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Abstract

Uncertainty quantification (UQ) in natural lan-
guage generation (NLG) tasks remains an open
challenge, exacerbated by the closed-source na-
ture of the latest large language models (LLMs).
This study investigates applying conformal pre-
diction (CP), which can transform any heuris-
tic uncertainty notion into rigorous prediction
sets, to black-box LLMs in open-ended NLG
tasks. We introduce a novel uncertainty mea-
sure based on self-consistency theory, and then
develop a conformal uncertainty criterion by in-
tegrating the uncertainty condition aligned with
correctness into the CP algorithm. Empirical
evaluations indicate that our uncertainty mea-
sure outperforms prior state-of-the-art methods.
Furthermore, we achieve strict control over the
correctness coverage rate utilizing 7 popular
LLMs on 4 free-form NLG datasets, spanning
general-purpose and medical scenarios. Ad-
ditionally, the calibrated prediction sets with
small size further highlights the efficiency of
our method in providing trustworthy guarantees
for practical open-ended NLG applications.

1 Introduction

Despite advancements in various natural language
generation (NLG) tasks (Katz et al., 2024; Tou-
vron et al., 2023a; Chen et al., 2023; Duan et al.,
2024b,c), large language models (LLMs) are
proven to hallucinate facts and confidently generate
textual information that is not correct or grounded
in reality (Ji et al., 2023; Manakul et al., 2023). Fac-
tually incorrect answers can confuse and mislead
users, resulting in erroneous conclusions and ulti-
mately undermining the trustworthiness of LLMs-
based high-stakes applications.

Uncertainty quantification (UQ) provides valu-
able insights into the reliability of model responses,
facilitating risk assessment and hallucination de-
tection (Kadavath et al., 2022; Lin et al., 2022a).

*Corresponding to: Xiaoshuang Shi <xsshi2013@gmail.com>

However, it demands investigating black-box un-
certainty measures with the proliferation of LLMs
served via APIs (Achiam et al., 2023), which only
allows textual inputs and outputs. Conformal pre-
diction (CP) (Campos et al., 2024; Angelopoulos
and Bates, 2021; Quach et al., 2024; Zhao et al.,
2024) is known for providing a model-agnostic
and statistically rigorous uncertainty estimation.
CP was primarily employed in classification (An-
gelopoulos and Bates, 2021) and regression tasks
(Wang et al., 2024a). For NLG tasks, CP is first
adapted to the multiple-choice question-answering
(MCQA) setting, where the acceptable response is
selected from a fixed set of options (Kumar et al.,
2023; Ye et al., 2024), limiting its applications in
real-world open-ended NLG tasks. Conformal lan-
guage modeling (Quach et al., 2024) relies on the
model likelihoods and calibrates a stopping rule
to sample prediction sets from the infinite output
space until users are confident that the set covers
at least one response satisfied. LofreeCP (Su et al.,
2024) studies CP for API-only LLMs without logit
access by leveraging uncertainty information from
diverse sources.

Our study explores adapting CP for general NLG
applications. The nonconformity score (NS) in CP
serves as a criterion for calibrating prediction sets,
which provide coverage guarantees by selecting
a set of possible labels that satisfy the NS thresh-
old (Angelopoulos and Bates, 2021). Since typical
logits-based NS may encounter miscalibration, we
aim to integrate black-box UQ into the definition
of NS, by closely aligning it with the uncertainty
condition of the correct answers and devising a
conformal uncertainty criterion, while it is more
reliable to analyze the uncertainty within LLMs’
true output space. Then, we employ the uncertainty
criterion, concluded from a small amount of inde-
pendent and identically distributed (i.i.d.) calibra-
tion data, to construct prediction sets by selecting
generations sharing a similar uncertainty condition
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from the unbounded output space on test samples.
Typically, there are two goals of CP: (1) the cali-
brated prediction set contains the correct answer
with at least a user-specified probability; and (2)
the average set size should be small, demonstrating
the prediction efficiency of our method.

The first challenge is UQ for black-box LLMs.
Our solution is inspired by an intuitive observation:
If a language model generates more semantically di-
verse outputs for the same prompt, the uncertainty
is likely higher (Su et al., 2024; Lin et al., 2023;
Xiong et al., 2023). Regardless of the model’s capa-
bility to tackle the current problem, the confidence
score that the model assigns to a generation can
be represented by its frequency within the output
space. We approximate the model’s output distri-
bution by sampling multiple answers to the same
question. Then, we perform semantic clustering on
the sampled generations, and propose to measure
the uncertainty of each generation by combining
two factors: the frequency of occurrence of the
semantic meaning it conveys, and the consistency
between its semantic and other semantic clusters
augmented by their individual frequency.

Based on the measure, we define the NS as the
uncertainty of the generation. To this end, the gen-
eration meets the correctness criterion and is se-
mantically most similar to the reference answer
in the calibration set. We then calculate the quan-
tile q̂ of NSs for all calibration samples, based
on the user-specified upper bound of error rate α.
Next, we utilize the conformal uncertainty crite-
rion (i.e., the uncertainty threshold q̂) to construct
a prediction set for each test sample by selecting
generations that satisfy the uncertainty conditions
strictly associated with correctness from the candi-
date generations. Additionally, for black-box UQ,
we propose employing the most frequent genera-
tion or semantic (i.e., the model’s most confident
answer) as a more trustworthy reference object for
the query and leveraging it to measure the overall
uncertainty of the current UQ process. We term this
measure ConU, as it employs the same approach
as the conformal uncertainty criterion.

