Before we can enhance
the process of generating answer choices, we must
first address this fundamental question: What are
the distinguishing factors between high-quality and
low-quality answer options?

As we examined the augmented choice exam-
ples generated by the LLM, we could categorize
the choices into three levels of quality, as shown in
Figure 8. The best choices modified the core part
of the problem that fits the context. In ARC, the
core is the part where a change occurs between
images, so in the given examples, completing a
square by filling in orange pixels is the core. Thus,
choices that question the change to orange can be
considered the best type of choice. Next, choices
that were possible to predict from the input image
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ARC example

 Fill in the complete 3x3 square, 
consisting of green pixels, with 
pink pixels

 Fill in the incomplete 5x5 square, 
consisting of light blue pixels, 
with gray pixels

 Fill in the incomplete 4x4 square, 
consisting of black pixels, 
with blue pixels

 Fill in the complete 2x2 square, 
consisting of brown pixels, 
with red pixels

 Fill in the incomplete 3x3 square, 
consisting of yellow pixels, 
with orange pixels.

 Complete the squares using 

      the color orange.	



 Write an essay about the color 
orange.	

 Draw a circle using the color 
blue.	

 Fold the paper into triangular 
shapes.	

 Bake a cake using orange 
flavoring.

 Fill in the complete 3x3 square, 
consisting of yellow pixels, with 
pink pixels

 Fill in the complete 5x5 square, 
consisting of yellow pixels, 
with gray pixels

 Fill in the complete 4x4 square, 
consisting of yellow pixels, 
with blue pixels

 Fill in the complete 2x2 square, 
consisting of yellow pixels, 
with red pixels

 Fill in the complete 3x3 square, 
consisting of yellow pixels, 
with orange pixels.

Best Moderate Bad

Input output

Figure 8: Three examples of multi-choice options augmented differently by the LLM. The given problem is to fill
in an object with holes with the color orange to make a 3 × 3 square, where the size of the square and the color
are the core aspects of the problem. The good example demonstrates an understanding of the core of the problem
and provides consistent variations, while the poorer examples increasingly include choices that are unrelated to the
problem and inconsistent.

but did not capture the core of the problem were of
moderate quality. Examples include using colors
not present in the input image or specifying grid
sizes that were not present. Finally, choices that in-
cluded cases that cannot occur in the ARC domain
at all were the worst. Commands like ‘Write an
essay’ are irrelevant to ARC and do not require any
reasoning process to solve the problem, making
them poor choices.

Therefore, good text descriptions should 1) in-
clude the core of the problem in the choices, and
2) be consistent within the context of the problem.
Identifying the criteria in form and content needed
to generate good choices during the augmentation
process is the contribution of this study.

5.2 Human Evaluation of MC-LARC

To assess the efficacy of MC-LARC in capturing
human-level reasoning, we conducted a compre-
hensive evaluation involving human participants.
We recruited 8 undergraduate interns from our lab-
oratory to evaluate the initial MC-LARC version.
To manage cognitive load, we divided the 400 MC-
LARC tasks into 8 sets of 50 tasks, assigning one
set to each participant. Table 6 shows the results.

The human evaluation yielded key insights: ag-
gregating results from all participants, we estimated
a high overall accuracy of 90.75%, with individual
performances ranging from 72% to 100%. This ap-
proach enabled assessment of the full dataset while
managing participants’ cognitive load.

Table 6: Human performance on MC-LARC: Individual
accuracy on 50-task subsets and overall result

ID Solved Tasks Accuracy (%)

1 1–50 94.00 ± 6.82 [87.18–100.00]

2 51–100 72.00 ± 12.89 [59.11–84.89]

3 101–150 86.00 ± 9.56 [76.04–95.96]

4 151–200 86.00 ± 9.56 [76.04–95.96]

5 201–250 100.00 ± 0.00 [100.00–100.00]

6 251–300 96.00 ± 5.63 [90.37–100.00]

7 301–350 94.00 ± 6.82 [87.18–100.00]

8 351–400 98.00 ± 4.02 [93.98–100.00]

Overall 90.75 ± 2.85 [87.90–93.60]

To gain insights into how human performance
varies with task complexity, we surveyed the partic-
ipants on the difficulty of each MC-LARC task and
analyzed the accuracy across different difficulty
levels. Table 7 presents these results. Performance
generally declined with increasing difficulty, par-
ticularly at the highest level.

