
Findings of the Association for Computational Linguistics: EACL 2024, pages 6724–6743
November 12-16, 2024 ©2024 Association for Computational Linguistics

Self-Distillation for Model Stacking Unlocks
Cross-Lingual NLU in 200+ Languages

Fabian David Schmidt1, Philipp Borchert2, Ivan Vulić3, Goran Glavaš1

1 Center For Artificial Intelligence and Data Science, University of Würzburg, Germany
2 IESEG School of Management, France; KU Leuven, Belgium

3 Language Technology Lab, University of Cambridge, United Kingdom
{fabian.schmidt, goran.glavas}@uni-wuerzburg.de

philippniklas.borchert@kuleuven.be
iv250@cam.ac.uk

Abstract

LLMs have become a go-to solution not just for
text generation, but also for natural language
understanding (NLU) tasks. Acquiring exten-
sive knowledge through language modeling on
web-scale corpora, they excel on English NLU,
yet struggle to extend their NLU capabilities to
underrepresented languages. In contrast, ma-
chine translation models (MT) produce excel-
lent multilingual representations, resulting in
strong translation performance even for low-
resource languages. MT encoders, however,
lack the knowledge necessary for comprehen-
sive NLU that LLMs obtain through language
modeling training on immense corpora. In this
work, we get the best both worlds by integrat-
ing MT encoders directly into LLM backbones
via sample-efficient self-distillation. The result-
ing MT-LLMs preserve the inherent multilin-
gual representational alignment from the MT
encoder, allowing lower-resource languages
to tap into the rich knowledge embedded in
English-centric LLMs. Merging the MT en-
coder and LLM in a single model, we miti-
gate the propagation of translation errors and
inference overhead of MT decoding inherent to
discrete translation-based cross-lingual trans-
fer (e.g., translate-test). Evaluation spanning
three prominent NLU tasks and 127 predom-
inantly low-resource languages renders MT-
LLMs highly effective in cross-lingual transfer.
MT-LLMs substantially and consistently out-
perform translate-test based on the same MT
model, showing that we truly unlock multilin-
gual language understanding for LLMs.

1 Introduction

Large Language Models (LLMs) have become the
swiss-army knife for natural language understand-
ing (NLU) in English. When pretrained with lan-
guage modelling on trillions of tokens, LLMs ex-
cel at complex NLU tasks with minimal or no la-
beled data (Brown et al., 2020; Touvron et al., 2023;
AI@Meta, 2024). Although these models are pre-

dominantly trained on English texts, typically com-
prising more than 80% of their training data (Tou-
vron et al., 2023; AI@Meta, 2024; Aryabumi et al.,
2024), they show strong NLU capabilities also in
other high-resource languages (Blevins and Zettle-
moyer, 2022; Zhu et al., 2023).1 However, LLM
performance degrades in cross-lingual transfer to
languages that are typologically distant from En-
glish or virtually unseen at pretraining (Ojo et al.,
2024; Holtermann et al., 2024; Razumovskaia et al.,
2024). This performance degradation restricts the
effectiveness of LLMs primarily to English and
a tiny subset of high-resource languages and un-
derscores shortcomings in their adaptability to un-
derrepresented low-resource languages, thereby
amplifying the cross-lingual language technology
gap (Joshi et al., 2020; Razumovskaia et al., 2024).

In contrast, publicly available machine transla-
tion models like NLLB (Team et al., 2022) and
MADLAD-400 (Kudugunta et al., 2023) are by
design oriented towards and showcase ever more
inclusiveness; they provide some machine transla-
tion capabilities between more than 200 and 400
languages, respectively, in any language direction.
Unlike LLMs, machine translation (MT) models,
and specifically MT encoders, are designed to se-
mantically align textual representations in a unified
embedding space, as demonstrated by their sen-
tence retrieval performance on the FLORES200
dataset (cf. Figure 1).

However, the MT models lack various types
of knowledge (e.g., world knowledge, common-
sense knowledge), commonly acquired through
large-scale language modeling pre-training. Con-
sequently, in multilingual NLU tasks and respec-
tive cross-lingual transfer they underperform even
smaller multilingual encoders like XLM-R (Con-
neau et al., 2020) (see Appendix A.2 for an em-

1For instance, 5% of the 15T pretraining dataset of Llama
3 comprise non-English data spanning over 30 languages. Aya
is tailored for NLU across 23 high-resource languages.

6724

Figure 1: Mean & std. dev. of sentence translation
retrieval accuracy with BERTScore for NLLB-600M en-
coder outputs on pooled dev & devtest sets of FLO-
RES200 by layer (Team et al., 2022).

pirical comparison). Because of this, MT mod-
els are typically used fully downstream, to trans-
late training and/or test data from the source to
the target languages, extending the wide availabil-
ity of task-annotated English corpora to the tar-
get languages (Ruder et al., 2021; Artetxe et al.,
2023; Ebing and Glavaš, 2023). Translating train-
ing data (TTRAIN) involves substantial computa-
tional resources but yields strong XLT performance.
TTRAIN nevertheless requires LLMs to support
the target languages, which does not hold true for
low-resource languages (Ojo et al., 2024). Trans-
lating test data, on the other hand, enables ZS-XLT

with monolingual LMs, but it incurs an additional
inference overhead from MT and generally offers
performance that is slightly inferior to TTRAIN.
Both TTRAIN and TTEST aim to align the input to
accommodate the shortcomings of the LLM repre-
sentation space, resorting for this to discrete natural
language translations coming from the MT decoder.
These methods fail to preserve the rich latent rep-
resentations from the MT encoder and propagate
translation errors to LLMs, thereby reducing down-
stream performance (Ponti et al., 2021).

In this work, we thus propose to merge MT en-
coders directly with LLMs, creating a unified mul-
tilingual LLM for enhanced cross-lingual NLU,
termed MT-LLM. The merger of the two models
unlocks the potential to combine 1) the general
knowledge available in the original LLM for En-
glish and a handful of high-resource languages and
2) powerful multilingual representations and their
cross-lingual semantic alignment available in the
MT encoder (see Figure 1). The key idea involves
enabling the LLM to directly integrate the output
representations from MT encoders, this way extend-
ing its NLU performance to virtually all languages
supported by the MT encoder.

We align MT encoders with LLMs via self-

distillation in two steps. The objective in the first,
self-supervised adaptation step is sequence-level
alignment between the original LLM and the MT-
equipped LLM (MT-LLM). Second, we then ad-
dress the distributional shifts inherent to adaptation
from general-purpose data to downstream task data
through task-specific self-distillation. We fine-tune
the LLM on labeled task data, then transfer this
task knowledge to the MT-LLM by aligning the
task-specific output representations.

Contributions. 1) To the best of our knowledge,
we are the first to successfully integrate MT en-
coders into language model backbones for XLT,
thereby enabling ZS-XLT to all languages supported
by the MT encoder. This integration yields two
key benefits: ZS-XLT performance consistently
improves over TTEST, while simultaneously re-
ducing inference cost by eliminating the need to
translate test instances. In turn, we show that the
integration is highly efficient and only requires a
few self-supervised adaptation steps to yield per-
formance improvements over the LLM backbone.
2) We empirically show that our approach is ag-
nostic to different types of LLM backbones, i.e., it
improves the ZS-XLT capabilities of both decoder-
only and encoder-only models. 3) We compare ZS-
XLT and TTEST extensively and fairly on a range
of tasks and a wide spectrum of (all supported) lan-
guages.2 Unlike existing work, we make sure that
both cross-lingual transfer approaches—latent with
MT-LLM and discrete with TTEST—are evaluated
on an equal footing. Our results demonstrate that
ZS-XLT with MT-LLM surpasses TTEST on NLU
tasks when both rely on the same MT model.

2 Related Work

Translation-based XLT is a strong XLT baseline
(Ruder et al., 2021; Ebrahimi et al., 2022; Aggar-
wal et al., 2022). Previous studies have explored
various techniques for leveraging translated train-
ing data in XLT (TTRAIN): these include train-
ing on translated data in a single target language
(Ebrahimi et al., 2022), using concatenated data
from all target languages (Ruder et al., 2021), se-
quential training starting with the source language
followed by the translated target language (Aggar-

2Our unified MT-LLM approach integrates additional MT
encoder parameters, while TTEST utilizes both the MT en-
coder and decoder for translating test instances into English.
Additionally, ZS-XLT is commonly evaluated on languages
unsupported by the LLM, where MT models are employed to
bridge this gap in both TTEST and TTRAIN.

6725

wal et al., 2022), and jointly training on both com-
bined (Chen et al., 2023). Recent studies have
also benchmarked translating test data (TTEST)
(Hu et al., 2020; Isbister et al., 2021), which en-
ables ZS-XLT without the need for extensive fine-
tuning for each target language, as in the case of
TTRAIN. Moreover, both paradigms can be com-
bined by training on round-trip translated noisy
source data (translating source-language data to the
target language and back) and evaluating on tar-
get language test data translated to the source (Oh
et al., 2022; Artetxe et al., 2023; Ebing and Glavaš,
2023). Translating training or test data is essen-
tially a discrete approach for adjusting the input
(i.e., its language) to the LLM (i.e., language that
the LLM is proficient in). In contrast, we propose
to align latent representation of input, produced by
the MT encoders, to the representation space of
the LLM backbone via self-distillation, effectively
bypassing translation errors that arise from the dis-
crete translation, output of the MT decoder. By
retaining continuous MT encoder representations
and avoiding their discretization in the MT decoder,
our approach also reduces the time and cost of in-
ference vis-a-vis TTEST. This also means that the
MT-LLMs (unlike English-centric LLMs) can also
reap further gains from TTRAIN, particularly for
low-resource languages unseen during pretraining.

While few studies investigated the integration
of rich MT representations into LMs, these efforts
have generally focused on task-specific integration,
without achieving a global representation align-
ment between the MT encoder and the (large) lan-
guage model (Ponti et al., 2021; Unanue et al.,
2023). Our approach addresses this limitation by
achieving task-agnostic representation alignment
between MT and LM before task specialization.

Cross-lingual Transfer with LLMs. Widely
used LLMs are predominantly trained on English
data with English text accounting for 80-90% of
their pretraining corpora (Touvron et al., 2023;
AI@Meta, 2024). Despite this imbalance, LLMs
demonstrate a surprisingly strong performance
in (high-resource) languages, which account for
only a small fraction of their pretraining corpora
(Blevins and Zettlemoyer, 2022). The pretraining
focus on English limits the NLU capabilities of
LLMs in many low(er)-resource languages, and
languages linguistically distant from English (Ojo
et al., 2024). Various methods adapt LLMs to lan-
guages not covered during pretraining, including

continued pretraining (Shliazhko et al., 2023; Fujii
et al., 2024), self-instruction (Wei et al., 2023), and
vocabulary extension (Zhao et al., 2024). These
methods yield gains in model’s target language gen-
eration capabilities; however, recent work shows
that better generation does not translate to stronger
NLU performance (Razumovskaia et al., 2024).

3 Methodology

Idea in a Nutshell. Moving beyond translation-
based XLT at the discrete (input data) level, we
propose a method that merges a base LLM and
an MT encoder into a massively multilingual ‘MT-
LLM’. This integration enables the MT-LLM model
to perform ZS-XLT to any language supported by
the MT encoder by leveraging its multilingual lan-
guage alignment capabilities that substantially ex-
tend those of the base LLM (see again Figure 1).

More concretely, we hypothesize that by fine-
tuning additional modular parameters on top of
the base LLM, we can align the output represen-
tations of the merged MT-LLM with the original
output representations of the base LLM. In other
words, we learn the MT-LLM alignment via dis-
tillation with the LLM itself as the teacher. As
a result, the MT encoder representations, which
are of high-quality for many languages, act as in-
put for the merged MT-LLM. The MT-LLM merge
happens in two stages: 1) self-supervised (general,
task-agnostic) adaptation and 2) task-specific dis-
tillation; we describe both in what follows.

Stage 1: Self-Supervised General Adaptation.
Figure 2 illustrates the approach in the first stage.
We ‘vertically’ fuse a multilingual MT encoder
E and an LLM M into a multilingual MT-LLM
E × M . To this end, we introduce two sets of
new, trainable parameters Θ: We first initialize
a projection U ∈ RdE×dM that maps the output
representation space RdE of the MT encoder E
into the input embedding space RdM of the LLM
M . We then insert low-rank adapters (LoRAs) (Hu
et al., 2022) ∆W

|W |
i=1 into the linear layers W of the

LLM M . All other parameters of the MT encoder
E and the LLM M are frozen.