Extensive experimental results exhibit that ConU
generally outperforms prior state-of-the-art meth-
ods and verify the strict correctness coverage guar-
antees. Specifically, the prediction sets calibrated
by the conformal uncertainty criterion always en-
compass the correct answers under various user-
specified error rates. Furthermore, the average pre-
diction set size is small, highlighting the prediction

efficiency of our approach. To our knowledge, this
is the first method in the literature to strictly link the
NS with the uncertainty condition aligned with cor-
rectness via black-box UQ, thereby developing a
more robust conformal uncertainty criterion, which
provides rigorous correctness coverage guarantees
in practical open-ended NLG tasks, and its unique
inspiration in benchmarking UQ in LLMs through
CP generates independent interest*.

In summary, our major contributions are listed
as follows:

• We propose a sampling-based black-box un-
certainty measure, termed as ConU, utilizing
self-consistency in open-ended NLG tasks, fa-
cilitating trustworthy decision-making.

• We devise a conformal uncertainty criterion by
strictly aligning the NS with the uncertainty
condition of acceptable answers, and achieve
rigorous correctness coverage with at least a
user-specified probability, thereby providing
robust guarantees under various error rates in
practical open-ended NLG applications.

• We conduct selective prediction leveraging the
calibrated prediction sets and obtain promis-
ing improvements in model accuracy without
requiring additional task-specific fine-tuning
or architectural modifications.

2 Related Work

2.1 Uncertainty Quantification in LLMs
Prior work on UQ in LLMs predominantly focuses
on white-box information like token-likelihoods or
embeddings (Da et al., 2024; Kuhn et al., 2023;
Duan et al., 2024a; Wang et al., 2024b), internal
state or activations (Yin et al., 2024; Chen et al.,
2024), model fine-tuning (Tian et al., 2023). These
methods can encounter poor calibration and require
substantial computational resources. Additionally,
researchers lack white-box access to the internal
information of LLMs served via APIs. These re-
strictions demand black-box measures for general
UQ in LLMs generations.

Recent work (Lin et al., 2023) develops several
sampling-based uncertainty measures, which can
be applied to black-box LLMs by leveraging se-
mantic similarity along with dispersion. Our study
follows the sampling setting and proposes to em-
ploy the most frequent generation as the reference
*Our code is available at https://github.com/Zhiyuan-
GG/Conformal-Uncertainty-Criterion/tree/main
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object to measure the overall uncertainty based on
the self-consistency theory (Wang et al., 2022).

2.2 Conformal Prediction in LLMs

CP (Angelopoulos and Bates, 2021; Quach et al.,
2024; Campos et al., 2024) has emerged as a theo-
retically sound and practically useful way to guar-
antee ground-truth coverage with the aid of a small
amount of exchangeable samples for calibration.
CP in classification tasks defines the NS, which is
correlated with the ground-truth label, obtains the
quantile, q̂, of NSs for all calibration samples based
on a user-specified upper bound of the error rate
α, and utilizes q̂ as a threshold to select possible
labels on test samples, thereby establishing predic-
tion sets that guarantee ground truth coverage with
at least the probability of 1− α.

Recently, researchers have attempted to apply
CP to LLMs for principled UQ. The work (Mohri
and Hashimoto, 2024) achieves conformal factual-
ity guarantees by progressively making generations
less specific and establishing their corresponding
entailment sets until correct answers are encom-
passed. For correctness coverage, two studies (Ku-
mar et al., 2023; Ye et al., 2024) follow CP in clas-
sification tasks and convert NLG tasks into MCQA
settings. For open-ended NLG, based on the out-
put token sequence logits, the study (Quach et al.,
2024) develops a stopping rule to sample genera-
tions until users are confident that a correct answer
is covered in QA tasks, which can be impractical
for API-only LLMs. LofreeCP (Su et al., 2024)
leverages uncertainty information to construct pre-
diction sets that achieve correctness coverage.

This paper focuses on more practical scenarios
of black-box LLMs in open-ended NLG tasks. Dif-
fering from LofreeCP, we strictly connect the NS
with the uncertainty condition aligned with correct-
ness via black-box UQ, which concludes a more
robust conformal uncertainty criterion to calibrate
prediction sets with rigorous correctness coverage
guarantees under various error rates despite the
complexity of the model or datasets.

3 Method

Our method investigates two key issues: (1) how to
estimate the uncertainty in black-box LLMs when
we can only access the output texts; and (2) how
to provide rigorous guarantees on the error rate in
open-ended NLG tasks. We first devise a black-box
uncertainty measure grounded in self-consistency

to provide the trustworthiness notion of model re-
sponses. Furthermore, we utilize the split CP tech-
nique to convert the heuristic approximation into a
statistically rigorous one, thereby ensuring a more
robust and systematic assessment of uncertainty.

3.1 Preliminaries

Following the analysis of black-box LLMs in prior
work (Xiong et al., 2023; Lin et al., 2023; Manakul
et al., 2023), conditioned on each prompt (or ques-
tion) xi, we employ the most likely generation ŷi
for correctness evaluation. Additionally, we sample

a set of M candidate generations
{
ŷ
(i)
m

}M

m=1
from

the model’s output space for black-box UQ and the
derivation of conformal uncertainty criterion. We
denote the reference answer to xi as y∗i .