Notably, human participants outperformed the
LLM (ChatGPT-4V), underscoring MC-LARC’s
effectiveness in capturing human-level reasoning
and its potential as a challenging benchmark for
AI systems. These findings highlight MC-LARC’s
value in evaluating and advancing AI capabilities,
with future work aimed at analyzing LLM perfor-
mance across different difficulty levels.
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Table 7: Human performance across MC-LARC diffi-
culty levels: Accuracy decreases with complexity

Difficulty Total Correct Accuracy (%)

1 155 149 96.13
2 102 91 89.22
3 72 67 93.06
4 41 38 92.68
5 30 18 60.00

Overall 400 363 90.75

5.3 Comparative Analysis of Language
Description Quality

To evaluate the utility of MC-LARC, we designed
an experiment to assess its effectiveness in solv-
ing ARC tasks and as a source of labeled data for
learning. The language descriptions in MC-LARC
options, including correct and incorrect analogies,
can serve as valuable resources. We examined how
effectively MC-LARC aided in directly solving
ARC problems.

The experiment was structured to evaluate the
LLM’s program synthesis capabilities on ARC
tasks. We provided the input and output of ARC
tasks along with a set of Python functions capa-
ble of solving each problem. The LLM’s objective
was to identify the correct combination of func-
tions to solve the given problem. In addition to
the solution process from MC-LARC, we incorpo-
rated data from Fast and Flexible (Johnson et al.,
2021) and LARC datasets (Acquaviva et al., 2022),
supplying step-by-step functions written in Python,
explanations of ARC problems, and the correspond-
ing task’s input and output. The experiment was
conducted 10 times on 20 problems common to
all three datasets, enabling a comprehensive com-
parison of the LLM’s performance across differ-
ent approaches and allowing us to assess the rela-
tive value of MC-LARC’s language descriptions as
learning labels. Please refer to Section 3.2 and B.2
of the Appendix in (Lee et al., 2024) for detailed
information on the experimental setting.

Table 8 presents the compositionality perfor-
mance of LLMs across different benchmarks. The
results indicate that the highest average accuracy
was observed when the LLM provided MC-LARC
descriptions. This suggests that the refined correct
options of MC-LARC more effectively capture the
key aspects of problem-solving in ARC tasks.

MC-LARC descriptions improved LLM perfor-
mance compared to other datasets and baselines,

Table 8: Compositionality performance for ARC prob-
lems. When MC-LARC was provided, it was observed
that the highest accuracy rates were achieved.

Metric Accuracy (%)

No Description 8.0 ± 0.09
Fast and Flexible (Johnson et al., 2021) 8.0 ± 0.09
LARC (Acquaviva et al., 2022) 13.0 ± 0.11
MC-LARC 14.5 ± 0.12

highlighting the value of well-crafted language
descriptions in enhancing compositionality. This
implies that the ability to generate textual infor-
mation not explicitly provided during inference is
crucial, as it helps the LLM infer missing context
and approach with a deeper understanding. Also,
MC-LARC’s inclusion of incorrect options enables
contrastive learning. These findings emphasize the
importance of diverse, high-quality language de-
scriptions in improving LLM understanding and
problem-solving, particularly for compositional
reasoning tasks, positioning MC-LARC as a valu-
able resource for advancing AI learning techniques.

6 Conclusion

To overcome the limitations of the existing ARC in
measuring inferential reasoning ability, we created
a new multiple-choice dataset called MC-LARC.
As a result, the multiple-choice format allowed for
a clearer analysis of logical flow during problem-
solving and provided support for the solver’s rea-
soning abilities. However, in an additional control
experiment without images, we found that the LLM
solved problems by finding shortcuts instead of
using reasoning abilities. This highlights the reg-
ulation needed when using LLMs to synthesize
multiple-choice questions. Based on these findings,
we introduce a self-feedback framework to address
shortcuts. This framework represents our distinc-
tive approach, using LLMs to generate proper de-
scriptions, thereby mitigating the shortcut problem.

These findings have several important impli-
cations. Firstly, they offer valuable insights into
the appropriate methods for evaluating inferential
reasoning, demonstrating the potential of using
multiple-choice questions for this purpose. Sec-
ondly, by identifying the constraints to consider
when using LLMs to synthesize multiple-choice
questions, this research proposes a framework for
the development of more sophisticated and auto-
mated high-quality description generators.
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7 Limitation

Our study has two main limitations. First, despite
improvements, shortcuts may still persist. Second,
there is a lack of metrics to measure the quality of
the options. We observed that even after enhance-
ment through self-feedback, approximately 40%
of the problems could be solved without images.
However, these issues are inherent limitations of
multiple-choice questions (Alagumalai and Curtis,
2005), and therefore, do not undermine the funda-
mental purpose of MC-LARC to assess cognitive
features of LLMs such as understanding and appli-
cation, which are difficult to confirm solely through
solving ARC problems.