The principal idea is to train the new modu-
lar parameters Θ = {U,∆W

|W |
i=1 } to enable the

LLM backbone M to ‘understand’ output token
embeddings of the massively multilingual MT en-
coder. To this end, we utilize the original LLM as
a teacher, which guides the self-supervised training
process of our stacked MT-LLM. In the initial pass,

6726

Figure 2: Overview of Stage 1: we merge an MT encoder (NLLB, as a representative MT model) with an LLM
(obtaining MT-LLM). We train, in a self-supervised distillation setup, the up-projection and LoRA adapters of the
MT-LLM by forcing its output to match (via mean-squared error) the output of the LLM itself.

Figure 3: Overview of the architecture in Stage 2: task-
specific distillation (again assuming the use of NLLB).

we feed the input sequence S through the origi-
nal LLM M (i.e., without U and ∆W

|W |
i=1), and

pool the output representations {xt1 , ...,x|TM |} of
tokens {t1, ..., t|TM |} to a sequence embedding

ϕ
(
{xt}TM

t=1

)
= x̄S . In the subsequent step, we

first re-embed the sequence S with the MT en-
coder E. We then input the MT encoder output em-
beddings into the LLM M , now including U and
∆WL

i=1, and again pool the resulting output repre-
sentations {z1, ..., z|TE |} of tokens {t1, ..., t|TE |}
to a sequence embedding ϕ

(
{zt}TE

t=1

)
= z̄S .

The appropriate pooling function ϕ depends on
the prior training regime of the LLM. Common
choices include BOS-pooling ϕ

(
{xt}Tt=1

)
= x1 or

mean-pooling ϕ
(
{xt}Tt=1

)
= 1

T

∑T
i=1 xi for en-

coders, as well as EOS-pooling ϕ
(
{xt}Tt=1

)
= xT

for decoders. We train the parameters Θ (i.e, U
and ∆WL

i=1) to minimize the mean-squared error
MSE(x̄S , z̄S).

Stage 2: Task-Specific Distillation. The second
stage is designed to bridge the remaining misalign-
ment between the MT encoder and LLM in our
fused MT-LLM E×M in task-specific fine-tuning.

We hypothesize that optimizing MT-LLM’s repre-
sentation alignment on general-purpose data is less
sample-efficient than task-specific alignment. Fig-
ure 3 depicts the task-specific distillation process.

We first fine-tune the base LLM with a classifica-
tion head H ∈ Rdm×|C| on the labeled task training
data. Task fine-tuning reduces the complexity of
the LLM’s output representations, reducing them
to encoding only task-specific features: this, in
turn, facilitates task-specific representational align-
ment for our MT-LLM. Similar to the previous,
adaptation stage, we then again fine-tune only the
parameters of the LoRA adapters Θ: we continue
training the LoRA adapters obtained in Stage 1
(i.e., task-agnostic adaptation).3 We again mini-
mize the mean-squared error MSE(x̄S , z̄S). During
inference, we classify instances with the task head
H as trained in the initial LLM task fine-tuning.
This way we improve the model’s ability to general-
ize on the task, as the MT-LLM is trained to match
the output of the knowledge-rich task-specific rep-
resentations of the fine-tuned LLM.

Both alignment steps together ensure that the
latent translations from the MT encoder seamlessly
integrate as input representations into the LLM
backbone. And this integration extends the access
to the knowledge embedded in the LLM to all lan-
guages supported by the MT model.

4 Experimental Setup

4.1 Tasks and Languages

We evaluate on two established classification tasks
and one multiple-choice machine reading compre-

3In our preliminary experiments, merging the LoRAs of
the adaptation phase with new, fine-tuning LoRA adapters
led to numerical instabilities of weights due to quantization,
which severely degraded final task performance.

6727

hension (MRC) task, which all require nuanced
NLU capabilities. For each task-dataset combina-
tion, we evaluate on all languages supported by the
selected underlying MT model.4

Natural Language Inference (NLI). We evaluate
on XNLI (Conneau et al., 2018), AmericasNLI
(AmNLI) (Ebrahimi et al., 2022), and the NLI data
of Kardeş-NLU (Senel et al., 2024). We fine-tune
models on the training portion of MNLI (Williams
et al., 2018). We feed the mean-pooled token rep-
resentations of the jointly embedded hypothesis-
premise sentence-pair into the classifier.
Sentiment Classification is evaluated on NusaX
(Winata et al., 2023), which encompasses 10 In-
donesian languages.5 We use the English training,
and validation splits with 500 and 100 instances,
respectively, as source-language data. We feed the
mean-pooled token embeddings of the input text
into the classifier.
Multiple-Choice MRC. Belebele is a multiple-
choice MRC benchmark encompassing 122 ty-
pologically diverse language variants (Bandarkar
et al., 2023). We train models on the English train-
ing data provided by Bandarkar et al. (2023). We
jointly embed the paragraph, question, and answers.
For each choice ci ∈ C, we then average the token
embeddings and regress the resulting representa-
tion via head HdM×1 to a logit lci . We then mini-
mize the cross-entropy between the concatenated
choice logits {lci}

|C|
i=1 and the true label.

4.2 Cross-Lingual Transfer Setups

We evaluate XLT abilities of LLMs in two standard
setups, ZS-XLT and TTEST. Both paradigms enable
XLT without requiring further annotation or pro-
longed training for any target language. We do not
evaluate TTRAIN or involved strategies based on
back-translations of source-language training data
(Artetxe et al., 2023; Ebing and Glavaš, 2023) as
they require computationally intensive task-specific
fine-tuning, independently for each target language;
these variants also require sufficient target language
‘understanding’ ability from the LLM, which is not
there for low-resource languages.6

4Appendix A.4 lists the full details.
5In our experiments on Buginese, as the only outlier, ZS-

XLT performance progressively deteriorated with more distil-
lation (cf. Table 12). This is in line with unusual behavior
for Buginese reported in other work using NLLB (Ebing and
Glavaš, 2023). We thus exclude Buginese results from the
main discussion.

6Unlike the standalone LLM, our MT-LLM supports
TTRAIN to any target language supported by the MT encoder.

ZS-XLT. In ZS-XLT, the model is first trained on
source-language training data. Since the model
is multilingual, XLT is inherently supported: we
simply run inference on target-language instances.
Since LLMs are not sufficiently pretrained multi-
lingually, we align them with an MT encoder with
our self-distillation procedure (cf. Stage 1 in §3).

TTEST. In TTEST, the model is initially trained
on labeled source-language instances. During infer-
ence, the target-language instances are translated
to the source language prior to prediction with a
dedicated MT model. This enables XLT with mono-
lingual (L)LM backbones.

4.3 Models and Training Setup

Translation Models. We use the NLLB 600M
parameter model as our primary MT encoder back-
bone (Team et al., 2022) for MT-LLM distillation.
For TTEST, we translate validation and test datasets
with both the 600M NLLB model as well as with
the larger, 3.3B parameter variant. We use greedy
decoding as Ebing and Glavaš (2023) showed that
more sophisticated decoding strategies yield no
downstream improvements in XLT.

LLMs. We base our experiments on the Llama
3-8B variant (AI@Meta, 2024) that underwent the
‘LLM2Vec process’ (BehnamGhader et al., 2024).
LLM2Vec is a recipe that converts decoder-only
LLMs into powerful sequence encoders by (i) en-
abling bidirectional attention and continuing train-
ing on both (ii) self-supervised masked next-token
prediction, and (iii) SimCSE (Gao et al., 2021).7

We refer to the model that fuses the NLLB 600M
encoder with LLM2Vec as NLLB-LLM2Vec. We
then adapt to downstream tasks by performing ei-
ther direct fine-tuning on labeled instances or task-
specific self-distillation (cf. Stage 2 in §3).

Training Details. We train all models using LoRAs
with rank r=16, alpha α=32, and LoRA dropout
of 0.05 inserted into all linear layers. We further
train models with the 8-bit AdamW (Loshchilov
and Hutter, 2019; Dettmers et al., 2021), 4-bit
QLoRA-style quantization (Dettmers et al., 2023),
weight decay of 0.01, and with 10% linear warm-
up and then linear decay. Experimental results are
averaged across three random seeds.8

Stage 1: Setup. We train for 10K steps on the
7We refer the reader to the original LLM2Vec work for

further technical details.
8For NusaX, we repeat experiments with 5 random seeds

due to the smaller dataset size.

6728

10B tokens subsampled from the FineWeb cor-
pus (Penedo et al., 2024). While our approach
supports simultaneous adaptation on all languages
supported by both the MT model and the LLM, we
adapt the LLM only on English text.9 We set the
effective batch size to 256. Learning rate is 2e−4.

Baselines and Stage 2: Setup. We set the learning
rate to 1e−4 for downstream task experiments. We
fine-tune models with an effective batch size of 32,
for 3 epochs on NLI, for 5 epochs on Belebele, and
for 20 epochs on NusaX. We validate models at
every 10% of total training steps. We validate and
test on all languages that are supported by our MT
model. We start task-specific self-distillation from
model snapshots that performed best on source-
language validation instances.

5 Results and Discussion

Table 1 summarizes the results for each task,
dataset, and model configuration. We then analyze
the results per each of these dimensions.

ZS-XLT. Following prior work (Schmidt et al.,
2023), we report final XLT test performance for
model checkpoints that maximize performance on
the source-language (S-DEV) and target-language
(T-DEV) validation splits, respectively, in order to
estimate the bounds of both expected (S-DEV) and
ideal ZS-XLT performance (T-DEV). T-DEV also ab-
sorbs fluctuation in transfer performance stemming
from sub-optimal hyperparameters (Keung et al.,
2020; Schmidt et al., 2023).

LLM2Vec. Despite its strong English performance
(as demonstrated in Table 2), the English-centric
LLM2Vec model based on Llama 3 8B underper-
forms all other models in ZS-XLT. For instance, the
considerably smaller NLLB encoder (413M param-
eters) alone outperforms LLM2Vec on both the NLI
and NusaX tasks. This confirms that LLMs gener-
ally underperform in NLU tasks for languages other
than English. Notably, TTEST significantly im-
proves upon the ZS-XLT performance of LLM2Vec,
especially on datasets that predominantly feature
lower-resource languages (AmNLI, Kardeş-NLU).
Expectedly, and consistent with findings from re-
lated work (Ansell et al., 2023), the larger MT
model (NLLB 3B) improves the TTEST perfor-
mance on all tasks.

9By unlocking ZS-XLT via self-supervised distillation on
English text alone, we demonstrate that any monolingual lan-
guage model can be equipped with an MT encoder.

NLLB-LLM2Vec. The NLLB encoder alone shows
strong ZS-XLT performance on sentiment clas-
sification (NusaX) but performs worse on NLI
and degrades on MRC (Belebele), as the more
intricate NLU task. This suggests that MT en-
coders indeed lack language understanding abil-
ities and knowledge typically acquired with LM
objectives on large-scale corpora. Our integrated
NLLB-LLM2Vec variants substantially outperform
both LLM2Vec and NLLB encoder on all NLU
tasks, with performance gains on Belebele of
12% and 30%, respectively. Specifically, fine-
tuning the NLLB-LLM2Vec adapted only in the task-
agnostic manner (S1+FT) is already competitive
with the more computationally involved TTEST.
Our secondary task-specific distillation, i.e., NLLB-
LLM2Vec S1+S2, further substantially and consis-
tently improves the performance compared to direct
fine-tuning (NLLB-LLM2Vec S1+FT). The gains
are particularly prominent on NusaX (+9.4%),
which has the smallest training set. Our full NLLB-
LLM2Vec S1+S2 consistently beats TTEST based
on the same NLLB 600M model by sizable mar-
gins (3 − 11%). What is more, NLLB-LLM2Vec
S1+S2 frequently performs on par or better than
TTEST that uses higher-quality translations from
the larger NLLB 3B: MT improvements do prop-
agate to ZS-XLT because of favorable model se-
lection on T-DEV. These results show that NLLB-
LLM2Vec (S1+S2) boosts ZS-XLT by allowing the
NLU abilities of the LLM to propagate to many
languages via the high-quality multilingual repre-
sentation space of the NLLB encoder.

In sum, our alignment procedure effectively
merges NLLB into LLM2Vec to enable ZS-XLT that
both outperforms TTEST and reduces inference
cost by avoiding decoding in the MT model. Con-
sistent improvements of TTEST with NLLB 3B
over NLLB 600M suggests that further ZS-XLT

gains can be seized by integrating larger MT mod-
els into LLM2Vec. Moreover, since NLLB-LLM2Vec
is inherently multilingual, NLLB-LLM2Vec can fur-
ther benefit from training on translated training
data (i.e., TTRAIN): NLLB-LLM2Vec is poised to
robustly encode noisily translated training data, as
it was trained both on MT and denoising autoen-
coding (Team et al., 2022).

