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Abstract

Understanding knowledge mechanisms in
Large Language Models (LLMs) is crucial for
advancing towards trustworthy AGI. This pa-
per reviews knowledge mechanism analysis
from a novel taxonomy including knowledge
utilization and evolution. Knowledge utiliza-
tion delves into the mechanism of memoriza-
tion, comprehension and application, and cre-
ation. Knowledge evolution focuses on the dy-
namic progression of knowledge within indi-
vidual and group LLMs. Moreover, we discuss
what knowledge LLMs have learned, the rea-
sons for the fragility of parametric knowledge,
and the potential dark knowledge (hypothesis)
that will be challenging to address. We hope
this work can help understand knowledge in
LLMs and provide insights for future research.

1 Introduction

Knowledge is the cornerstone of intelligence and
the continuation of civilization, furnishing us with
foundational principles and guidance for navigating
complex problems and emerging challenges (Davis
et al., 1993; Choi, 2022). Throughout the extensive
history of evolution, we have dedicated our lives to
cultivating more advanced intelligence by utilizing
acquired knowledge and exploring the frontiers
of unknown knowledge (McGraw and Harbison-
Briggs, 1990; Han et al., 2021).

As we know, Large language models (LLMs)
are renowned for encapsulating extensive paramet-
ric knowledge (Roberts et al., 2020; Sung et al.,
2021; Cao et al., 2021a; Zhong et al., 2021; Kand-
pal et al., 2023; Heinzerling and Inui, 2020; Petroni
et al., 2019; Qiao et al., 2023; Kritharoula et al.,
2023; He et al., 2024a), achieving unprecedented
progress in application. However, the knowledge
mechanisms in LLMs for learning, storage, utiliza-
tion, and evolution still remain mysterious (Phillips
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Figure 1: The analysis framework of knowledge mecha-
nism within neural models includes knowledge evolu-
tion and utilization. Dark knowledge denotes knowledge
unknown to human or model (machine). We investi-
gate the mechanisms of knowledge utilization (right) in
LLMs during a specific period of their evolution (left).
The knowledge limitations identified through mecha-
nisms analysis will inspire subsequent evolution (left).

et al., 2021; Gould et al., 2023a). Extensive works
aim to demystify various types of knowledge in
LLMs through knowledge neurons (Dai et al., 2022;
Chen et al., 2024a) and circuits (Elhage et al., 2021;
Yao et al., 2024; Zou et al., 2024), yet these efforts,
scattered across various tasks, await comprehensive
review and analysis.

This paper pioneeringly reviews the mecha-
nism across the whole knowledge life cycle (as
shown in Fig 1). We also propose a novel taxonomy
for knowledge mechanisms in LLMs, as illustrated
in Fig 4, which encompasses knowledge utiliza-
tion at a specific time and knowledge evolution
across all periods of LLMs 1. Specifically, we intro-
duce preliminaries of this field (§A) and review the
knowledge utilization mechanism from a new per-
spective (§2), delve into the fundamental principles
for knowledge evolution (§3). Then, we investigate
how to construct more efficient and trustworthy
LLMs from the perspective of knowledge mecha-
nism (§E). Later, We discuss open questions about

1Knowledge utilization focuses on static knowledge at a
specific period, while knowledge evolution explores the long-
term dynamic development of knowledge across individual
and group LLMs.
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the knowledge LLMs have and have not acquired
(§4). Finally, we also provide some future direc-
tions (§G) and tools for knowledge mechanism
analysis (§D). Our contributions are as follows:
• To the best of our knowledge, we are the first

to review knowledge mechanisms in LLMs and
provide a novel taxonomy across the entire life.

• We propose a new perspective to analyze knowl-
edge utilization mechanisms from three levels:
memorization, comprehension and applica-
tion, and creation.

• We discuss knowledge evolution in individual
and group LLMs, and analyze the inherent con-
flicts and integration in this process.