3.2 Uncertainty Quantification

For each data point, we first cluster semantics in the
M sampled generations and obtain K non-repeated
semantics. We denote the number of generations
sharing the k-th semantic as Vk (i.e.,

∑K
k=1 Vk =

M ) and any one generation in this cluster as ŷ(i)k .
Building on earlier approaches that utilize self-

consistency (Wang et al., 2022; Su et al., 2024;
Yadkori et al., 2024) as a reliable measure of con-
fidence, we employ the frequency of the k-th se-
mantic as its proxy for reliability: F

(
ŷ
(i)
k

)
= Vk

M .
Then, we define the uncertainty score of each can-

didate generation in
{
ŷ
(i)
m

}M

m=1
as

U
(
ŷ(i)m

)
=1− λ · F

(
ŷ(i)m

)
− (1− λ) ·

1

K

K∑

k=1

S
(
ŷ(i)m , ŷ

(i)
k

)
F
(
ŷ
(i)
k

)
,

(1)

where F
(
ŷ
(i)
m

)
refers to the frequency of the se-

mantic that ŷ(i)m conveys, and S (·, ·) measures the
semantic similarity between two generations utiliz-
ing a cross-encoder model (Reimers and Gurevych,
2019). F

(
ŷ
(i)
k

)
is to augment the persuasiveness

of the similarity score associated with ŷ
(i)
k .

To measure the model uncertainty, we select any
one generation in the largest semantic cluster to be
the most trustworthy generation in the M sampled
generations and denote it as ŷimst. Then, we define
the uncertainty score of the i-th query-response

6888



process as

U
({

ŷ(i)m

}M

m=1
|xi

)
= 1− λ · F

(
ŷimst

)
−

(1− λ) · 1

K

K∑

k=1

S
(
ŷimst, ŷ

(i)
k

)
F
(
ŷ
(i)
k

)
.

(2)

Intuitively, the most frequent semantic within the
candidate generations represents the model’s most
confident answer to the current problem. Even
though the reference semantic may not necessar-
ily be the correct one, we can measure the degree
of the model’s uncertainty by calculating the confi-
dence level of that semantic as well as the deviation
between it and other semantics.

Since Eq. (1) can quantify the uncertainty of
each candidate generation, we attempt to develop
an uncertainty criterion to search for the correct an-
swers within the unfixed output space of the LLM.

3.3 Conformal Correctness Coverage

Following the fundamental requirement in split
CP (Angelopoulos and Bates, 2021), we randomly
employ N samples to construct the calibration data
set {(xi, y∗i )}Ni=1, and for each calibration sample
we demand that at least one sampled generation ŷ(i)j

in
{
ŷ
(i)
m

}M

m=1
meets the correctness criterion. Our

objective of conformal correctness coverage is by
concluding the uncertainty criterion that is closely
linked with correctness on {(xi, y∗i )}Ni=1, we can
calibrate an uncertainty (prediction) set P (xtest)
for the test prompt xtest by selecting generations
that meet the common uncertainty condition, and
the set can guarantee correctness coverage under
various user-specificed error rates. Here, we ap-
proximate the prediction region of xtest to the M

candidate generations
{
ŷ
(test)
m

}M

m=1
.

Assumptions: (1) There is at least one candidate

generation in
{
ŷ
(test)
m

}M

m=1
meeting the correct-

ness criterion; (2) Samples in the calibration and
test data sets are exchangeable.

As the sampled set
{
ŷ
(test)
m

}M

m=1
is a subset of

the prediction region, which is impossible to enu-
merate, we can simplify it by stating that there is

at least one correct answer in
{
ŷ
(test)
m

}M

m=1
. Ex-

changeability is the fundamental assumption of
CP (Angelopoulos and Bates, 2021). We provide
the explanation for Assumption (1) in Appendix B.

Based on the uncertainty measure described as
Eq. (1), we define the NS of the i-th calibration
sample as

ri = r (xi, y
∗
i ) =

U
(
argmax

ŷ
(i)
j

S
(
ŷ
(i)
j , y∗i

)
E
(
ŷ
(i)
j , y∗i

))
,

(3)

where E (·, ·) is the indicator function determining
whether the two sentences share equivalent seman-
tics, i.e., E

(
ŷ
(i)
j , y∗i

)
= 1 indicates that ŷ(i)j is se-

mantically equivalent to y∗i , and E
(
ŷ
(i)
j , y∗i

)
= 0

denotes it does not. That is, the NS, r (xi, y∗i ) rep-
resents the uncertainty condition of the candidate
generation ŷ

(i)
j , which has the highest similarity

score with the reference answer y∗i in generations
that are semantically equivalent to y∗i . The criterion
for determining semantic equivalence here is the
same as that for correctness evaluation (i.e., ŷ(i)j is

correct according to y∗i if E
(
ŷ
(i)
j , y∗i

)
= 1).

It is worth emphasizing that we strictly align
the NSs with the uncertainty conditions of correct
answers within the fresh calibration set, concluding
an honest insight into the model’s performance,
which is crucial for robust correctness coverage
guarantees in new test samples.

Following prior work (Angelopoulos and Bates,
2021; Quach et al., 2024; Campos et al., 2024),
we sort {ri}Ni=1 ({r1 ≤ · · · ≤ rN}) and calculate
the ⌈(N+1)(1−α)⌉

N quantile of NSs for all calibration
data to develop the conformal uncertainty criterion

q̂ =

inf

{
q :

|{i : ri ≤ q}|
N

≥ ⌈(N + 1) (1− α)⌉
N

}

= r⌈(N+1)(1−α)⌉,
(4)

where α is the upper bound of the error rate.
As for each test sample, we construct the predic-

tion set following

P (xtest) =
{
ŷ
(test)
j : r

(
xtest, ŷ

(test)
j

)
≤ q̂

}
.