English. Table 2 shows the in-language (i.e., no
XLT) English performance by task for our models.

LLM2Vec. Pre-trained on English-dominated web-
scale corpora, LLM2Vec demonstrates strong perfor-

6729

XNLI AMNLI KARDEŞ-NLU NUSAX BELEBELE

S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV

Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set
LLM2Vec 68.9±2.0 71.1±2.4 40.9±2.0 43.2±1.6 46.7±1.7 51.1±13.2 54.5±13.7 58.9±10.9 48.2±3.2

NLLB-600M Encoder 71.6±0.2 71.8±0.3 55.3±0.6 56.4±0.3 74.9±0.5 75.2±0.6 80.7±0.2 81.7±0.1 30.4±0.4

NLLB-LLM2Vec S1+FT 80.0±0.9 80.4±0.4 63.0±1.9 64.3±1.2 81.5±1.3 81.3±0.4 72.7±4.4 77.5±2.4 60.2±0.5

NLLB-LLM2Vec S1+S2 81.4±0.6 81.7±0.5 64.0±0.3 64.6±0.7 82.2±0.5 82.1±0.5 82.1±2.6 82.6±2.4 62.6±0.5

Translate-Test: Translate test data to English
LLM2Vec NLLB-600M 78.7±0.7 78.6±0.9 52.0±0.7 52.7±0.6 78.8±0.8 78.4±1.0 78.3±0.9 78.8±1.2 60.7±0.7

LLM2Vec NLLB-3B 80.2±0.6 80.2±0.8 50.9±0.4 51.2±1.7 79.9±0.9 79.9±1.0 82.4±0.6 82.6±0.5 64.2±0.7

Table 1: ZS-XLT vs. TTEST. We benchmark models on ZS-XLT against TTEST on non-English NLU test sets (cf.
§4). S1 and S2 refer to self-supervised and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes
supervised fine-tuning. Reported performance is averaged over three seeds on model checkpoints that maximize
performance on source-language (S-DEV) and per target-language (T-DEV) validation splits. Subscripts denote std.
deviation. Metrics: accuracy for NLI and Belebele, macro-F1 for NusaX. Best model per column is in bold.

XNLI NUSAX BELEBELE

LLM2Vec 92.5±0.3 91.3±0.5 94.0±0.4

NLLB-600M Encoder 80.4±0.2 86.9±0.2 33.6±0.1

NLLB-LLM2Vec S1+FT 90.0±0.7 90.8±0.6 91.0±1.0

NLLB-LLM2Vec S1+S2 91.4±0.2 92.2±0.5 92.4±0.7

Table 2: English performance. We benchmark
LLM2Vec, the NLLB encoder, and our fused NLLB-
LLM2Vec on English test sets of various NLU bench-
marks (cf. §4). See Table 1 for further details.

mance on all tasks. The comparison of in-language
performance in Table 2 with ZS-XLT performance
in Table 1 shows the scale of performance drop for
LLM2Vec in XLT. This means that LLMs require ei-
ther extensive multilingual pre-training or post-hoc
language adaptations for effective XLT.

NLLB-LLM2Vec. The results for NLLB variants,
the NLLB encoder alone and our NLLB-LLM2Vec,
provide more context for the ZS-XLT results from
Table 1. We observe that ZS-XLT performance of
NLLB variants is correlated with their in-language
English performance. While the NLLB encoder
performs fairly on NusaX (and to some extent also
on NLI), it lacks language understanding abilities
to that match more complex NLU tasks like Bele-
bele. Our NLLB-LLM2Vec variants, on the other
hand, successfully exploit the knowledge of Llama
to materially increase English performance over
the NLLB encoder (+58% on Belebele). Our task-
agnostic NLLB-LLM2Vec alignment (S1+FT) still
lags somewhat behind LLM2Vec after fine-tuning
on labeled task data. We manage to narrow this
gap for Belebele and NLI with task-specific dis-
tillation (S1+S2) (cf. §3) and even surpass the
English performance of the LLM for NusaX. This
suggests that the task-specific distillation guides

NLLB-LLM2Vec to better leverage the knowledge
embedded in the weights of LLM2Vec, and shape it
specifically for the task.

The results indicate that compositional align-
ment on the word- or span-level, as introduced in
the task-distillation on the Belebele dataset, further
improves representational alignment in the MT-
LLM. As evident from the comparison of English
results in Table 2 and XLT results in Table 1, better
global (i.e., task-agnostic) alignment, in turn, di-
rectly transfers to closing the ‘English knowledge
gap’, i.e., to better ZS-XLT performance.

5.1 Further Analyses and Discussion

Importance of Adaptation. Figure 4 shows both
English and ZS-XLT performance by task for task-
specific self-distillation, NLLB-LLM2Vec (S1+S2),
after K ∈ {0, 3, 6, 10} steps of task-agnostic align-
ment (see §3), respectively. The figure points to
the importance of task-agnostic adaptation both
for English and ZS-XLT performance. The results
furthermore highlight that Stage 1 of our align-
ment is sample-efficient: the largest relative ZS-
XLT gains are obtained after only 3K training steps
(e.g., +10.5% for Belebele) and then marginalize
with further training. We observe the same trends
for the English performance (e.g., +15% on Bele-
bele from 3K steps of alignment). These results
show that we can effectively tie LLMs and MT
encoders into a unified multilingual MT-LLM at
computational cost that is negligible w.r.t. both
LLM and MT (pre-)training.

On NusaX, we observe that while prolonged
task-agnostic adaptation benefits the in-language
English performance, it does not improve ZS-XLT

results. The explanation, we believe, is in the sim-

6730

Δ

Figure 4: Impact of Adaptation. We evaluate our
2-step alignment procedure by {0, 3, 6, 10}K general
adaptation steps (Stage 1) (cf. §3) on English (ENG)
and non-English (ZS-XLT) test portions of various NLU
benchmarks. Model selection on S-DEV.

XNLI AMNLI KNLU

GPT-2 ENG S-D T-D S-D T-D S-D T-D

Zero-Shot Cross-Lingual Transfer
NLLB Enc. 80.4 71.6 71.8 55.3 56.4 74.9 75.2
NLLB FT 82.2 74.7 74.8 62.4 63.2 76.2 76.5

Translate-Test
NLLB-600M 85.0 73.6 74.0 54.1 55.2 74.7 75.3
NLLB-3B 85.0 75.1 75.4 52.6 54.5 75.4 75.9

Table 3: Adaptation on GPT-2. We perform adapta-
tion (stage 1) with GPT-2 and benchmark NLLB-GPT-2
against GPT-2 in English and non-English test portions
of NLI benchmarks. We repeat NLLB encoder results
in gray as a reference. See Table 1 for further details.

plicity of the task: ZS-XLT performance on NusaX
saturates quickly because the NLLB encoder al-
ready solves the task well (see Table 1) and thus
requires little additional knowledge from LLM2Vec,
to which it gets access through the alignment.

The results indicate that the gap in English per-
formance between LLM2Vec and NLLB-LLM2Vec
(cf. Table 2) can eventually be closed with longer
alignment. We also hypothesize that explicit token
or span alignment objectives would improve the
generalization: this would be facilitated by the sig-
nificant overlap between the vocabularies of Llama
3 and NLLB tokenizers.

Fusing Decoder Models with MT Encoders. We
additionally test the integration of MT encoders
into a decoder LM: we align the NLLB 600M en-
coder to the GPT-2 medium (354M parameters) and
evaluate on NLI.10 Due to the absence of the EOS
token in the pretraining of GPT-2, we perform task-

10We exclude NusaX and Belebele for this ablation: (1) the
NLLB encoder performs better than LLM2Vec in the TTEST
setting on NusaX; (2) For Belebele, the limited context length
of GPT-2 hinders a fair comparison.

agnostic self-distillation (Stage 1, on the FineWeb
corpus) using mean-pooled token representations
(cf. §3). Subsequently, we fine-tune the NLLB-
GPT-2 directly on MNLI, feeding the EOS-pooled
representations into the classifier.11 We increase
the learning rate to 3e−4 and leave other hyper-
parameters unchanged. Like in our main experi-
ments, we compare NLLB-GPT-2 against TTEST

with NLLB-600M and NLLB-3.3B, respectively.
The results in Table 3 show that NLLB-GPT-2

successfully taps into GPT-2’s ‘knowledge’ to out-
perform both the standalone NLLB encoder and the
fair TTEST baseline using the same NLLB-600M
model in ZS-XLT across all datasets. Moreover,
NLLB-GPT-2 even surpasses TTEST on GPT-2
with the larger NLLB-3.3B model on AMNLI and
KARDEŞ-NLU. These results hold despite the sub-
optimal alignment, as indicated by the notable gap
in performance to the fine-tuned GPT-2 on the En-
glish test portion of XNLI. The discrepancy likely
stems from challenges in converting encoders into
decoders, as observed in prior work (Wang et al.,
2022). We believe that prolonged adaptation and
explicit token-level alignment objectives would fur-
ther improve both sample-efficiency and quality of
alignment, reducing the ‘knowledge’ gap.

6 Conclusion

LLMs quickly emerged as the catch-all solution
to NLU in English. However, LLMs still cannot
extend their NLU abilities to languages typolog-
ically distant from English or virtually unseen at
pretraining. In this work, we propose a novel ap-
proach to fuse MT encoders with LLM backbones
via self-distillation to compile a massively multi-
lingual MT-LLM. The MT-LLM not only strongly
improves ZS-XLT performance over TTEST but
also removes the overhead of MT decoding at in-
ference. We demonstrate that our distillation proce-
dure is highly efficient and requires only a few thou-
sand steps to convert LLMs into multilingual MT-
LLMs, enabling NLU in all languages supported
by the MT encoder. We further show that our MT-
LLM alignment benefits both encoder and decoder
LLMs. In future work we will seek to (1) further
improve generalization of MT-LLM by incorporat-
ing token-level alignment objectives and (2) extend
the MT-LLM to support further languages by post-
hoc adaptation of the MT encoder.

11We omit task-specific distillation because it performed
slightly worse on English in XNLI compared to directly fine-
tuning of NLLB-GPT-2 with larger learning rates.

6731

7 Limitations

Our experimental results are based on using Llama
3 and GPT-2 as the LLM backbones and NLLB-
600M as the MT encoder in our MT-LLM approach.
Expanding our experimental setup to include a
wider range of MT encoders and additional LLM
backbones would not only validate its applicability
across various model families and architectures but
also enrich our findings. The Llama 3 backbone of
LLM2Vec underwent instruction tuning. This means
that LLM2Vec might have seen labelled data for
tasks we experiment on in our work. We strongly
believe this does not constitute an issue to evaluate
cross-lingual transfer of our model configurations.
If there was serious leakage of labelled instances,
TTEST variants should benefit more strongly as
the data is presented in the language Llama was
trained on. Our method would gain further support,
if our approach extended to generative language
modelling. However, sequence-level alignment ob-
jectives do not sufficiently align the MT and LLM
backbones. The MT and LLM backbones therefore
would require either matching or largely overlap-
ping vocabularies to appropriately learn how to
fuse the models on the token level (cf. §3). An-
other non-negligible consideration in our evalua-
tions that our limited compute budget does not al-
low for is hyperparameter tuning. We nevertheless
believe our main evaluations put model variants
on equal footing and hence reliably measure ex-
pected ZS-XLT. We further counteract this issue
in two ways. First, prior work shows that LoRAs
are generally more robust to varying hyperparame-
ters. Second, we report transfer performance both
on when selecting models on source-language and
per target-language validation. The latter remedies
oscillation in ZS-XLT performance (Keung et al.,
2020; Schmidt et al., 2023).

Acknowledgments

We thank the state of Baden-Württemberg for
its support through access to the bwHPC. We
also gratefully acknowledge the scientific sup-
port and HPC resources provided by the Er-
langen National High Performance Computing
Center (NHR@FAU) of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) under the
NHR project 21911. NHR funding is provided by
federal and Bavarian state authorities. NHR@FAU
hardware is partially funded by the German Re-
search Foundation (DFG) – 440719683. Ivan Vulić

is supported by a personal Royal Society Univer-
sity Research Fellowship ‘Inclusive and Sustain-
able Language Technology for a Truly Multilingual
World’ (no 221137; 2022–).