• We observe that LLMs have learned basic world
knowledge. However, the learned knowledge
is fragile, leading to challenges such as hallu-
cinations and knowledge conflicts. We spec-
ulate that this fragility may be primarily due to
improper learning data. Besides, the unlearned
dark knowledge will exist long.

Comparison with Existing Surveys Previous in-
terpretability surveys typically aim to investigate
various methods for explaining the roles of differ-
ent components within LLMs from the global and
local taxonomy (Ferrando et al., 2024; Zhao et al.,
2024a; Luo and Specia, 2024; Murdoch et al., 2019;
Rai et al., 2024a; Bereska and Gavves, 2024; Vilas
et al., 2024; Singh et al., 2024). In contrast, this
paper focuses on knowledge in LLMs. Hence, our
taxonomy, oriented from target knowledge in LLMs,
reviews how knowledge is acquired, stored, utilized,
and subsequently evolves. Additionally, previous
taxonomy mostly explore the explainability during
the inference stage (a specific period), while ignor-
ing knowledge acquisition during the pre-training
stage and evolution during the post-training stage
(Räuker et al., 2023; Luo et al., 2024b; Apidianaki,
2023; Jiao et al., 2023; Räuker et al., 2023; Rai
et al., 2024b). Our taxonomy aims to explore the dy-
namic evolution across all periods from naivety to
sophistication in both individual and group LLMs.
In contrast to the most similar survey (Cao et al.,
2024a) that introduces knowledge life cycle, our
work focuses on the underlying mechanisms at
each stage.

Generally, this paper may help us to explore and
manipulate advanced knowledge in LLMs, exam-
ine current limitations through the history of knowl-
edge evolution, and inspire more efficient and
trustworthy architecture and learning strategy

for future models from knowledge mechanism
perspective. Note that most hypotheses in this
paper are derived from transformer-based LLMs.
We also validate the generalizability of these hy-
potheses across other architectural models and then
propose universality intelligence in §C.

2 Knowledge Utilization in LLMs

Knowledge is an awareness of facts, a form of
familiarity, awareness, understanding, or acquain-
tance (Zagzebski, 2017; Hyman, 1999; Mahowald
et al., 2023; Gray et al., 2024). It often involves the
possession of information learned through experi-
ence and can be understood as a cognitive success
or an epistemic contact with reality. We also intro-
duce some preliminary information in §A, which
includes the definition of knowledge in LLMs and
knowledge analysis methods.

Then, inspried by Bloom’s Taxonomy of cog-
nition levels (Wilson, 2016; Bloom et al., 1956;
Keene et al., 2010; Fadul, 2009), we categorize
knowledge representation and utilization within
LLMs into three levels (as shown in Fig 2): memo-
rization, comprehension and application, and cre-
ation 2. Note that these mechanistic analyses are
implemented via methods in §A.4. We further eval-
uate the applicability, advantages, and limitations
of different methods in §B.1.

2.1 Memorization

Knowledge memorization (Schwarzschild et al.,
2024; Prashanth et al., 2024) aims to remember
and recall knowledge in the training corpus, e.g.,
specific terms (entities), grammar, facts, common-
sense, concepts, etc (Allen-Zhu and Li, 2023a; Yu
et al., 2023a; Mahowald et al., 2023; Zhu and Li,
2023; Allen-Zhu and Li, 2023b, 2024; Cao et al.,
2024a). We posit knowledge memorization from
Modular Region and Connection Hypothesis by
reviewing existing research.

Hypothesis 1: Modular Region

Knowledge is Encoded in Modular Regions.

2Note that we combine analyzing, evaluating, and creating
from Bloom’s Taxonomy into one category level (creation) in
our taxonomy, as they are difficult to disentangle. Specifically,
creation emphasizes the capacity and process of forming novel
and valuable things. Analyzing (Wilson, 2016), which breaks
materials or concepts into parts, is used for creating novel
things. Evaluating (Wilson, 2016) is usually used for assessing
the value of new creations.
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Figure 2: The mechanism analysis for knowledge uti-
lization across three levels: memorization, comprehen-
sion and application, and creation.