(5)

It is evident that the most semantically similar

generation to ŷ
(test)
j in

{
ŷ
(test)
m

}M

m=1
is itself, and

we obtain r
(
xtest, ŷ

(test)
j

)
= U

(
ŷ
(test)
j

)
. Recall

the assumption that
{
ŷ
(test)
m

}M

m=1
contains at least
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Table 1: Performance comparison (AUROC) of uncertainty quantification across our proposed method and 8 baseline
approaches, evaluated on 5 instruction-tuned LLMs over 4 open-ended NLG datasets. The correctness criterion
is based on the sentence similarity measured by the DistillRoBERTa model with a threshold of 0.7. The best UQ
methods are in bold and the second-best one is underscored.

Dataset LLMs
White-box Black-box

PE LNPE SE SAR LS NumSet Ecc Deg ConU

TriviaQA

LLaMA-2-7B-Chat 0.6587 0.6459 0.7495 0.7876 0.5571 0.7763 0.7839 0.8103 0.8198
Mistral-7B-Instruct-v0.3 0.6620 0.5968 0.7845 0.8306 0.5969 0.8491 0.8596 0.8596 0.8671
LLaMA-3-8B-Instruct 0.7247 0.6465 0.7934 0.8271 0.4661 0.8201 0.7404 0.8246 0.8275

Vicuna-13B-v1.5 0.5553 0.5543 0.7568 0.7207 0.5734 0.7629 0.6578 0.7858 0.7926
LLaMA-2-13B-Chat 0.6065 0.5614 0.7624 0.7757 0.6121 0.7885 0.8035 0.8035 0.8048

Average 0.6414 0.6010 0.7693 0.7883 0.5611 0.7994 0.7690 0.8167 0.8224

CoQA

LLaMA-2-7B-Chat 0.6236 0.5618 0.7120 0.7372 0.5403 0.7309 0.6769 0.7613 0.7600
Mistral-7B-Instruct-v0.3 0.6746 0.5795 0.7062 0.7551 0.5799 0.7481 0.6931 0.7645 0.7652
LLaMA-3-8B-Instruct 0.7495 0.6531 0.7652 0.7902 0.4532 0.7400 0.7288 0.7763 0.7702

Vicuna-13B-v1.5 0.5928 0.5565 0.7110 0.6984 0.4965 0.6832 0.6679 0.7191 0.7106
LLaMA-2-13B-Chat 0.6203 0.5634 0.7039 0.7427 0.5534 0.7230 0.6805 0.7546 0.7591

Average 0.6522 0.5829 0.7197 0.7472 0.5247 0.7250 0.6894 0.7552 0.7530

MedQA

LLaMA-2-7B-Chat 0.4888 0.4925 0.5341 0.5862 0.5599 0.5933 0.5511 0.6064 0.6120
Mistral-7B-Instruct-v0.3 0.4613 0.4639 0.5091 0.6397 0.5520 0.6282 0.6562 0.6660 0.6789
LLaMA-3-8B-Instruct 0.5854 0.5781 0.6508 0.7167 0.4522 0.7093 0.6142 0.7159 0.7196

Vicuna-13B-v1.5 0.4970 0.4922 0.5523 0.5854 0.5479 0.5926 0.5383 0.6261 0.6360
LLaMA-2-13B-Chat 0.4618 0.4647 0.5277 0.5792 0.5734 0.6041 0.5743 0.6070 0.6153

Average 0.4989 0.4983 0.5548 0.6214 0.5371 0.6255 0.5868 0.6443 0.6524

MedMCQA

LLaMA-2-7B-Chat 0.4774 0.4848 0.5221 0.5883 0.5531 0.6171 0.5165 0.5983 0.6330
Mistral-7B-Instruct-v0.3 0.4971 0.4989 0.5491 0.6944 0.5103 0.7084 0.7170 0.7173 0.7413
LLaMA-3-8B-Instruct 0.5414 0.5395 0.6244 0.6940 0.4817 0.6992 0.5952 0.6993 0.7098

Vicuna-13B-v1.5 0.4614 0.4815 0.5550 0.5509 0.5377 0.5891 0.5135 0.6221 0.6448
LLaMA-2-13B-Chat 0.4547 0.4712 0.5385 0.5701 0.5711 0.6378 0.6188 0.6188 0.6414

Average 0.4864 0.4952 0.5578 0.6195 0.5308 0.6503 0.5922 0.6511 0.6741

one correct generation (i.e., y∗test ∈
{
ŷ
(test)
m

}M

m=1
),

then the event {y∗test ∈ P (xtest)} is equivalent to
{rtest = r (xtest, y

∗
test) ≤ q̂}.

Since the calibration and test samples (x1, y∗1),
..., (xN , y∗N ), (xtest, y∗test) are exchangeable, we
have P (rtest ≤ ri) =

i
N+1 . Then we conclude

P (y∗test ∈ P (xtest)) = P
(
rtest ≤ r⌈(N+1)(1−α)⌉

)

=
⌈(N + 1) (1− α)⌉

N + 1

≥ 1− α,

(6)

and obtain the user-specified lower bound (i.e., 1−
α) of the correctness coverage rate guaranteed by
these calibrated prediction sets.