Secondly, our current analysis is limited to the
accuracy of LLMs. In existing test theory, met-
rics such as discrimination are used to evaluate the
quality of options. This requires the use of various
LLMs and analysis of human cases. Nonetheless,
this study lays the foundation for identifying cog-
nitive features that cannot be confirmed through
ARC alone, with significant potential for future
expansion.
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Appendix

A Additional Experiments on MC-LARC
Option Reliability

To further investigate the statistical variations in
MC-LARC option reliability and accuracy under
different constraint conditions, we conducted addi-
tional experiments. Table 9 summarizes our find-
ings.

1Constraint key: g - grid system explanation; c - color
description; s - vocabulary restriction; f - figure provided;
o - caution against repeated expressions; t - caution against
contradictions

Table 9: Reliability metrics and ANOVA results by con-
straint condition1

Constraint KR-20 Cronbach’s α F -statistic

cs 0.890 0.872 0.535
gc 0.842 0.818 0.622
gs 0.828 0.803 0.456
gcs 0.870 0.850 0.414
gcsf 0.915 0.900 1.264
gcsotf 0.673 0.631 0.675

Our analysis revealed high reliability for prob-
lems with provided constraints. However, no statis-
tically significant differences were observed across
the various constraint conditions. This lack of sub-
stantial variation may be attributed to the absence
of appropriate quantitative indicators reflecting op-
tion quality.

B Analysis of Potential Shortcuts in
MC-LARC Problem-Solving

To investigate whether LLMs exploit shortcuts
based on formal aspects of the tasks, such as word
count or ARC image colors, we conducted t-tests
comparing tasks groups categorized by accuracy
rates into well-solved (easy) and poorly-solved (dif-
ficult) groups. If shortcuts existed in formal aspects,
we would expect to observe significant statistical
differences in specific attributes (e.g., number of
words, number of pixels) between these groups.

B.1 Methodology

We divided the 400 MC-LARC tasks into two
groups based on the LLM’s performance:

• Well-solved (Easy) tasks: 291 tasks were
solved correctly 4 times or more out of 5 trials

• Poorly-solved (Difficult) tasks: 109 tasks were
solved correctly 3 times or less out of 5 trials

We then conducted t-tests to compare various
metrics between these groups, both when images
were provided and when they were not.

B.2 Results

Table 10 present the results of our t-tests for vari-
ous metrics. The analysis revealed no statistically
significant differences between easy and difficult
tasks across all measured metrics. This held both
when images were provided and when they were
not.
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Table 10: Comparison of task attributes between easy and difficult MC-LARC tasks for LLM (with image informa-
tion): Analysis of input/output features and option word counts shows no significant differences.

Metric Easy Difficult t-statistic p-value

Number of Input 3.21 3.38 -1.603 0.110
Number of Output 3.21 3.38 -1.603 0.110
Average Input Pixel Numbers 148.21 132.60 0.911 0.363
Average Input Color Types 3.55 3.46 0.441 0.660
Average Output Pixel Numbers 118.37 92.76 1.853 0.065
Average Output Color Types 3.39 3.28 0.685 0.494
Correct Option Word Count 40.17 36.16 1.527 0.128
1st Incorrect Option Word Count 38.38 35.54 1.184 0.238
2nd Incorrect Option Word Count 37.86 35.18 1.117 0.265
3rd Incorrect Option Word Count 37.93 35.28 1.099 0.273
4th Incorrect Option Word Count 38.10 35.51 1.071 0.285

These results suggest that the number of words
and other formal aspects of the problems do not
currently function as shortcuts when LLM solves
MC-LARC. This finding has important implica-
tions:

1. It indicates that shortcuts cannot be resolved
by simply controlling formal aspects such as
word count or format in a mechanical way.

2. It highlights the complexity of addressing
shortcuts in language model performance, sug-
gesting that more sophisticated approaches
may be necessary.

3. The lack of significant differences in formal
aspects between easy and difficult tasks im-
plies that the LLM’s performance is likely
based on more nuanced features of the prob-
lem descriptions or underlying reasoning pro-
cesses.