This modular region hypothesis simplifies
knowledge representation in transformer-based
models into isolated modular region, e.g., MLPs
or attention heads. Knowledge is encoded via
MLPs. Geva et al. (2021) posit that MLPs oper-
ate as key-value memories and each individual key
vector corresponds to a specific semantic pattern
or grammar. Based on the above finding, Geva
et al. (2022b,a) reverse engineer the operation of
the MLPs layers and find that MLPs can promote
both semantic (e.g., measurement semantic includ-
ing kg, percent, spread, total, yards, pounds, and
hours) and syntactic (e.g., adverbs syntactic includ-
ing largely, rapidly, effectively, previously, and nor-
mally) concepts in the vocabulary space. Miller and
Neo (2024) find a single MLP neuron (in GPT-2
Large) capable of generating “an” or “a”. Subse-
quently, fact (Dai et al., 2022; Meng et al., 2022)
and commonsense knowledge (Gupta et al., 2023)
are found. Advanced language-specific neurons
(Tang et al., 2024), linguistic regions (Zhao et al.,
2023a), entropy neurons (Stolfo et al., 2024), ab-
stract conceptual (Wang et al., 2024e) and unsafe
(Wang et al., 2024b; Wu et al., 2023a) knowledge,
are also observed in MLPs. In addition to MLP,
knowledge is also conveyed by attention heads
(Geva et al., 2023; Gould et al., 2023b). Hoover
et al. (2020) explain the knowledge each attention
head has learned. Specifically, attention heads store
evident linguistic features, positional information,
and so on. Besides, fact knowledge (Yu et al.,
2023c; Li et al., 2023a) and bias (Hoover et al.,
2020) are mainly convey by attention heads. Jiang

et al. (2024b) further observe that LLMs leverage
self-attention to gather information through certain
tokens in the contexts, which serve as clues, and
use the value matrix for associative memory. Later,
Zhu et al. (2024) also find that attention heads can
simulate mental state and activate “Theory of Mind”
(ToM) capability.

However, Hypothesis 1 ignores the connections
between different regions. Inspired by advance-
ments in neuroscience (de Schotten et al., 2022),
Hypothesis 2 asserts that the connection of differ-
ent components integrates knowledge, rather than
the isolated regions in Hypothesis 1.

Hypothesis 2: Connection

Knowledge is Represented by Connections.

Geva et al. (2023) outline the encoding of fac-
tual knowledge (e.g., “The capital of Ireland is
Dublin”) through the following three steps: (1) sub-
ject (Ireland) information enrichment in MLPs, (2)
the relation (capital of) propagates to the last to-
ken, (3) object (Dublin) is extracted by attention
heads in later layers. This claim is supported by
Li et al. (2024d). Similarly, Lv et al. (2024) con-
clude that task-specific attention head may move
the topic entity to the final position of the resid-
ual stream, while MLPs conduct relation function.
Moreover, the recent prominent knowledge circuit
framework (Nainani, 2024; Yao et al., 2024; He
et al., 2024b; Elhage et al., 2021; Marks et al.,
2024) advocates leveraging a critical computational
subgraph among all components to explore internal
knowledge within LLM parameters. The compe-
tencies for indirect object identification and color
object tasks are discovered to be embedded in spe-
cialized knowledge circuits (Conmy et al., 2023;
Wang et al., 2023c; Merullo et al., 2023a; Yu et al.,
2024c). Lan et al. (2024) also identify number-
related circuits that encode the predictive ability
of Arabic numerals, number words, and months.
More importantly, experimental evidence demon-
strates that various types of knowledge, including
linguistic, commonsense, factual, and biased in-
formation, are encapsulated in specific knowledge
circuits (Yao et al., 2024). Interestingly, knowledge
encoded by specific circuits can rival or even sur-
pass that of the entire LLM. This may be because
knowledge circuits memorized the relevant knowl-
edge, while noise from other components might
impede the model’s performance on these tasks.
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2.2 Comprehension and Application