4 Evaluations

4.1 Experimental Set-up

Baselines. We consider 8 baseline methods, in-
cluding 4 white-box methods: Predictive Entropy

(PE) (Kadavath et al., 2022), Length-normalized
Predictive Entropy (LNPE) (Malinin and Gales,
2020), Semantic Entropy (SE) (Kuhn et al., 2023),
and Shift Attention to Relevance (SAR) (Duan et al.,
2024a), and 4 black-box approaches: Lexical Sim-
ilarity (LS) (Lin et al., 2022b) and Number of Se-
mantic Sets (NumSet) (Kuhn et al., 2023; Lin et al.,
2023). Moreover, we also include the most recent
state-of-the-art uncertainty quantification methods,
Degree Matrix (Deg) (Lin et al., 2023), and Ec-
centricity (Ecc) (Lin et al., 2023). More details of
baseline methods can be found in Appendix C.1.

Base LLMs. We conduct empirical evaluations
on 7 LLMs encompassing various sizes and ar-
chitectures for comprehensive analysis, includ-
ing GPT-3.5-turbo served by OpenAI(OpenAI,
2021), LLaMA-2-7B-Chat (Touvron et al., 2023b),
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),
Llama-3-8B-Instruct (AI@Meta, 2024), Vicuna-
13B-v1.5 (Zheng et al., 2023), LLaMA-2-13B-
Chat (Touvron et al., 2023b), LLaMA-3-70B-
Instruct (AI@Meta, 2024). We utilize the default
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Figure 1: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-2-7B-Chat
model as the generator. Empirically, we achieve strict
control over the coverage of correct answers by calibrat-
ing prediction sets on 4 free-form QA datasets.

generation configs and checkpoints provided by the
HuggingFace platform† for all open-source LLMs.

Datasets. We evaluate the performance of ConU
and verify the correctness coverage guarantees on
4 free-form NLG datasets, including CoQA (Reddy
et al., 2019) for conversational QA task, Trivi-
aQA (Joshi et al., 2017) for reading comprehen-
sion, MedQA (Jin et al., 2021) for solving medical
problems, and MedMCQA (Pal et al., 2022) for
medical entrance exam questions. More details of
datasets can be found in Appendix C.2.

Evaluation Metric. Following prior work (Duan
et al., 2024a; Wang et al., 2024b), we evaluate the
performance of UQ by treating it as the problem of
predicting whether to trust a generation given the
prompt, and utilize the Area Under the Receiver
Operating Characteristic Curve (AUROC) which
gauges if the uncertainty scores can effectively dis-
tinguish between correct and incorrect generations.
To verify if the correctness coverage is strictly guar-
anteed, we evaluate the coverage rate under various
user-specified error rates. We also report the aver-
age prediction set size to evaluate the prediction
efficiency and practicality of our approach.

Correctness and Equivalence Metric. We uti-
lize sentence similarity (Duan et al., 2024a) as the
metric for correctness and equivalence evaluation.
We employ the cross-encoder model (Reimers and
Gurevych, 2019) with DistillRoBERTa (Sanh et al.,
2019) serving as the backbone to measure the se-
mantic similarity score between the most likely
†https://huggingface.co/models

Table 2: The results of correctness coverage rate (%) on
7 LLMs with various sizes across 4 open-ended NLG
datasets. The user-specified error rate α is set to 0.1.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 91.00 93.37 100.00 91.32
Mistral-7B-Instruct-v0.3 90.83 91.87 90.70 90.39
LLaMA-3-8B-Instruct 94.27 90.73 90.46 93.17
LLaMA-2-13B-Chat 91.68 91.63 91.72 92.45

Vicuna-13B-v1.5 90.19 92.68 90.25 92.13
LLaMA-3-70B-Instruct 92.18 90.95 93.70 92.48

GPT-3.5-turbo 93.14 91.66 91.78 90.36

Table 3: The average prediction set size on 7 LLMs with
various sizes across 4 open-ended NLG datasets. The
user-specified error rate α is set to 0.1.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 2.28 2.26 4.28 3.07
Mistral-7B-Instruct-v0.3 2.24 2.49 4.20 3.26
LLaMA-3-8B-Instruct 2.34 2.45 2.68 2.60
LLaMA-2-13B-Chat 2.19 2.28 3.40 2.73

Vicuna-13B-v1.5 2.26 2.47 3.29 2.98
LLaMA-3-70B-Instruct 1.03 1.71 2.15 1.60

GPT-3.5-turbo 1.96 2.13 2.49 2.02

generation and reference answer and set a strict
correctness threshold of 0.7.

Hyperparameters. We randomly sample 5 an-
swers to each question for UQ and 10 candidate
generations for verification of correctness cover-
age guarantees. We leverage beam search for the
most likely generations for correctness evaluation
and multinominal sampling for candidate gener-
ations (Duan et al., 2024a). The max length of
each generation is set to 128 tokens. The temper-
ature of generation is set to 1.0. The coefficient
λ introduced in Eq. (1) is set to 0.5. The ratio of
calibration and test set is set to 1:10 by default.

4.2 UQ in Black-Box LLMs

As defined in failure prediction (Xiong et al., 2023)
which evaluates whether the uncertainty score can
effectively distinguish between correct and incor-
rect generations, an effective measure should as-
sign higher uncertainty to incorrect generations and
lower to correct ones. We compare our approach
with state-of-the-art methods utilizing AUROC. Ex-
perimental results are summarized in Table 1. Gen-
erally, our method outperforms baseline methods in
most of the settings. For instance, our method con-
sistently beat 8 baseline methods on the TriviaQA
datasets. It is worth noting that our method outper-
forms other methods by at most 2.4% AUROC on
the MedMCQA dataset and 1.29% AUROC on the
MedQA, which indicates the potential impacts of
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Figure 2: Target correctness coverage rate vs. empiri-
cal correctness coverage rate on non-empty prediction
sets. We test the 4 datasets utilizing the LLaMA-2-7B-
Chat model. We can almost obtain absolute coverage of
correct answers in non-empty calibrated prediction sets
even at a strict user-accepted error rate.

our methods on real-world high-stakes NLG appli-
cations. We will discuss the impact of the number
of sampled generations on UQ in Section 4.4.