References
Divyanshu Aggarwal, Vivek Gupta, and Anoop

Kunchukuttan. 2022. IndicXNLI: Evaluating multi-
lingual inference for Indian languages. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 10994–11006,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

AI@Meta. 2024. Llama 3 model card.

Alan Ansell, Marinela Parović, Ivan Vulić, Anna Ko-
rhonen, and Edoardo Ponti. 2023. Unifying cross-
lingual transfer across scenarios of resource scarcity.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3980–3995, Singapore. Association for Computa-
tional Linguistics.

Mikel Artetxe, Vedanuj Goswami, Shruti Bhosale, An-
gela Fan, and Luke Zettlemoyer. 2023. Revisiting
machine translation for cross-lingual classification.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6489–6499, Singapore. Association for Computa-
tional Linguistics.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Kelly Marchisio, Se-
bastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick
Frosst, Phil Blunsom, Marzieh Fadaee, Ahmet Üstün,
and Sara Hooker. 2024. Aya 23: Open weight re-
leases to further multilingual progress. Preprint,
arXiv:2405.15032.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2023. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. arXiv preprint arXiv:2308.16884.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. Llm2vec: Large language mod-
els are secretly powerful text encoders. Preprint,
arXiv:2404.05961.

Terra Blevins and Luke Zettlemoyer. 2022. Language
contamination helps explain the cross-lingual ca-
pabilities of english pretrained models. Preprint,
arXiv:2204.08110.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

6732

https://doi.org/10.18653/v1/2022.emnlp-main.755
https://doi.org/10.18653/v1/2022.emnlp-main.755
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/2023.emnlp-main.242
https://doi.org/10.18653/v1/2023.emnlp-main.242
https://doi.org/10.18653/v1/2023.emnlp-main.399
https://doi.org/10.18653/v1/2023.emnlp-main.399
https://arxiv.org/abs/2405.15032
https://arxiv.org/abs/2405.15032
https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2204.08110
https://arxiv.org/abs/2204.08110
https://arxiv.org/abs/2204.08110

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Yang Chen, Chao Jiang, Alan Ritter, and Wei Xu. 2023.
Frustratingly easy label projection for cross-lingual
transfer. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 5775–5796,
Toronto, Canada. Association for Computational Lin-
guistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2021. 8-bit optimizers via block-wise
quantization. CoRR, abs/2110.02861.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Thirty-seventh Confer-
ence on Neural Information Processing Systems.

Benedikt Ebing and Goran Glavaš. 2023. To trans-
late or not to translate: A systematic investigation
of translation-based cross-lingual transfer to low-
resource languages. Preprint, arXiv:2311.09404.

Abteen Ebrahimi, Manuel Mager, Arturo Oncevay,
Vishrav Chaudhary, Luis Chiruzzo, Angela Fan, John
Ortega, Ricardo Ramos, Annette Rios, Ivan Vladimir
Meza Ruiz, Gustavo Giménez-Lugo, Elisabeth
Mager, Graham Neubig, Alexis Palmer, Rolando
Coto-Solano, Thang Vu, and Katharina Kann. 2022.
AmericasNLI: Evaluating zero-shot natural language
understanding of pretrained multilingual models in
truly low-resource languages. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6279–6299, Dublin, Ireland. Association for Compu-
tational Linguistics.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hi-
roki Iida, Masanari Ohi, Kakeru Hattori, Hirai Shota,
Sakae Mizuki, Rio Yokota, and Naoaki Okazaki.
2024. Continual pre-training for cross-lingual llm
adaptation: Enhancing japanese language capabili-
ties. Preprint, arXiv:2404.17790.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Carolin Holtermann, Paul Röttger, Timm Dill, and Anne
Lauscher. 2024. Evaluating the elementary multi-
lingual capabilities of large language models with
multiq. Preprint, arXiv:2403.03814.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
4411–4421. PMLR.

Tim Isbister, Fredrik Carlsson, and Magnus Sahlgren.
2021. Should we stop training more monolingual
models, and simply use machine translation instead?
In Proceedings of the 23rd Nordic Conference on
Computational Linguistics (NoDaLiDa), pages 385–
390, Reykjavik, Iceland (Online). Linköping Univer-
sity Electronic Press, Sweden.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
Bhardwaj. 2020. Don’t use English dev: On the
zero-shot cross-lingual evaluation of contextual em-
beddings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 549–554, Online. Association for
Computational Linguistics.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier
Garcia, Christopher A. Choquette-Choo, Katherine
Lee, Derrick Xin, Aditya Kusupati, Romi Stella,
Ankur Bapna, and Orhan Firat. 2023. Madlad-400:
A multilingual and document-level large audited
dataset. Preprint, arXiv:2309.04662.

6733

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.357
https://doi.org/10.18653/v1/2023.findings-acl.357
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://arxiv.org/abs/2311.09404
https://arxiv.org/abs/2311.09404
https://arxiv.org/abs/2311.09404
https://arxiv.org/abs/2311.09404
https://doi.org/10.18653/v1/2022.acl-long.435
https://doi.org/10.18653/v1/2022.acl-long.435
https://doi.org/10.18653/v1/2022.acl-long.435
https://arxiv.org/abs/2404.17790
https://arxiv.org/abs/2404.17790
https://arxiv.org/abs/2404.17790
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://aclanthology.org/2021.nodalida-main.42
https://aclanthology.org/2021.nodalida-main.42
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://arxiv.org/abs/2309.04662
https://arxiv.org/abs/2309.04662
https://arxiv.org/abs/2309.04662

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Jaehoon Oh, Jongwoo Ko, and Se-Young Yun. 2022.
Synergy with translation artifacts for training and
inference in multilingual tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 6747–6754, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jessica Ojo, Kelechi Ogueji, Pontus Stenetorp, and
David Ifeoluwa Adelani. 2024. How good are large
language models on african languages? Preprint,
arXiv:2311.07978.

Guilherme Penedo, Hynek Kydlíček, Leandro von
Werra, and Thomas Wolf. 2024. Fineweb.

Edoardo Maria Ponti, Julia Kreutzer, Ivan Vulić, and
Siva Reddy. 2021. Modelling latent translations for
cross-lingual transfer. Preprint, arXiv:2107.11353.

Evgeniia Razumovskaia, Ivan Vulić, and Anna Korho-
nen. 2024. Analyzing and adapting large language
models for few-shot multilingual nlu: Are we there
yet? Preprint, arXiv:2403.01929.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid-
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie
Hu, Dan Garrette, Graham Neubig, and Melvin John-
son. 2021. XTREME-R: Towards more challenging
and nuanced multilingual evaluation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10215–10245,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš.
2023. Free lunch: Robust cross-lingual transfer via
model checkpoint averaging. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5712–5730, Toronto, Canada. Association for Com-
putational Linguistics.

Lütfi Kerem Senel, Benedikt Ebing, Konul Baghirova,
Hinrich Schuetze, and Goran Glavaš. 2024. Kardeş-
NLU: Transfer to low-resource languages with the
help of a high-resource cousin – a benchmark and
evaluation for Turkic languages. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1672–1688, St. Julian’s, Malta.
Association for Computational Linguistics.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova,
Vladislav Mikhailov, Anastasia Kozlova, and Tatiana
Shavrina. 2023. mgpt: Few-shot learners go multilin-
gual. Preprint, arXiv:2204.07580.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume

Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Inigo Jauregi Unanue, Gholamreza Haffari, and Mas-
simo Piccardi. 2023. T3L: Translate-and-test transfer
learning for cross-lingual text classification. Transac-
tions of the Association for Computational Linguis-
tics, 11:1147–1161.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, Iz Beltagy, Julien
Launay, and Colin Raffel. 2022. What language
model architecture and pretraining objective works
best for zero-shot generalization? In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 22964–22984. PMLR.

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei
Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao,
Binbin Xie, Tianxiang Hu, Shangjie Li, Binyuan Hui,
Bowen Yu, Dayiheng Liu, Baosong Yang, Fei Huang,
and Jun Xie. 2023. Polylm: An open source polyglot
large language model. Preprint, arXiv:2307.06018.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume

6734

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.emnlp-main.452
https://doi.org/10.18653/v1/2022.emnlp-main.452
https://arxiv.org/abs/2311.07978
https://arxiv.org/abs/2311.07978
https://doi.org/10.57967/hf/2092
https://arxiv.org/abs/2107.11353
https://arxiv.org/abs/2107.11353
https://arxiv.org/abs/2403.01929
https://arxiv.org/abs/2403.01929
https://arxiv.org/abs/2403.01929
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2023.acl-long.314
https://doi.org/10.18653/v1/2023.acl-long.314
https://aclanthology.org/2024.eacl-long.100
https://aclanthology.org/2024.eacl-long.100
https://aclanthology.org/2024.eacl-long.100
https://aclanthology.org/2024.eacl-long.100
https://arxiv.org/abs/2204.07580
https://arxiv.org/abs/2204.07580
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1162/tacl_a_00593
https://doi.org/10.1162/tacl_a_00593
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://arxiv.org/abs/2307.06018
https://arxiv.org/abs/2307.06018
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Genta Indra Winata, Alham Fikri Aji, Samuel Cahyawi-
jaya, Rahmad Mahendra, Fajri Koto, Ade Romad-
hony, Kemal Kurniawan, David Moeljadi, Radi-
tyo Eko Prasojo, Pascale Fung, Timothy Baldwin,
Jey Han Lau, Rico Sennrich, and Sebastian Ruder.
2023. NusaX: Multilingual parallel sentiment dataset
for 10 Indonesian local languages. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
815–834, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024. Llama beyond english:
An empirical study on language capability transfer.
Preprint, arXiv:2401.01055.

Wenhao Zhu, Yunzhe Lv, Qingxiu Dong, Fei Yuan,
Jingjing Xu, Shujian Huang, Lingpeng Kong, Jia-
jun Chen, and Lei Li. 2023. Extrapolating large lan-
guage models to non-english by aligning languages.
Preprint, arXiv:2308.04948.

A Appendix

A.1 Reproducibility details

Compute Requirements. We perform general-
purpose adaptation (i.e., stage 1, cf. §3) on 8
A100 80GB, which requires about 22 hours of
runtime. All downstream experiments were ex-
ecuted on A100 40GB. Downstream fine-tuning
and distillation required for each one of three seeds
ca. 20 hours of runtime for NLI, ca. 30 hours of
runtime of Belebele, and ca. 20 minutes of run-
time per NusaX. We execute these experiments for
LLM2Vec fine-tuning, NLLB-LLM2Vec S1+FT, and
NLLB-LLM2Vec S1+S2 (cf. §3). The compute re-
quired for downstream fine-tuning therefore sums
roughly to 450 GPU hours. Subsequent evaluations
required, per each of ten evaluated checkpoints,
about 3 hours on XNLI, AmNLI, and Kardeş-NLU
combined, 5 hours on Belebele, and 10 minutes
on NusaX. We estimate that inference therefore
requires 725 hours of GPU runtime. In conclusion,
our experiments in total required between 50 to 60
days of A100 runtime.
Code. We will make the code publicly
available at https://github.com/fdschmidt93/
trident-nllb-llm2vec.
Translations. The translated validation and test
splits for all datasets (cf. §3) are available via the
Github repository.
Additional Details on Experimental Setup.

A.2 NLLB vs. XLM-R on XNLI

Figure 5: Performance on XNLI English and non-
English test portions when selecting the model on En-
glish validation instances (cf. §4) for XLM-R-Base,
XLM-R-Large, and the NLLB-600M Encoder (Con-
neau et al., 2020; Team et al., 2022)

.

Please refer to Table A.3 for details on the no. of
languages and instances by dataset and split.
MNLI. We access the training portion of the
MNLI at: https://huggingface.co/datasets/
nyu-mll/glue.
XNLI. We access the validation and test sets of the
XNLI at: https://huggingface.co/datasets/
nyu-mll/glue.
AmNLI. We access the validation and tests portion
of the AmNLI dataset at: https://huggingface.
co/datasets/nala-cub/americas_nli.
Kardeş-NLU. Our code includes a script to ac-
cess the dataset via the Hugging Face datasets
framework. The original dataset is available at:
https://github.com/lksenel/Kardes-NLU.
NusaX. We access the dataset via Hugging
Face at https://huggingface.co/datasets/
indonlp/NusaX-senti.
Belebele. The training dataset is available at https:
//github.com/facebookresearch/belebele.
We access the dataset via Hugging Face
at https://huggingface.co/datasets/
facebook/belebele.
LLM2Vec. We use LLM2Vec that has been trained
without supervision which is available on the Hug-
ging Face hub: here.
NLLB. The distilled 600M parameters variant of
NLLB is available at https://huggingface.co/
facebook/nllb-200-distilled-600M. NLLB
3B can be accessed via https://huggingface.
co/facebook/nllb-200-3.3B.