Knowledge comprehension and application focus
on demonstrating the understanding of memorized
knowledge and then solving problems in new situa-
tions, e.g., generalization on out-of-domain tasks
(Wang et al., 2024a), reasoning (Hou et al., 2023)
and planning (McGrath et al., 2021). Merrill et al.
(2023) denote the transition from memorization to
comprehension and application as grokking, and
suggest that the grokking derives from two largely
distinct subnetworks competition. Intuitively, only
knowledge that is correctly memorized (Prashanth
et al., 2024) in §2.1 can be further applied to solv-
ing complex tasks. Therefore, we posit the follow-
ing Reuse Hypothesis from two knowledge memo-
rization perspectives.

Hypothesis 3: Reuse

LLMs Reuse Certain Components during Knowl-
edge Comprehension and Application.

From the Modular Region Perspective, knowl-
edge utilization reuses some regions. These re-
gions might include a few neurons, attention heads,
MLPs, a transformer layer, or partial knowledge
circuits. Generally, basic knowledge (position in-
formation, n-gram pattern, syntactic features) tends
to be stored at earlier layers, while sophisticated
knowledge (mental state, emotion, and abstract con-
cept, e.g., prime number, Camelidae, and safety) is
located at later layers (Zhu et al., 2024; Jin et al.,
2024a; Wang et al., 2024b,e; Men et al., 2024;
Kobayashi et al., 2023). Therefore, neurons of
earlier layers related to basic knowledge tend to be
reused (Kang and Choi, 2023; Zhao et al., 2024a;
Kandpal et al., 2023). Various math reasoning tasks
also utilize the attention mechanism in initial layers
to map input information to the final token posi-
tions, subsequently generating answers using a set
of MLPs in later layers (Stolfo et al., 2023; Hanna
et al., 2023; Langedijk et al., 2023). Besides, some
specific function regions are also reused. Specifi-
cally, retrieval heads (Li et al., 2023a) are reused
for Chain-of-Thought (CoT) reasoning and long-
context tasks. These retrieval heads are found in
4 model families, 6 model scales, and 3 types of
fine-tuning. Subsequently, induction heads, identi-
fied in Llama and GPT, are claimed to be reused for
in-context learning (ICL) tasks Olsson et al. (2022);
Crosbie and Shutova (2024). Attention heads can
map country names to their capitals in capital city-

related tasks (Lv et al., 2024). Language-specific
neurons (in Llama and BLOOM) are responsible
for multiple language related tasks, such as English,
French, Mandarin, and others Tang et al. (2024).
Zhao et al. (2023a) further reveal linguistic regions
(in Llama) correspond to linguistic competence,
which is the cornerstone for performing various
tasks. Later, function regions related to the process
of math reasoning are also discovered in LLMs.
For instance, the last layer of GPT-2 (trained from
scratch) has been observed to exhibit mathematical
reasoning abilities across various math questions
(Ye et al., 2024). From the Connection Perspec-
tive, knowledge utilization shares partial knowl-
edge circuits. For instance, similar tasks share
subgraphs (computational circuits) with analogous
roles (Lan et al., 2024). Besides, knowledge cir-
cuits (in GPT2) are reused to solve a seemingly
different task, e.g., indirect object identification
and colored objects tasks (Merullo et al., 2023a).
Wang et al. (2024a) further observe that two-hop
composition reasoning tasks reuse the knowledge
circuits from the first hop. Yao et al. (2024) also
believe that this reuse phenomenon exists in fac-
tual recall and multi-hop reasoning. Specifically,
sub-circuits are reused in similar factual knowl-
edge, such as tasks related to “city_in_country”,
“name_birth_place”, and “country_language”. Be-
sides, Dutta et al. (2024) demystify LLMs how
to perform CoT reasoning, i.e., Llama facilitates
CoT tasks via multiple parallel circuits enjoying
significant intersection.