These insights contribute to our understanding
of LLM behavior in complex reasoning tasks and
underscore the challenges in identifying and miti-
gating shortcut learning in such contexts.

C Potential Enhancements to
Multi-Choice Generation Methodology

While the experimental results confirmed that the
multiple-choice problem format provided sufficient
additional information to adequately assess Under-
stand and Apply aspects, the issue of finding short-
cuts during the solving process was raised. This
problem is not unique to LLM evaluation. The is-
sue of imbalance among options in multiple-choice
questions has already been raised in classical test

theory (Alagumalai and Curtis, 2005). The follow-
ing are suggestions for improving the options in
MC-LARC:

• Option Quality Improvement: The multiple-
choice evaluation method has been criticized
for the existence of shortcuts such as Logi-
cal cues, Long correct answer, Word repeats,
and Convergence strategy, even in the case
of humans (Case and Swanson, 1998). It has
also been pointed out that when there is a lack
of discrimination power, the quality of the
options decreases. The most intuitive way to
address this issue is for humans to consider
constraints when creating options.

• Modification on the Benchmark Format:
Not only the content of the options but also
the format of the options can affect the bench-
mark. Currently, MC-LARC follows a format
where one correct answer option is chosen
among five options. On the other hand, an-
other study reported that the selection ratio
between options remained similar when there
were four or three options compared to five
options (Vyas and Supe, 2008). It is also note-
worthy that problems with multiple correct
answers tend to be more difficult than those
with a single correct answer (Case and Swan-
son, 1998). However, it is not yet known how
these various multiple-choice formats differ
for LLMs, and therefore, they need to be con-
sidered as hyperparameters in the future.

• Changing the Evaluation Objective: Mod-
ifying the content of the multiple-choice op-
tions to measure various areas of reasoning
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such as application and creation is another pos-
sible improvement. Currently, the options in
MC-LARC are focused on finding the correct
way to solve the ARC task, which is aimed
at assessing the understanding of the task. To
extend the assessment to other reasoning abil-
ities, the application and creation stages of
the task need to be evaluated. Converting the
problem into a multiple-choice format where
images are selected instead of answer texts,
similar to MARVEL (Jiang et al., 2024), could
be one possible way to shift the problem for-
mat to the creation stage. To transition to the
application stage, instead of using an entire
problem description, it may be necessary to
consider separating the steps required to solve
the problem and have the option to select steps
that are not necessary for solving the given
ARC task.

D Potential Enhancements in the
Evaluation Methodology

One of the current limitations of MC-LARC is the
lack of sufficient evaluation metrics for the pro-
posed benchmark. Therefore, it is difficult to assess
how much the addition of multiple-choice has con-
tributed to securing intermediate reasoning stages
leading up to ARC, and how well the options are
constructed. The following describes existing meth-
ods for evaluating options:

• Using Scoring Models: Ding and Beichner
(2009) has proposed statistical and numerical
methods for evaluating the quality of multiple-
choice questions (MCQs). They propose three
methods for individual item evaluation (Item
Difficulty Level, Item Discrimination Index,
Point Biserial Coefficient) and two methods
for overall test evaluation (Kuder-Richardson
Reliability Index, Ferguson’s Delta). Item Dif-
ficulty Level and Item Discrimination Index
measure item difficulty and discriminative
power, while Point Biserial Coefficient as-
sesses each item’s appropriateness by com-
paring item scores with the total test score.
The Kuder-Richardson Reliability Index de-
termines whether the test is suitable for indi-
vidual or group assessments, and Ferguson’s
Delta measures the test’s ability to distinguish
between varying levels of proficiency. Addi-
tionally, they introduce clustering analysis for
analyzing respondent patterns and model us-

age. Therefore, using metrics to measure the
quality of MCQs is one method for improving
MC-LARC.

• Comparison with Human-Created Ques-
tions: One issue with the current MC-LARC
is that both question generation and evalua-
tion are done through a single model, Chat-
GPT4V. This evaluation approach does not
reveal whether MC-LARC can be properly
evaluated on other models, including other
LLMs. In existing test theory, to compare with
human-created options, a large number of peo-
ple directly participated in the evaluation to
minimize errors as much as possible (Palmer
et al., 2006). Similarly, 1) three or more peo-
ple can evaluate whether there are errors in the
options, and 2) the quality of the options can
be compared with human-created questions.

6708