6735

https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/2023.eacl-main.57
https://arxiv.org/abs/2401.01055
https://arxiv.org/abs/2401.01055
https://doi.org/10.48550/arXiv.2308.04948
https://doi.org/10.48550/arXiv.2308.04948
https://github.com/fdschmidt93/trident-nllb-llm2vec
https://github.com/fdschmidt93/trident-nllb-llm2vec
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/nala-cub/americas_nli
https://huggingface.co/datasets/nala-cub/americas_nli
https://github.com/lksenel/Kardes-NLU
https://huggingface.co/datasets/indonlp/NusaX-senti
https://huggingface.co/datasets/indonlp/NusaX-senti
https://github.com/facebookresearch/belebele
https://github.com/facebookresearch/belebele
https://huggingface.co/datasets/facebook/belebele
https://huggingface.co/datasets/facebook/belebele
https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/facebook/nllb-200-distilled-600M
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/facebook/nllb-200-3.3B

A.3 Datasets

MNLI XNLI AMNLI KARDEŞ-NLU NUSAX BELEBELE
No. of Languages 1 15 3 4 9 117
Training 392, 702 −− −− −− 500 67, 541
Validation −− 2, 490 743 1, 000 100 3, 773*
Test −− 5, 010 750 2, 000 400 900

Table 4: Number of instances by split and language per dataset. For NLI, we train on the training split of
MNLI (Williams et al., 2018). Number of languages reflects the number of languages supported by NLLB. For
Belebele, we construct training and validation sets with code of Bandarkar et al. (2023) (cf. Appendix A).

A.4 Full results

Main Results.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH AVG
Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set

LLM2Vec 92.5±0.3 63.6±5.1 68.5±3.8 79.8±1.3 73.0±1.2 84.5±0.8 83.0±0.9 55.8±8.3 78.0±1.4 43.0±3.6 66.6±0.9 67.3±2.4 45.2±4.1 78.0±1.3 78.7±0.9 68.9±2.0

NLLB-600M Encoder 80.4±0.2 71.3±0.8 75.2±0.1 74.9±0.4 74.5±0.0 75.5±0.4 75.3±0.4 68.6±0.8 72.7±0.2 69.5±0.3 65.7±1.0 72.6±0.4 65.1±0.7 72.8±0.2 69.1±0.6 71.6±0.2

NLLB-LLM2Vec S1+FT 90.7±0.4 80.9±1.2 85.6±0.9 84.9±0.8 73.8±2.0 86.2±0.8 85.8±0.5 75.1±1.6 82.8±0.6 79.3±1.1 76.0±1.7 78.8±1.5 70.7±1.8 82.1±0.7 78.6±1.4 80.0±0.9

NLLB-LLM2Vec S1+S2 91.4±0.2 81.9±0.4 86.5±0.5 85.8±0.3 79.3±6.4 87.4±0.3 86.7±0.4 76.8±0.6 83.6±0.5 79.6±0.4 77.4±0.7 80.0±0.3 72.1±0.5 83.2±0.3 80.0±0.9 81.4±0.6

Translate-Test: Translate test data to English
LLM2Vec NLLB-600M 92.5±0.3 78.2±0.7 83.3±0.5 83.8±0.8 82.8±0.8 85.8±0.8 84.1±0.9 75.7±0.6 78.9±0.5 73.2±0.9 72.7±0.7 79.2±0.7 69.5±0.8 79.7±0.5 74.9±0.5 78.7±0.7

LLM2Vec NLLB-3B 92.5±0.3 80.0±0.8 85.1±0.5 85.3±0.7 83.9±0.5 86.5±0.8 85.0±0.6 76.9±0.6 81.2±0.4 74.4±1.0 74.5±0.9 81.2±0.7 70.0±0.4 81.3±0.6 77.7±0.4 80.2±0.6

Table 5: XNLI (1/2). We benchmark models on test portions of XNLI (cf. §4). S1 and S2 refer to self-supervised
and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported
performance is averaged over three seeds on model checkpoints that maximize performance on source-language
(S-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH AVG
Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set

LLM2Vec 92.5±0.3 66.3±5.1 70.8±3.5 81.4±3.0 73.8±3.5 84.8±1.2 83.5±1.2 61.8±8.0 78.3±2.4 48.5±3.9 67.1±2.9 70.2±1.2 51.4±5.6 78.0±1.3 79.0±1.3 71.1±2.4

NLLB-600M Encoder 80.4±0.2 71.3±0.8 75.6±0.5 75.0±0.4 74.7±0.1 75.6±0.6 75.6±0.1 68.7±0.8 72.8±0.2 69.5±0.2 66.0±0.6 72.9±0.3 65.2±0.8 72.8±0.2 69.2±0.6 71.8±0.3

NLLB-LLM2Vec S1+FT 90.7±0.4 81.2±0.6 85.5±0.9 85.0±0.7 75.0±2.2 86.5±0.5 85.8±0.5 75.8±0.9 82.8±0.6 79.4±0.9 77.0±0.6 79.1±1.4 71.1±1.6 82.4±0.4 79.5±0.4 80.4±0.4

NLLB-LLM2Vec S1+S2 91.4±0.2 82.2±0.8 86.2±0.4 85.9±0.4 79.8±5.8 87.5±0.7 86.8±0.6 76.9±0.7 84.0±0.3 79.9±1.0 77.8±1.0 80.0±0.4 72.2±1.1 83.4±0.4 80.8±0.4 81.7±0.5

Translate-Test: Translate test data to English
LLM2Vec NLLB-600M 92.5±0.3 77.9±1.5 82.1±0.4 83.6±0.9 82.2±0.4 86.2±0.5 84.2±1.0 74.9±0.7 78.7±1.5 73.7±1.8 72.8±0.8 79.2±1.6 69.9±2.2 79.7±0.5 75.1±0.5 78.6±0.9

LLM2Vec NLLB-3B 92.5±0.3 79.9±1.4 84.0±0.1 85.1±1.1 83.5±0.5 87.0±0.9 85.3±1.1 76.3±0.2 80.9±1.5 75.0±2.0 74.6±0.9 81.7±1.5 70.0±1.7 81.3±0.6 77.7±0.3 80.2±0.8

Table 6: XNLI (2/2). We benchmark models on test portions of XNLI (cf. §4). S1 and S2 refer to self-supervised
and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported
performance is averaged over three seeds on model checkpoints that maximize performance on per target-language
(T-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

AYM GN QUY AVG AZ KK KY UZ AVG

S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV

Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set
LLM2Vec 40.9±3.2 41.8±2.0 42.3±1.7 44.8±1.8 39.6±1.4 42.8±1.0 40.9±2.0 43.2±1.6 54.0±0.4 61.1±0.9 43.5±2.3 46.3±1.4 41.8±1.4 43.1±0.1 47.5±3.3 55.9±2.0 46.7±1.7 51.6±0.3

NLLB-600M Encoder 62.3±0.5 63.4±0.1 62.8±0.9 64.2±0.2 40.8±1.0 41.5±1.0 55.3±0.6 56.4±0.3 75.8±0.4 76.1±0.2 74.2±0.5 74.3±0.6 74.8±0.5 75.2±0.5 74.8±0.8 75.1±1.0 74.9±0.5 75.2±0.6

NLLB-LLM2Vec S1+FT 60.4±2.2 62.5±1.6 68.8±2.4 69.2±1.4 59.9±1.9 61.2±1.4 63.0±1.9 64.3±1.2 82.8±1.0 82.3±0.8 81.1±1.2 80.0±0.8 80.3±1.9 81.3±0.7 81.9±1.4 81.5±0.7 81.5±1.3 81.3±0.4

NLLB-LLM2Vec S1+S2 61.0±0.6 61.8±1.0 69.6±1.3 69.8±1.4 61.4±1.8 62.3±1.1 64.0±0.3 64.6±0.7 83.4±1.2 83.0±0.9 81.9±0.5 81.7±0.7 81.2±0.4 81.6±0.9 82.1±0.2 82.3±0.5 82.5±0.5 82.1±0.5

Translate-Test: Translate test data to English
LLM2Vec NLLB-600M 50.7±1.9 51.2±1.9 55.0±0.2 56.8±1.7 50.5±0.3 50.0±1.3 52.0±0.7 52.7±0.6 82.2±1.2 81.7±1.1 77.2±0.4 77.1±0.4 76.5±1.0 75.8±1.9 79.2±0.8 79.1±0.8 78.8±0.8 78.4±1.0

LLM2Vec NLLB-3B 45.2±0.4 45.0±3.3 58.0±0.9 59.3±2.1 49.6±1.0 49.3±0.5 50.9±0.4 51.2±0.7 84.9±0.8 84.9±0.9 78.5±1.1 78.9±0.9 75.8±0.5 75.1±1.2 80.4±1.1 80.8±1.1 79.9±0.9 79.9±1.0

Table 7: AmNLI & Kardeş-NLU. We benchmark models on test portions of AmNLI and Kardeş-NLU (cf. §4).
S1 and S2 refer to self-supervised and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes
supervised fine-tuning. Reported performance is averaged over three seeds on model checkpoints that maximize
performance on source-language (S-DEV) and per target-language (T-DEV) validation splits. Subscripts denote std.
deviation. Metric: accuracy.

6736

ENG ACE BAN BJN BUG IND JAV MIN SUN AVG
Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set

LLM2Vec 91.3±0.5 41.6±14.5 45.1±17.6 56.9±13.9 30.5±16.7 83.3±2.4 54.4±14.8 56.5±16.8 43.6±17.9 51.5±14.0

NLLB-600M Encoder 86.9±2.1 80.3±0.8 76.9±2.0 83.8±1.0 67.4±2.7 86.4±0.7 83.6±0.8 80.1±0.5 80.7±0.4 79.9±0.3

NLLB-LLM2Vec S1+FT 90.8±0.6 73.9±4.3 70.6±2.4 79.1±2.5 53.9±9.3 86.7±2.3 81.0±2.4 72.6±6.3 78.4±2.7 74.5±3.2

NLLB-LLM2Vec S1+S2 92.2±0.5 81.5±2.5 74.8±4.1 82.3±2.6 67.1±1.7 89.3±0.6 86.4±1.8 80.6±3.3 83.1±3.1 80.6±2.3

Translate-Test: Translate test data to English
LLM2Vec NLLB-600M 91.3±0.5 74.2±2.2 72.1±1.6 79.1±1.8 71.3±3.7 86.7±1.2 79.4±1.9 78.7±1.6 81.8±1.2 77.9±1.4

LLM2Vec NLLB-3B 91.3±0.5 77.7±1.4 75.6±1.3 83.8±1.5 71.5±4.3 88.7±0.6 84.3±1.3 82.1±0.4 86.1±1.0 81.2±0.8

Table 8: NusaX. We benchmark models on test portions of NusaX (cf. §4). S1 and S2 refer to self-supervised
and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported
performance is averaged over three seeds on model checkpoints that maximize performance on per target-language
(T-DEV) validation splits. Subscripts denote std. deviation. Metric: macro-F1.