2.3 Creation

Knowledge creation (Runco and Jaeger, 2012;
Sternberg, 2006) emphasizes the capacity and pro-
cess of forming novel and valuable things, rather
than the existing ones (i.e., LLMs have seen) dis-
cussed in §2.1 and §2.2. The creations encompass
two levels: 1) LLMs create new terms following the
current world’s principles comprehended by LLMs,
such as new proteins (Shin et al., 2021), molecules
(Bagal et al., 2022; Fang et al., 2023; Edwards
et al., 2022), code (DeLorenzo et al., 2024), video
(Kondratyuk et al., 2023), models (Zheng et al.,
2024), names for people and companies, written
stories (Pépin et al., 2024; Gómez-Rodríguez and
Williams, 2023; Buz et al., 2024), synthetic data
(Stenger et al., 2024; Mumuni et al., 2024; Abu-
fadda and Mansour, 2021), etc. These novel items
operate according to the existing rules, e.g., law
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of conservation of energy, reasoning logic (Wang
et al., 2024a), or principles of probability theory.
2) LLMs may generate new rules, such as math-
ematical theorems, and the resulting terms will
operate according to the new rules. We posit that
the knowledge creation of LLMs may derive from
the Extrapolation Hypothesis.

Hypothesis 4: Extrapolation

LLMs May Create Knowledge via Extrapolation.

The expression of knowledge is diverse; some
knowledge is inherently continuous. Therefore,
it is difficult, if not impossible, to represent cer-
tain knowledge using discrete data points (Spivey
and Michael, 2007; Penrose; Markman, 2013).
LLMs utilize insights into the operational princi-
ples of the world to extrapolate additional knowl-
edge from known discrete points, bridging gaps
in knowledge and expanding our understanding
of the world(Heilman et al., 2003; Douglas et al.,
2024; Park et al., 2023b; Kondratyuk et al., 2023).
Drawing inspiration from research on human cre-
ativity (Haase and Hanel, 2023), the physical imple-
mentation of knowledge extrapolation relies on the
plasticity of neurons (Mukherjee and Chang, 2024).
Specifically, plasticity refers to LLMs changing
activations and connectivity between neurons ac-
cording to the input (Coronel-Oliveros et al., 2024).

However, from statistical perspective, the in-
tricate connections and activations between neu-
rons, though not infinite, resist exhaustive enumer-
ation. In terms of value, not all creations are valu-
able. Obtaining something valuable with an ex-
ceedingly low probability is impractical, as even
a monkey could theoretically print Shakespeare’s
works. How do LLMs ensure the probability of
generating valuable creations? What are the mech-
anisms underlying the novelty and value of cre-
ation? A prevalent conjecture posits that novelty
is generated through the random walk (Sæbø
and Brovold, 2024). However, intuitively, current
LLMs themselves seem unable to evaluate the
value of creations due to architectural limita-
tions (Chakrabarty et al., 2024). Because, once the
next token is generated, there is no intrinsic mecha-
nism for accepting or rejecting the creations. This
hinders the evaluation of the usefulness and value
of proposed novelties, as humans do, by bending,
blending, or breaking biases (Sæbø and Brovold,
2024). Some works assume that each token is in-

deed valuable and meets long-term expectations.
However, the well-known hallucination problem
(Xu et al., 2024d) of LLMs refutes this assumption.
Besides, the transformer architecture struggles with
long context (Li et al., 2024b), despite the existence
of many variants for addressing this issue (Huang
et al., 2023c; Liu et al., 2024b). More importantly,
MLPs of Transformer may also work contrary to
creativity, i.e., the increased attentions narrow the
conditional distribution for token prediction (Sæbø
and Brovold, 2024).