4.3 Conformal Correctness Coverage

In this section, we verify that the calibrated pre-
diction sets constructed following Eq. (5) indeed
achieve rigorous correctness coverage guarantees
under various user-specified error rates as described
in Eq. (6). Then we explore the utility of prediction
sets and conduct selective prediction based on our
proposed uncertainty measure.

Empirical Coverage Guarantees. To guarantee
the derived lower bound of correctness coverage
rate in practice, we randomly split the four datasets
at a ratio of 1:10, employing the respective por-
tions as the calibration and test set. We utilize the
calibration set to derive the conformal uncertainty
criterion specified by the upper bound of the error
rate. Then, we measure the correctness coverage
rate on the test set and plot the results on four
datasets in Figure 1. It is evident that we achieve
strict control of the correctness coverage rate un-
der various error rates. The verification on other
models can be found in Appendix D.

Following the study (Ye et al., 2024), we set the
error rate α to 0.1 and test the coverage rate on 4
datasets utilizing 7 LLMs with various scales. As
is exhibited in Table 2, the coverage rate is at least
90%, indicating that the requirement of correctness
coverage guarantees is satisfied. It is worth not-
ing that prior work (Ye et al., 2024; Kumar et al.,

Table 4: The enhancement of model accuracy (%) af-
ter conducting selective prediction within the calibrated
prediction sets based on the black-box uncertainty mea-
sure, utilizing sentence similarity as the criterion for
correctness evaluation under the threshold of 0.7.

Dataset LLMs Original Calibrated

TriviaQA

LLaMA-2-7B-Chat 68.43 70.77
Mistral-7B-Instruct-v0.3 79.04 81.45
LLaMA-3-8B-Instruct 79.36 80.00

Vicuna-13B-v1.5 78.40 78.80
LLaMA-2-13B-Chat 76.70 78.13

CoQA

LLaMA-2-7B-Chat 73.00 75.53
Mistral-7B-Instruct-v0.3 78.25 80.80
LLaMA-3-8B-Instruct 72.93 74.67

Vicuna-13B-v1.5 76.17 78.43
LLaMA-2-13B-Chat 80.00 81.23

MedQA

LLaMA-2-7B-Chat 37.88 40.80
Mistral-7B-Instruct-v0.3 38.65 43.90
LLaMA-3-8B-Instruct 66.29 70.59

Vicuna-13B-v1.5 44.42 46.78
LLaMA-2-13B-Chat 42.07 46.15

2023) selects the possible option from the fixed
choices while we characterize the unbound answer
distribution by sampling and utilize our devised
conformal uncertainty criterion to search for the
correct answer, which is more practical.

We also evaluate the prediction efficiency of the
conformal uncertainty criterion utilizing the aver-
age size of these calibrated prediction sets, which
is the primary metric for CP (Angelopoulos and
Bates, 2021). Table 3 demonstrates that the average
size of prediction sets calibrated by our method re-
mains very small across the 4 datasets. For instance,
the average set size is 1.03 on the LLaMa-3-70B-
Instruct model in the TriviaQA task, indicating that
we can almost directly identify the correct answers
through these calibrated prediction sets.

We boldly expect that as long as the language
model has the capability to solve the current prob-
lem, despite the unfixed answer distribution, we can
always find the correct generation by performing
black-box UQ on each sampled answer and search-
ing for answers meeting the conformal uncertainty
criterion, and then limit the selection region to the
calibrated prediction set for post-processing.

Utility of Calibrated Prediction Sets. Since for
some test samples, all the candidate generations
can be filtered out by the conformal uncertainty
criterion, we explore the utility of non-empty pre-
diction sets in practice. Figure 2 exhibits that the
prediction sets achieve promising correctness cov-
erage rate, raising to 100% as the accepted error
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Figure 3: The performance of UQ over various numbers
of generations. Results are obtained from the LLaMA-3-
8B-Instruct model on the TriviaQA dataset. Our method
consistently surpasses 7 baseline methods.

rate increases. In the MedQA dataset, while the
error rate is set to 0.1, we almost achieve absolute
correctness coverage guarantees, indicating that,
without reference answers provided in real-world
high-stakes situations, we can ensure that the small
reference range we have established contains the
correct answer for posterior selection, and then
high-uncertainty problems will be handed over to
experts, which aligns with the selective prediction
and abstention criterion.

Based on the proposed uncertainty measure, we
conduct post-processing to select the generation
with the lowest uncertainty score from each cali-
brated prediction set and evaluate the total selective
accuracy. It is worth noting that the performance
depends on the quality of the uncertainty measure.
Results are summarized in Table 4. Through pos-
terior selection, we obtain promising accuracy im-
provement despite several empty prediction sets.

4.4 Ablation Studies

Considering that these sampling-based methods
integrate multiple generations within the candi-
date set, We investigate the effects of the num-
ber of sampled generations (i.e., M ) on the per-
formance of UQ. As illustrated in Figure 3, our
uncertainty measure consistently outperforms the
baseline approaches, and its performance can be
further boosted by incorporating more generations.
While employing just 4 generations, our method
is able to achieve the highest AUROC of 0.8082,
demonstrating its generation-efficient nature.