6737

ZERO-SHOT CROSS-LINGUAL TRANSFER TRANSLATE-TEST

LLM2Vec NLLB-600M Encoder NLLB-LLM2Vec S1+FT NLLB-LLM2Vec S1+S2 LLM2Vec NLLB-600M LLM2Vec NLLB-3B
eng_Latn 92.5±0.3 80.4±0.2 90.0±0.7 91.4±0.2 92.5±0.3 92.5±0.3

AVG 48.2±3.2 30.4±0.4 60.2±0.5 62.6±0.5 60.7±0.8 64.2±0.7

acm_Arab 52.3±4.1 30.1±0.2 55.8±1.2 56.7±0.6 62.9±0.6 60.2±0.3

afr_Latn 66.9±8.5 33.3±0.2 76.3±1.4 80.1±1.1 79.4±0.5 79.8±0.2

als_Latn 47.2±7.5 28.9±0.4 70.8±2.5 72.9±1.0 71.1±1.0 75.7±1.3

amh_Ethi 27.7±0.9 30.8±1.1 50.0±0.6 50.4±1.5 50.9±1.4 59.0±1.0

apc_Arab 52.1±2.6 30.6±1.6 58.8±0.9 60.7±0.6 66.3±0.8 65.1±0.6

arb_Arab 68.5±6.3 28.5±1.1 65.7±0.9 68.1±1.5 75.2±1.0 75.9±0.6

ars_Arab 55.2±4.8 29.9±1.6 58.4±0.5 59.6±1.1 66.9±1.3 61.3±0.2

ary_Arab 45.2±3.2 31.0±0.5 46.5±1.1 48.3±0.8 51.4±2.3 54.9±0.8

arz_Arab 50.1±6.5 31.2±1.6 56.8±0.7 59.7±0.8 68.6±1.4 67.4±0.4

asm_Beng 29.1±1.8 29.1±0.5 50.9±2.5 54.0±1.1 52.5±1.3 60.3±0.2

azj_Latn 44.5±7.0 29.7±0.6 53.7±0.3 56.7±0.8 64.2±0.8 66.7±1.0

bam_Latn 32.1±1.4 29.3±0.2 41.1±0.9 39.5±1.2 36.0±0.8 37.3±1.3

ben_Beng 31.9±0.8 28.5±0.8 58.1±2.4 62.5±0.8 63.5±0.8 65.9±0.7

ben_Latn 34.9±0.7 27.7±0.1 27.0±0.9 28.2±1.2 29.6±0.7 25.5±1.5

bod_Tibt 26.7±1.9 28.0±1.5 33.5±1.3 33.9±1.1 29.7±1.7 35.9±1.9

bul_Cyrl 73.4±7.5 30.8±1.2 75.3±1.2 77.9±0.1 70.0±1.7 77.9±0.5

cat_Latn 77.6±6.0 33.7±1.0 79.1±1.4 82.3±0.9 74.3±1.5 79.5±0.8

ceb_Latn 43.8±3.7 29.1±1.2 67.0±1.6 70.7±0.7 66.9±1.9 73.2±1.5

ces_Latn 73.7±7.6 30.2±1.4 71.3±0.6 75.9±1.5 70.8±0.9 76.8±1.0

ckb_Arab 33.2±0.9 28.7±0.6 58.3±0.5 59.8±1.2 62.7±1.3 65.1±1.0

dan_Latn 73.0±7.3 32.2±0.7 81.0±0.8 83.5±0.7 73.8±1.7 79.2±1.3

deu_Latn 85.1±2.6 33.8±0.7 76.0±0.7 78.1±0.9 76.1±1.0 80.1±0.2

ell_Grek 74.8±6.7 28.7±0.9 62.2±1.6 67.5±0.2 70.7±0.3 76.5±0.8

est_Latn 46.1±8.0 30.6±0.3 66.0±2.0 70.1±1.0 64.2±1.4 71.4±1.1

eus_Latn 45.4±6.4 31.0±1.2 63.1±0.6 66.7±1.1 72.6±0.6 75.9±0.7

fin_Latn 55.1±9.7 31.1±1.1 69.0±0.7 73.0±0.7 67.3±1.5 77.7±0.4

fra_Latn 88.0±1.5 31.6±0.5 79.1±0.5 82.4±1.0 80.0±1.3 82.6±0.6

fuv_Latn 28.5±0.4 28.0±1.2 29.5±0.8 28.1±0.6 27.9±0.5 26.9±1.5

gaz_Latn 31.4±0.6 29.4±0.3 41.6±1.7 42.8±0.7 45.0±0.3 48.6±0.6

grn_Latn 37.2±0.9 31.0±1.2 52.1±0.4 52.5±0.9 47.3±1.4 54.1±0.8

guj_Gujr 27.9±0.4 30.5±1.3 52.9±0.7 55.9±1.7 62.6±1.0 64.7±0.6

hat_Latn 38.2±2.5 29.1±1.1 63.3±1.3 67.4±0.9 65.9±0.9 71.5±0.7

hau_Latn 32.0±0.8 28.4±0.6 58.3±1.5 62.1±0.4 59.4±2.2 59.9±1.1

heb_Hebr 39.8±6.8 32.8±0.4 64.0±1.7 66.6±0.3 68.8±1.6 71.7±0.7

hin_Deva 55.1±5.7 28.6±1.0 62.4±1.6 65.7±1.0 70.6±0.6 73.0±1.5

hrv_Latn 63.4±9.5 31.5±1.1 73.1±1.0 77.4±0.5 69.7±1.2 73.3±0.5

hun_Latn 62.4±2.6 30.9±1.0 67.8±0.7 71.6±0.5 66.9±0.5 72.7±1.5

hye_Armn 27.8±0.6 28.4±0.8 56.6±1.5 58.6±0.6 52.0±1.3 61.5±1.7

ibo_Latn 31.0±0.9 30.2±1.2 48.8±1.1 49.2±0.3 47.0±1.6 51.7±1.8

ilo_Latn 38.6±1.2 29.6±1.9 62.6±0.9 66.7±1.3 61.9±0.8 67.7±0.7

ind_Latn 73.3±6.7 30.6±0.6 79.4±1.3 82.5±0.6 74.7±0.7 76.5±0.4

isl_Latn 44.2±5.4 28.3±1.5 61.6±0.3 65.0±1.2 56.3±0.8 57.9±1.1

ita_Latn 85.9±1.5 31.9±1.7 79.8±0.0 82.4±0.5 74.0±1.6 78.2±1.4

jav_Latn 45.2±5.3 29.4±0.9 71.4±1.0 74.2±0.5 56.6±1.0 58.1±0.8

jpn_Jpan 77.3±2.4 30.4±1.1 65.5±2.2 67.1±0.9 60.7±0.8 65.1±0.7

kac_Latn 32.7±0.5 29.6±0.6 39.1±0.4 40.9±1.2 37.0±0.3 39.7±1.3

kan_Knda 28.6±0.4 30.3±1.0 55.7±1.4 56.9±1.3 62.4±1.3 65.6±1.0

kat_Geor 27.1±1.6 27.4±0.4 50.4±1.9 51.1±0.5 50.3±2.0 56.7±2.0

kaz_Cyrl 40.7±4.7 29.6±0.6 55.9±1.3 59.3±0.7 65.3±0.5 69.1±0.4

kea_Latn 43.8±1.3 31.0±0.3 61.2±1.3 65.6±1.5 59.7±0.8 62.8±0.5

khk_Cyrl 33.9±2.0 28.4±0.5 44.4±1.5 44.8±1.2 48.1±0.5 52.5±1.7

khm_Khmr 29.6±2.2 29.8±0.2 47.3±0.8 51.6±0.8 44.4±0.8 47.7±1.6

kin_Latn 36.2±1.0 29.3±0.2 55.3±0.7 57.1±0.8 55.0±1.0 58.3±0.8

kir_Cyrl 40.7±3.0 30.6±0.9 56.6±1.5 58.7±0.8 62.9±1.3 66.5±1.7

kor_Hang 77.5±3.1 32.3±0.8 61.6±2.1 62.3±0.7 67.9±2.0 69.0±0.7

lao_Laoo 28.4±2.2 30.2±0.8 54.8±2.0 58.4±1.5 51.0±0.8 51.6±1.0

lin_Latn 33.2±1.3 28.4±0.9 53.8±1.6 57.0±0.8 52.1±0.6 57.3±1.1

lit_Latn 49.3±5.3 31.2±1.6 68.7±1.3 72.3±0.5 62.1±0.8 68.1±0.9

lug_Latn 31.1±1.6 28.3±0.6 44.6±1.3 47.2±0.3 42.6±1.0 45.6±0.9

luo_Latn 31.6±1.8 28.6±0.6 45.2±0.6 45.4±0.9 37.6±0.8 42.6±0.2

lvs_Latn 46.7±3.9 29.6±1.6 68.3±0.4 70.6±1.3 59.0±1.2 68.6±2.1

Table 9: Belebele (1/2). We benchmark models on test portions of Belebele (cf. §4). S1 and S2 refer to self-
supervised and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning.
Reported performance is averaged over three seeds on model checkpoints that maximize performance on source-
language (S-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

6738

ZERO-SHOT CROSS-LINGUAL TRANSFER TRANSLATE-TEST

LLM2Vec NLLB-600M Encoder NLLB-LLM2Vec S1+FT NLLB-LLM2Vec S1+S2 LLM2Vec NLLB-600M LLM2Vec NLLB-3B
eng_Latn 92.5±0.3 80.4±0.2 90.0±0.7 91.4±0.2 92.5±0.3 92.5±0.3

AVG 48.2±3.2 30.4±0.4 60.2±0.5 62.6±0.5 60.7±0.8 64.2±0.7

mal_Mlym 28.7±0.4 30.0±0.9 49.5±2.4 49.9±0.4 66.9±1.2 65.1±0.8

mar_Deva 42.8±5.7 32.4±1.5 59.1±1.7 60.8±0.5 64.3±0.8 63.7±0.7

mkd_Cyrl 64.4±6.7 29.3±1.1 72.6±0.3 74.3±0.6 68.4±0.9 72.6±0.6

mlt_Latn 41.1±5.8 30.0±0.6 62.8±0.6 67.7±1.7 67.9±0.4 67.9±1.2

mri_Latn 31.7±1.6 26.8±1.0 46.2±0.7 47.2±1.4 49.3±1.2 52.1±0.3

mya_Mymr 28.1±0.9 28.9±0.4 44.8±0.8 47.4±0.5 41.8±0.8 46.1±0.8

nld_Latn 79.1±5.2 31.1±0.8 78.1±1.4 81.0±0.6 74.8±0.3 78.6±0.9

nob_Latn 73.7±7.5 32.5±0.3 81.7±1.0 84.6±0.2 75.8±0.5 79.5±1.1

npi_Deva 42.1±2.8 28.1±0.6 59.4±1.7 60.8±1.6 55.8±0.4 56.8±1.8

nso_Latn 32.3±0.7 29.3±2.2 57.6±0.1 60.0±1.5 60.0±1.4 63.6±1.6

nya_Latn 30.6±1.2 27.0±0.6 52.2±1.0 54.5±1.4 48.4±1.4 53.2±0.4

ory_Orya 27.7±1.7 30.4±0.9 56.0±1.2 57.1±1.2 66.5±1.3 71.3±0.8

pan_Guru 28.6±0.7 29.9±0.6 55.4±2.5 56.5±2.1 64.8±1.1 66.0±1.1

pbt_Arab 35.7±4.3 30.3±0.8 48.9±1.1 49.9±1.4 60.3±0.6 61.9±1.5

pes_Arab 71.3±4.7 31.6±1.1 69.9±1.0 71.4±0.3 67.4±0.4 70.7±0.8

plt_Latn 34.4±1.0 29.0±0.5 61.9±1.2 64.9±0.7 63.9±0.8 66.9±1.5

pol_Latn 69.4±7.0 30.8±1.0 67.6±0.9 71.0±0.8 69.3±1.5 75.4±1.4

por_Latn 87.0±1.5 32.9±1.0 82.1±1.7 84.1±0.7 77.7±1.1 79.7±1.5

ron_Latn 74.7±7.5 31.4±1.2 76.2±1.1 79.1±1.0 72.1±1.7 76.1±0.7

rus_Cyrl 85.9±1.9 32.6±0.3 75.4±0.3 79.1±1.2 71.8±1.2 80.7±0.6

shn_Mymr 26.7±0.7 25.9±1.2 34.9±2.7 37.3±0.5 34.8±1.4 36.1±0.6

sin_Sinh 29.6±0.3 28.1±1.1 42.0±1.8 43.8±1.6 55.9±0.5 58.7±1.4

slk_Latn 62.5±7.8 31.7±0.5 72.4±1.1 76.0±0.8 69.2±1.2 75.1±0.6

slv_Latn 54.4±7.4 31.4±0.6 72.7±1.3 76.0±0.6 68.3±1.4 75.0±1.7

sna_Latn 34.4±1.6 29.5±1.1 59.6±1.1 61.1±0.9 55.0±0.3 61.3±0.4

snd_Arab 36.4±1.1 30.1±1.7 54.5±0.7 56.6±0.3 63.8±0.6 60.3±1.5

som_Latn 31.2±0.8 26.8±0.9 48.4±0.9 51.2±1.1 54.3±0.7 55.4±0.9

sot_Latn 31.4±1.6 27.4±1.4 54.8±1.3 57.9±1.4 61.0±0.4 64.4±1.2

spa_Latn 87.4±1.7 30.8±0.9 82.3±1.8 85.6±0.4 74.0±0.7 79.5±1.1

srp_Cyrl 65.4±0.3 30.9±1.0 72.9±1.2 75.5±1.0 66.7±1.4 69.4±1.4

ssw_Latn 31.5±1.4 29.3±1.0 50.2±0.8 52.4±2.1 50.9±1.4 57.9±1.2

sun_Latn 39.6±2.7 30.2±1.5 66.3±0.8 70.1±0.6 58.7±1.4 61.1±1.3

swe_Latn 76.9±6.2 31.4±1.3 79.7±1.1 82.8±0.4 71.7±1.3 78.1±0.3

swh_Latn 42.5±2.5 30.4±1.1 73.4±0.7 75.5±0.9 69.0±1.6 75.7±1.1

tam_Taml 28.6±0.7 32.2±0.5 51.7±2.0 54.8±0.9 62.0±1.4 60.5±0.2

tel_Telu 28.2±1.3 30.6±1.1 52.0±0.9 54.6±1.0 59.6±1.0 61.6±1.0

tgk_Cyrl 40.6±3.6 29.2±1.0 53.5±0.7 54.7±0.6 58.0±1.5 63.9±1.1

tgl_Latn 52.7±8.5 29.1±0.4 68.9±1.3 72.2±1.3 71.4±1.7 71.1±1.4

tha_Thai 69.4±5.0 31.5±1.1 56.3±1.3 58.8±0.6 58.2±1.5 61.7±0.4

tir_Ethi 27.1±1.7 28.7±0.7 42.4±1.0 44.6±1.8 42.1±2.7 47.7±0.9

tsn_Latn 33.0±1.2 27.7±1.7 54.3±0.3 56.6±0.6 54.6±1.8 61.1±1.7

tso_Latn 36.0±0.5 29.1±0.3 62.6±0.7 64.5±1.7 55.8±2.6 64.3±0.8

tur_Latn 66.7±8.6 30.9±1.0 61.3±1.0 64.0±1.1 68.6±1.5 75.7±1.2

ukr_Cyrl 77.9±3.1 30.9±0.9 71.5±0.6 74.1±0.8 70.6±0.8 73.4±0.8

urd_Arab 44.4±6.3 31.4±0.8 62.1±1.2 63.6±1.6 66.0±0.5 67.4±1.1

uzn_Latn 44.9±5.6 30.0±0.9 58.6±0.7 61.0±0.8 70.0±1.1 75.0±1.7

vie_Latn 82.1±1.1 28.2±0.5 72.4±1.9 76.4±0.3 71.7±0.1 73.4±0.6

war_Latn 48.2±3.8 29.8±0.4 66.6±0.4 68.6±1.1 69.4±1.2 73.0±0.2

wol_Latn 31.1±0.6 27.7±0.6 36.1±0.9 36.9±0.7 35.2±1.2 33.7±1.3

xho_Latn 32.4±0.7 28.3±0.5 59.6±0.5 61.2±0.8 59.1±0.9 64.9±1.4

yor_Latn 29.4±0.6 29.1±1.6 40.6±1.3 41.4±0.7 38.8±1.2 42.0±0.8

zho_Hans 86.4±2.3 30.9±1.6 78.2±0.6 79.6±0.9 70.0±1.1 69.6±0.9

zho_Hant 85.0±2.2 33.2±1.3 75.5±1.1 76.8±0.5 51.5±0.3 57.9±0.5

zsm_Latn 68.6±9.2 29.0±0.5 79.7±1.4 81.5±0.8 73.4±0.4 73.9±1.1

zul_Latn 31.1±0.4 30.0±1.5 54.4±0.6 58.1±1.6 56.6±1.0 62.4±0.2

Table 10: Belebele (2/2). We benchmark models on test portions of Belebele (cf. §4). S1 and S2 refer to
self-supervised and task-specific stages of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-
tuning. Reported performance is averaged over three seeds on model checkpoints that maximize performance on
source-language (S-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

6739

Results by No. of Adaptation Steps.

0 3,000 6,000 10,000
XNLI-EN 82.6±0.6 90.6±0.3 91.2±0.3 91.4±0.2

AMNLI-AYM 60.0±0.7 62.8±2.4 62k0±1.2 61.3±0.8

AMNLI-GN 65.7±0.4 68.5±0.5 69.5±0.8 69.7±1.3

AMNLI-QUY 60.7±1.5 61.8±0.8 61.4±2.4 61.5±1.9

KARDEŞ-NLU-AZ 79.3±0.9 84.1±0.1 83.7±1.1 83.1±0.7

KARDEŞ-NLU-KK 77.8±0.9 82.1±0.4 82.2±0.9 81.8±0.2

KARDEŞ-NLU-KY 77.9±0.6 81.9±0.1 81.6±0.3 81.4±0.6

KARDEŞ-NLU-UZ 78.9±0.4 83.3±0.3 82.9±0.8 82.3±0.4

XNLI-AR 75.6±0.5 81.1±0.5 82.1±0.8 82.0±0.2

XNLI-BG 79.5±0.5 86.0±0.2 86.2±0.6 86.6±0.4

XNLI-DE 79.1±0.2 85.6±0.4 85.8±0.4 85.8±0.2

XNLI-EL 78.1±0.4 79.1±6.1 75.2±3.8 79.6±6.2

XNLI-ES 79.8±0.4 86.9±0.3 87.3±0.3 87.5±0.3

XNLI-FR 78.8±0.5 86.2±0.4 86.6±0.3 86.8±0.3

XNLI-HI 72.7±0.3 76.4±0.5 76.6±1.0 76.9±0.6

XNLI-RU 76.9±0.2 83.4±0.7 83.7±0.6 83.9±0.1

XNLI-SW 73.5±0.2 79.5±0.4 79.6±0.4 79.6±0.4

XNLI-TH 71.6±0.5 77.0±1.0 77.5±1.3 77.5±0.5

XNLI-TR 76.4±0.6 79.6±0.3 79.6±0.4 80.0±0.3

XNLI-UR 68.5±0.2 71.8±0.5 71.9±0.7 72.1±0.4

XNLI-VI 77.7±0.3 83.0±0.4 83.5±0.3 83.3±0.3

XNLI-ZH 73.6±0.2 79.8±0.7 80.2±0.7 80.2±0.7

AVG 74.4±0.3 79.1±0.2 79.0±0.4 79.2±0.2

Table 11: NLI by No. of Adaptation Steps. We benchmark NLLB-LLM2Vec S1+S2 on test portions of NLI
benchmarks (cf. §4) by number of adaptation steps in S1. S1 and S2 refer to self-supervised and task-specific stages
of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported performance is averaged
over three seeds on model checkpoints that maximize performance on source-language (S-DEV) validation splits.
Subscripts denote std. deviation. Metric: accuracy.

0 3,000 6,000 10,000
ENG 86.4±0.8 91.5±1.1 91.7±0.5 92.2±0.5

ACE 78.3±2.3 82.2±1.2 81.0±2.8 80.6±3.8

BAN 75.2±1.9 75.0±2.2 72.4±3.1 72.9±3.7

BJN 82.3±1.7 82.7±0.7 82.7±1.3 82.6±2.0

BUG 72.7±2.3 66.5±5.3 62.7±5.9 61.1±6.9

IND 85.5±1.6 88.6±0.8 89.3±1.1 89.3±0.7

JAV 81.1±0.7 85.6±2.5 84.1±2.1 85.3±2.4

MIN 76.2±3.1 80.5±3.3 78.3±3.0 80.4±3.3

SUN 80.8±1.9 83.9±2.0 82.6±3.1 83.2±3.1

AVG 79.0±4.2 80.8±6.9 79.2±8.2 79.4±8.8

Table 12: NusaX by No. of Adaptation Steps. We benchmark NLLB-LLM2Vec S1+S2 on test portions of NusaX
(cf. §4) by number of adaptation steps in S1. S1 and S2 refer to self-supervised and task-specific stages of aligning
NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported performance is averaged over three
seeds on model checkpoints that maximize performance on source-language (S-DEV) validation splits. Subscripts
denote std. deviation. Metric: accuracy.

6740

0 3,000 6,000 10,000
eng_Latn 74.9±5.5 90.0±0.8 91.7±0.4 99.4±0.7

AVG 51.3±2.8 61.8±0.2 62.2±0.2 62.6±0.5

acm_Arab 45.4±1.6 54.0±0.2 55.8±1.3 56.7±0.6

afr_Latn 62.2±4.7 77.3±1.1 79.7±1.2 80.1±1.1

als_Latn 54.3±5.3 71.0±0.9 71.7±0.4 72.9±1.0

amh_Ethi 43.8±3.3 51.1±2.1 49.9±0.5 50.4±1.5

apc_Arab 47.5±3.5 59.9±0.9 60.3±0.4 60.7±0.6

arb_Arab 53.3±3.4 65.3±1.2 67.9±1.1 68.1±1.5

ars_Arab 48.0±1.9 59.1±0.2 59.9±1.5 59.6±1.1

ary_Arab 40.2±1.6 49.1±1.1 48.1±0.6 48.3±0.8

arz_Arab 46.4±1.9 58.1±1.3 60.2±1.6 59.7±0.8

asm_Beng 45.6±1.2 52.6±0.5 53.0±0.2 54.0±1.1

azj_Latn 46.6±1.5 55.1±0.1 55.0±0.4 56.7±0.8

bam_Latn 38.6±0.4 40.3±0.6 39.3±0.8 39.5±1.2

ben_Beng 52.0±2.3 62.5±1.3 63.0±1.0 62.5±0.8

ben_Latn 30.6±0.8 31.7±1.1 27.6±1.7 28.2±1.2

bod_Tibt 30.5±0.1 34.5±0.3 33.5±0.7 33.9±1.1

bul_Cyrl 61.0±3.8 76.5±0.3 76.3±0.4 77.9±0.1

cat_Latn 63.7±3.4 78.9±0.6 80.9±0.5 82.3±0.9

ceb_Latn 55.4±2.8 67.9±0.9 69.3±1.4 70.7±0.7

ces_Latn 61.1±3.7 74.1±0.6 75.5±0.4 75.9±1.5

ckb_Arab 48.9±0.8 58.4±1.0 58.7±1.0 59.8±1.2

dan_Latn 66.2±4.0 80.8±1.4 82.8±0.4 83.5±0.7

deu_Latn 64.4±4.7 78.4±0.7 79.1±0.0 78.1±0.9

ell_Grek 51.7±3.2 64.6±1.2 67.3±0.8 67.5±0.2

est_Latn 54.4±4.5 67.5±0.4 68.9±0.2 70.1±1.0

eus_Latn 57.0±2.0 66.7±0.9 67.3±0.6 66.7±1.1

fin_Latn 58.5±4.3 72.1±0.5 72.0±0.6 73.0±0.7

fra_Latn 66.0±4.3 81.7±0.7 82.4±0.7 82.4±1.0

fuv_Latn 29.3±0.4 29.7±0.2 28.6±0.9 28.1±0.6

gaz_Latn 39.0±1.1 43.6±1.5 41.2±1.5 42.8±0.7

grn_Latn 46.3±1.1 54.7±0.3 54.2±1.6 52.5±0.9

guj_Gujr 47.0±2.1 55.3±0.6 55.9±0.8 55.9±1.7

hat_Latn 53.5±2.5 67.1±1.0 67.8±0.9 67.4±0.9

hau_Latn 48.6±2.9 60.8±1.5 61.4±0.4 62.1±0.4

heb_Hebr 54.3±2.9 65.6±1.3 65.4±0.6 66.6±0.3

hin_Deva 52.7±2.2 63.7±0.8 63.9±1.6 65.7±1.0

hrv_Latn 59.4±4.9 75.0±1.1 76.6±0.3 77.4±0.5

hun_Latn 57.2±4.4 71.5±0.3 71.6±0.4 71.6±0.5

hye_Armn 48.6±2.8 58.8±0.7 57.8±1.0 58.6±0.6

ibo_Latn 40.7±2.7 50.6±0.8 49.0±0.3 49.2±0.3

ilo_Latn 53.4±2.2 64.5±1.1 65.1±0.8 66.7±1.3

ind_Latn 66.4±4.4 81.2±0.3 81.7±1.1 82.5±0.6

isl_Latn 50.7±3.1 63.4±0.6 65.1±0.8 65.0±1.2

ita_Latn 64.9±4.7 80.3±1.1 81.4±0.9 82.4±0.5

jav_Latn 60.7±3.7 73.0±0.1 73.4±0.4 74.2±0.5

jpn_Jpan 53.5±3.8 68.0±0.2 67.6±1.2 67.1±0.9

kac_Latn 37.4±0.6 39.4±1.2 40.2±1.1 40.9±1.2

kan_Knda 49.9±3.6 56.4±0.9 56.5±1.1 56.9±1.3

kat_Geor 44.4±2.4 51.2±0.7 50.3±0.9 51.1±0.5

kaz_Cyrl 50.4±3.2 59.4±0.4 59.6±0.9 59.3±0.7

kea_Latn 52.1±3.8 63.3±0.6 64.5±0.6 65.6±1.5

khk_Cyrl 39.8±2.2 45.5±0.8 44.8±1.3 44.8±1.2

khm_Khmr 40.1±0.5 51.3±0.8 48.8±1.5 51.6±0.8

kin_Latn 48.0±2.6 55.9±0.9 57.0±0.3 57.1±0.8

kir_Cyrl 51.1±2.8 57.4±1.1 58.9±1.2 58.7±0.8

kor_Hang 52.3±3.8 63.7±0.6 63.0±0.9 62.3±0.7

lao_Laoo 46.6±2.9 58.5±0.5 58.6±0.5 58.4±1.5

lin_Latn 47.4±3.6 56.4±0.6 56.6±0.4 57.0±0.8

lit_Latn 58.0±4.8 69.7±1.1 70.1±0.4 72.3±0.5

lug_Latn 40.4±2.1 46.1±0.1 46.0±1.2 47.2±0.3

luo_Latn 39.4±2.5 46.5±0.6 46.9±0.1 45.4±0.9

lvs_Latn 57.3±3.7 69.3±0.5 69.9±0.2 70.6±1.3

Table 13: Belebele by No. of Adaptation Steps (1/2). We benchmark NLLB-LLM2Vec S1+S2 on test portions of
Belebele (cf. §4) by number of adaptation steps in S1. S1 and S2 refer to self-supervised and task-specific stages
of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported performance is averaged
over three seeds on model checkpoints that maximize performance on source-language (S-DEV) validation splits.
Subscripts denote std. deviation. Metric: accuracy. 6741