As described in Section 3.3, conformal predic-
tion assumes a calibration set for the threshold q̂.
In our prior analysis, We divide the dataset into

Figure 4: The average coverage rate across 4 datasets at
different ratios between the calibration and test set uti-
lizing the LLaMA-3-8B-Instruct model. The red dashed
line indicates the lower bound at 0.9 (i.e., α = 0.1).

the calibration and test set at a fixed ratio of 1:10.
Here, we investigate the correctness coverage rate
at different ratios of size between the calibration
and test set, and present the results in Figure 4.
Despite various ratios of set size, we can always
obtain a strict lower bound of the coverage rate by
constructing prediction sets based on our devised
conformal uncertainty criterion. This indicates the
potential impacts of our method for robust guaran-
tees in real-world open-ended NLG applications.

5 Conclusion

In this work, we introduce ConU tailored for black-
box UQ in open-ended NLG tasks. Relying on CP
which can transform any heuristic approximation
into a statistically rigorous uncertainty notion, we
develop a robust conformal uncertainty criterion to
provide reliable guarantees of correctness coverage
under various user-specified error rates. We achieve
strict control of the coverage rate across 7 practical
LLMs on 4 free-from NLG datasets. Furthermore,
the small average uncertainty set size underscores
the efficiency of our methods. Utilizing these cal-
ibrated prediction sets, we perform selective pre-
diction and obtain remarkable improvements in
model accuracy. We envisage that our conformal
uncertainty criterion can provide new strategies for
principled UQ in open-ended NLG tasks.
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Limitations

Our approach has some limitations. We need to
develop an uncertainty criterion to verify whether
the correct answer has been sampled from the out-
put space in real-world applications. Secondly, our
findings are limited to the four datasets and future
works will extend to other typical NLG tasks like
document summarization. Finally, we will attempt
to expand our conformal uncertainty criterion to
non-exchangeability scenarios, aiming to establish
a general criterion across different NLG tasks.
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A Proof of the Coverage Property

This is the explanation of validity for the conformal
uncertainty criterion introduced in Section 3.3. We
reproduce the derivation here for completeness. Let
us break down the overall implementation into the
following five steps:

Black-box Uncertainty Measure. We first con-
duct semantic clustering within the M candidate
generations and obtain K non-repeated semantics
for each sample. Since generations in the k-th clus-
ter share the equivalent meaning, we denote any
one generation in the k-th cluster as ŷ(i)k . Then we
rely on self-consistency and define the uncertainty
score of each candidate generation as U

(
ŷ
(i)
m

)
as

described in Eq. (1).
NS Definition. For each calibration sample, we

select the generation that (1) first shares the equiv-
alent semantics with the reference answer and (2)
then exhibits the highest semantic similarity to the
reference answer, and then define the NS as its un-
certainty score calculated following Eq. (1). The
first condition is to tightly couple the NS with cor-
rectness and the second is to facilitate generation
selection in test samples. The NS of the i-th cali-
bration data ri is described as Eq. (3).

Conformal Uncertainty Criterion. We calcu-
late the ⌈(N+1)(1−α)⌉

N quantile of the NSs for all
fresh calibration data to develop our conformal un-
certainty criterion (i.e., the uncertainty threshold
q̂) based on the user-specified error rate α. As
described in Eq. 4, q̂ = r⌈(N+1)(1−α)⌉.

Construction of Prediction Sets. For each test
data, we construct a prediction set following Eq. (5).
Since the generation that is semantically equiva-
lent to ŷ

(test)
i and shares the highest semantic sim-

ilarity to ŷ
(test)
i in

{
ŷ
(test)
m

}M

m=1
is itself, we can

obtain r
(
xtest, ŷ

(test)
j

)
= U

(
ŷ
(test)
j

)
. Then we

calibrate the prediction set by selecting generations,
of which the uncertainty satisfies the conformal un-
certainty criterion closely linked with correctness.

Correctness Coverage Guarantees. Consider-
ing the assumption that there is at least one cor-

rect answer in
{
ŷ
(test)
m

}M

m=1
, we can conclude

that the event {y∗test ∈ P (xtest)} is equivalent to
{rtest = r (xtest, y

∗
test) ≤ q̂}. Since (x1, y

∗
1), ...,

(xN , y∗N ), (xtest, y∗test) are exchangeable, we have
P (rtest ≤ ri) =

i
N+1 . Ultimately, we achieve rig-

orous guarantees of the correctness coverage rate
on test samples as described as Eq. (6).

B Validity of Assumption (1)

For each calibration data point, we sample multi-
ple generations from the output space, denoted as
Cm (Xi) =

{
Ŷ

(i)
j

}m

j=1
. Then, we define the loss

of miscoverage by the candidate set as

l (Cm (Xi) , Y
∗
i ) = 1 {Y ∗

i /∈ Cm (Xi)} , (7)

and the loss is non-increasing in m.
We set the size of the candidate set to xtest to be

m̂ = inf

{
m :

AN (m) + 1

N + 1
≤ β

}

= inf {m : AN (m) ≤ β (N + 1)− 1} ,
(8)

where AN (m) =

N∑

i=1

l (Cm (Xi) , Y
∗
i ). Since

AN (m) is monotone in m, we can search for m̂
by binary search to arbitrary precision.

Given that l (Cm̂ (Xtest) , Y
∗
test) ≤ 1 (∈ {0, 1}),

we obtain

AN+1 (m̂) =

N+1∑

i=1

l (Cm̂ (Xi) , Y
∗
i )

=
AN (m̂) + l (Cm̂ (Xtest) , Y

∗
test)

N + 1

≤ AN (m̂) + 1

N + 1

≤ β.