0 3,000 6,000 10,000
eng_Latn 74.9±5.5 90.0±0.8 91.7±0.4 99.4±0.7

AVG 51.3±2.8 61.8±0.2 62.2±0.2 62.6±0.5

mal_Mlym 44.0±2.9 52.1±1.1 50.6±0.9 49.9±0.4

mar_Deva 51.7±3.7 60.6±0.9 60.3±1.4 60.8±0.5

mkd_Cyrl 59.4±3.1 72.2±1.2 73.4±0.5 74.3±0.6

mlt_Latn 52.1±1.5 65.7±0.7 66.5±0.5 67.7±1.7

mri_Latn 41.2±2.5 45.8±0.3 46.7±0.6 47.2±1.4

mya_Mymr 40.6±1.8 47.3±0.6 46.6±0.7 47.4±0.5

nld_Latn 64.1±3.9 79.1±0.4 80.7±0.4 81.0±0.6

nob_Latn 65.2±4.1 81.8±1.2 83.9±0.7 84.6±0.2

npi_Deva 51.5±2.8 61.1±1.1 61.2±0.4 60.8±1.6

nso_Latn 49.6±4.3 58.0±0.8 60.4±0.9 60.0±1.5

nya_Latn 44.4±1.5 52.9±1.2 54.5±1.4 54.5±1.4

ory_Orya 48.2±1.4 57.1±0.8 57.0±1.1 57.1±1.2

pan_Guru 46.6±2.0 55.2±1.4 55.0±1.1 56.5±2.1

pbt_Arab 44.2±2.3 50.6±1.3 48.7±0.8 49.9±1.4

pes_Arab 60.1±5.5 72.4±0.5 71.6±0.4 71.4±0.3

plt_Latn 52.3±2.8 64.9±0.7 64.1±0.5 64.9±0.7

pol_Latn 55.7±3.9 69.0±0.4 70.7±0.8 71.0±0.8

por_Latn 68.2±4.8 83.2±0.5 83.8±0.7 84.1±0.7

ron_Latn 62.1±4.3 77.3±0.9 78.0±1.0 79.1±1.0

rus_Cyrl 61.6±3.6 76.2±0.6 78.1±1.0 79.1±1.2

shn_Mymr 33.3±1.4 36.4±1.6 36.4±0.8 37.3±0.5

sin_Sinh 38.4±2.3 43.9±1.3 44.1±1.7 43.8±1.6

slk_Latn 60.5±4.6 73.3±0.2 74.9±0.3 76.0±0.8

slv_Latn 59.9±4.2 74.9±0.7 76.2±0.3 76.0±0.6

sna_Latn 48.8±2.2 61.1±1.0 61.4±0.4 61.1±0.9

snd_Arab 48.6±2.4 57.6±1.4 57.1±1.2 56.6±0.3

som_Latn 43.3±2.1 52.0±1.5 51.4±0.9 51.2±1.1

sot_Latn 45.6±3.7 56.6±0.1 57.4±1.4 57.9±1.4

spa_Latn 67.0±3.6 84.6±0.8 85.3±0.2 85.6±0.4

srp_Cyrl 60.0±3.9 72.8±1.0 74.4±0.8 75.5±1.0

ssw_Latn 44.2±3.9 51.4±0.2 51.7±0.2 52.4±2.1

sun_Latn 54.8±3.2 68.8±0.9 68.9±0.4 70.1±0.6

swe_Latn 66.6±4.6 81.3±0.7 81.9±0.1 82.8±0.4

swh_Latn 60.3±4.2 74.9±0.4 74.6±0.5 75.5±0.9

tam_Taml 47.2±3.9 55.7±1.7 55.6±0.9 54.8±0.9

tel_Telu 47.0±2.6 56.0±0.6 54.3±1.2 54.6±1.0

tgk_Cyrl 45.6±3.1 55.6±0.2 55.4±0.5 54.7±0.6

tgl_Latn 58.0±3.1 71.8±0.3 72.1±0.7 72.2±1.3

tha_Thai 46.5±1.9 58.0±0.6 58.1±0.8 58.8±0.6

tir_Ethi 40.1±2.0 44.0±0.7 44.9±1.5 44.6±1.8

tsn_Latn 48.3±3.8 55.9±1.0 55.4±0.9 56.6±0.6

tso_Latn 54.9±1.8 64.3±0.6 63.7±0.2 64.5±1.7

tur_Latn 55.3±3.2 62.4±0.7 63.7±0.8 64.0±1.1

ukr_Cyrl 57.0±3.1 72.3±0.2 72.9±1.1 74.1±0.8

urd_Arab 53.8±2.1 63.2±1.2 63.5±0.7 63.6±1.6

uzn_Latn 49.8±2.3 60.5±0.9 61.3±0.3 61.0±0.8

vie_Latn 60.3±3.4 75.5±0.2 75.2±1.0 76.4±0.3

war_Latn 55.9±4.0 69.6±0.4 69.0±1.0 68.6±1.1

wol_Latn 34.7±1.5 38.6±1.5 37.0±0.8 36.9±0.7

xho_Latn 49.7±2.5 59.4±1.1 60.6±0.1 61.2±0.8

yor_Latn 36.1±1.7 41.6±0.7 41.1±0.9 41.4±0.7

zho_Hans 65.3±3.7 78.4±0.7 79.9±0.5 79.6±0.9

zho_Hant 63.9±3.6 77.4±0.4 77.6±0.7 76.8±0.5

zsm_Latn 66.1±3.8 80.1±1.0 80.7±1.5 81.5±0.8

zul_Latn 47.1±2.3 56.2±0.9 56.7±0.9 58.1±1.6

Table 14: Belebele by No. of Adaptation Steps (2/2). We benchmark NLLB-LLM2Vec S1+S2 on test portions of
Belebele (cf. §4) by number of adaptation steps in S1. S1 and S2 refer to self-supervised and task-specific stages
of aligning NLLB with LLM2Vec (cf. §3). FT denotes supervised fine-tuning. Reported performance is averaged
over three seeds on model checkpoints that maximize performance on source-language (S-DEV) validation splits.
Subscripts denote std. deviation. Metric: accuracy.

6742

NLLB-GPT-2.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH AVG
Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set

NLLB-GPT-2 FT 82.2±0.1 75.0±0.4 78.3±0.6 77.1±1.0 75.6±0.5 78.8±0.4 77.9±0.8 71.2±0.5 75.6±0.4 73.1±0.6 71.1±0.8 74.0±0.8 68.4±0.9 76.7±0.4 73.4±0.6 74.7±0.5

Translate-Test: Translate test data to English
GPT-2 NLLB-600M 00.0±0.0 73.9±0.1 76.3±0.3 77.4±0.1 77.5±0.6 78.7±0.2 78.4±0.5 71.3±0.4 73.8±0.2 69.1±0.4 69.0±0.3 74.1±0.5 65.6±0.1 74.9±0.3 71.0±0.5 73.6±0.1

GPT-2 NLLB-3B 00.0±0.3 74.9±0.5 78.1±0.1 78.9±0.2 77.9±0.3 79.8±0.2 79.4±0.1 72.6±0.3 76.0±0.4 69.9±0.3 71.0±0.1 76.6±0.6 66.0±0.4 75.9±0.4 73.7±1.0 75.1±0.2

Table 15: NLLB-GPT-2 on XNLI (1/2). We benchmark models on test portions of XNLI (cf. §4). S1 refers to
the self-supervised stage of aligning NLLB with GPT-2 (cf. §3). FT denotes supervised fine-tuning. Reported
performance is averaged over three seeds on model checkpoints that maximize performance on source-language
(S-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH AVG
Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set

NLLB-GPT-2 S1+FT 82.2±0.1 75.0±0.4 78.4±0.5 77.2±0.9 75.8±0.6 78.8±0.4 78.0±0.8 71.3±0.5 75.7±0.4 73.1±0.6 71.1±0.8 74.2±0.7 68.4±0.9 76.7±0.3 73.5±0.4 74.8±0.5

Translate-Test: Translate test data to English
GPT-2 NLLB-600M 85.0±0.1 74.1±0.2 76.8±0.6 77.7±0.1 77.8±0.3 79.1±0.3 78.6±0.5 71.7±0.2 74.0±0.1 69.6±0.2 69.4±0.2 74.4±0.4 65.9±0.4 75.1±0.3 71.7±0.6 74.0±0.1

GPT-2 NLLB-3B 85.0±0.1 75.1±0.4 78.6±0.3 79.1±0.3 78.3±0.3 80.1±0.3 79.6±0.3 72.9±0.1 76.4±0.1 70.5±0.3 71.4±0.3 76.7±0.4 66.4±0.1 76.1±0.2 74.4±0.4 75.4±0.0

Table 16: NLLB-GPT-2 on XNLI (2/2). We benchmark models on test portions of XNLI (cf. §4). S1 refers to
the self-supervised stage of aligning NLLB with GPT-2 (cf. §3). FT denotes supervised fine-tuning. Reported
performance is averaged over three seeds on model checkpoints that maximize performance on per target-language
(T-DEV) validation splits. Subscripts denote std. deviation. Metric: accuracy.

AYM GN QUY AVG AZ KK KY UZ AVG

S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV S-DEV T-DEV

Zero-Shot Cross-Lingual Transfer: Fine-tune multilingual model on English training set
NLLB-GPT-2 S1+FT 59.7±0.5 60.4±0.4 66.8±0.9 67.8±0.7 60.0±0.8 61.2±1.1 62.2±0.6 63.2±0.6 77.4±0.4 77.7±0.7 75.3±0.3 75.5±0.1 75.6±0.3 75.7±0.4 76.6±0.6 77.1±0.6 76.2±0.2 76.5±0.3

Translate-Test: Translate test data to English
GPT-2 NLLB-600M 50.3±1.1 52.1±1.1 58.0±0.9 59.0±0.6 54.0±0.5 54.4±0.1 54.1±0.5 55.2±0.4 77.2±0.2 77.4±0.5 73.2±0.1 73.7±0.4 73.5±0.4 74.3±0.0 75.0±0.5 75.7±0.7 74.7±0.0 75.3±0.2

GPT-2 NLLB-3B 46.2±1.0 47.9±0.6 59.7±1.5 61.6±0.3 51.9±1.0 54.0±0.3 52.6±0.5 54.5±0.2 78.9±0.3 79.3±0.4 75.0±0.4 75.5±0.4 71.7±0.4 72.6±0.4 75.9±0.4 76.3±0.3 75.4±0.4 75.9±0.3

Table 17: NLLB-GPT-2 on AmNLI & Kardeş-NLU. We benchmark models on test portions of AmNLI and
Kardeş-NLU (cf. §4). S1 refers to the self-supervised stage of aligning NLLB with GPT-2 (cf. §3). FT denotes
supervised fine-tuning. Reported performance is averaged over three seeds on model checkpoints that maximize
performance on source-language (S-DEV) and per target-language (T-DEV) validation splits. Subscripts denote std.
deviation. Metric: accuracy.

6743