(9)

By the exchangeability of N calibration data
points and the test data point, we have ltest ∽
Uniform ({l1, · · · , lN , ltest}), where li is the
abbreviation for l (Cm̂ (Xi) , Y

∗
i ) (Angelopoulos

et al., 2024). Then, we have

E [l (Cm̂ (Xtest) , Y
∗
test)] =

N+1∑

i=1

l (Cm̂ (Xi) , Y
∗
i )

= AN+1 (m̂)

(10)

Under the condition of exchangeability, we have
demanded that at least one acceptable generation
exists in the candidate set of each calibration data
point, Assumption (1) holds in this case.

C Implementation Details

C.1 Baselines
We compare ConU with 8 baseline measures. PE
is defined as the entropy over the whole generation
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and LNPE is the length normalized PE. SE tackles
the issue of semantic equivalence by gathering gen-
erations sharing the same meaning into semantic
clusters and calculating cluster-wise entropy. SAR
solves the issue of generative inequality and allo-
cates more attention to key tokens and sentences.
LS measures the average sentence similarity among
sampled responses. NumSet employs the number of
semantic sets (equivalence classes) as a reflection
of uncertainty. Deg and Ecc treat each generation
as one node, calculate the symmetric normalized
graph Laplacian, and respectively utilize the degree
matrix and the average distance from the center as
the uncertainty measures.

We do not compare the two recent approaches
that adapt CP for correctness coverage in open-
ended NLG tasks for several reasons: (1) Confor-
mal language modeling (Quach et al., 2024) relies
on the white-box model likelihoods information,
which is impractical for recent LLMs served via
API without logit access; (2) LofreeCP (Su et al.,
2024) is susceptible to different settings of datasets
and models, and cannot consistently guarantee the
correctness coverage rate; (3) Our conformal un-
certainty criterion achieves strict control of the cor-
rectness coverage rate under various user-specified
error rates, model settings, and datasets, first link-
ing black-box UQ with rigorous guarantees of cor-
rectness coverage, which meets the requirement for
general NLG applications.

C.2 Datasets
CoQA (Reddy et al., 2019) is a large-scale conver-
sational QA dataset with more than 127k question-
answer pairs equipped with contextual information.
TriviaQA (Joshi et al., 2017) is a reading compre-
hension dataset with over 650k question-answer
pairs. MedQA (Jin et al., 2021) is a medical MCQA
dataset collected from professional medical board
exams. MedMCQA (Pal et al., 2022) is a large-
scale MCQA dataset for practical medical entrance
exam questions. For the evaluation of UQ, we ran-
domly select 3,000 samples from each dataset. For
the verification of correctness coverage guarantees,
we utilize the development set (7,983 questions)
of CoQA and full validation sets of MedQA and
MedMCQA. For TriviaQA, we utilize the same
3,000 samples in UQ evaluations.

For CoQA, we utilize the contextual informa-
tion combined with the question as the prompt.
For TriviaQA and MedMCQA, we randomly select
5 question-answer pairs as a fixed few-shot tem-

plate and combine it with the current question. For
MedQA, we employ 3 question-answer pairs.

D Robustness of Conformal Uncertainty
Criterion

We verify the correctness coverage guarantees on
the other 6 LLMs across 4 datasets. As demon-
strated in Figures 5 ˜ 10, we achieve rigorous con-
trol of coverage rate under various user-specified er-
ror rates despite different model settings or datasets.
We also report the results of the correctness cov-
erage rate under two strict error rates of 0.05 and
0.01. Table 5 and Table 6 indicate the robustness
of our conformal uncertainty criterion.

Figure 5: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the Mistral-7B-Instruct-
v0.3 model as the generator.

Figure 6: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-3-8B-
Instruct model as the generator.
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Figure 7: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-2-13B-Chat
model as the generator.

Figure 8: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the Vicuna-13B-v1.5
model as the generator.

Figure 9: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-3-70B-
Instruct model as the generator.

Figure 10: Target vs. empirical correctness coverage
rate. We test the 4 datasets utilizing the GPT-3.5-turbo
model as the generator.

Table 5: The results of correctness coverage rate (%)
on 7 LLMs across 4 open-ended NLG datasets. The
user-accepted error rate α is strictly set to 0.05.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 95.26 96.45 100.00 95.99
Mistral-7B-Instruct-v0.3 95.01 95.72 95.79 95.12
LLaMA-3-8B-Instruct 98.17 95.23 95.78 98.38
LLaMA-2-13B-Chat 95.04 96.96 95.15 96.59

Vicuna-13B-v1.5 97.28 95.33 95.51 97.29
LLaMA-3-70B-Instruct 95.38 95.33 95.51 97.29

GPT-3.5-turbo 97.02 97.60 95.62 95.19

Table 6: The results of correctness coverage rate (%)
on 7 LLMs across 4 open-ended NLG datasets. The
user-accepted error rate α is strictly set to 0.01.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 99.93 99.83 100.00 99.14
Mistral-7B-Instruct-v0.3 99.38 99.27 99.15 99.81
LLaMA-3-8B-Instruct 99.79 99.53 100.00 99.76
LLaMA-2-13B-Chat 99.06 99.13 99.51 99.48

Vicuna-13B-v1.5 99.52 100.00 99.94 100.00
LLaMA-3-70B-Instruct 99.84 99.75 99.15 99.82

GPT-3.5-turbo 99.17 99.82 99.51 99.95
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