3 Knowledge Evolution in LLMs

Knowledge in LLMs should evolve with changes in
the external environment. Therefore, we introduce
the Dynamic Intelligence Hypothesis for knowl-
edge evolution in individuals and groups.

Hypothesis 5: Dynamic Intelligence

Conflict and Integration Coexist in the Dynamic
Knowledge Evolution of LLMs.

3.1 Individual Evolution
Immersed in a dynamic world, individuals mature
through an iterative process of memorization, for-
getting, error correction, and deepening understand-
ing of the world around them. Similarly, LLMs dy-
namically encapsulate knowledge into parameters
through the process of conflict and integration.

In the pre-training phase, LLMs start as blank
slates, facilitating easier acquisition for new knowl-
edge (Allen-Zhu and Li, 2024; Zhou et al., 2023a).
Consequently, numerous experiments demonstrate
that LLMs accumulate vast amounts of knowl-
edge during this stage (Cao et al., 2024b; Zhou
et al., 2023a; Kaddour et al., 2023; Naveed et al.,
2023; Singhal et al., 2022). Later, Akyürek et al.
(2022) goes on to identify which training examples
are instrumental in endowing LLMs with specific
knowledge. However, contradictions during the
pre-training stage may induce conflicts among in-
ternal parametric knowledge. On the one hand, the
false and contradictory information in training cor-
pus propagate and contaminate related memories in
LLMs via semantic diffusion, introducing broader
detrimental effects beyond direct impacts (Bian
et al., 2023). On the other hand, existing LLMs
tend to prioritize memorizing more frequent and
challenging facts, which can result in subsequent
facts overwriting prior memorization, significantly
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hindering the memorization of low-frequency facts
(Lu et al., 2024). In other words, LLMs struggle
with balancing and integrating both low and high-
frequency knowledge.

After pre-training, LLMs are anticipated to re-
fresh their internal knowledge to keep pace with
the evolving world during post-training stage. Al-
though LLMs seem to absorb new knowledge
through continued learning, follow user instruc-
tions via instruct tuning (Zhang et al., 2023c), and
align with human values through alignment tuning
(Ziegler et al., 2019), Ji et al. (2024) have noted that
LLMs intrinsically resist alignment during the post-
training phase. In other words, LLMs tend to learn
factual knowledge through pre-training, whereas
fine-tuning 3 teaches them to utilize it more effi-
ciently (Gekhman et al., 2024; Zhou et al., 2023a;
Ovadia et al., 2024). Ren et al. (2024a) also posit
that instruction tuning is a form of self-alignment
with existing internal knowledge rather than a pro-
cess of learning new information. We conjecture
that the debate on whether these processes truly
introduce new knowledge stems from information
conflicts. For example, the conflict between out-
dated information within LLMs and new external
knowledge exacerbates their difficulty in learning
new information. To mitigate information con-
flicts, Ni et al. (2023) propose first forgetting old
knowledge then learning new knowledge. Another
technique, retrieval-augmented generation (RAG)
(Huang and Huang, 2024), while avoiding conflicts
within internal parameters, still needs to manage
conflicts between retrieved external information
and LLMs’ internal knowledge (Xu et al., 2024b).
RAG also attempt to efficiently and effectively inte-
grate new knowledge across passages or documents
using multiple retrieval (Yang et al., 2024a) and
hippocampal indexing (Gutiérrez et al., 2024). Be-
sides, editing technologies, including knowledge
and representation editing, exhibit promising po-
tential for knowledge addition, modification, and
erasure. Specifically, knowledge editing (Meng
et al., 2022; Mitchell et al., 2022; Cao et al., 2021b;
Zhang et al., 2024a; Wang et al., 2023d; Mazzia
et al., 2023) aims to selectively modify model pa-
rameters responsible for specific knowledge reten-
tion, while representation editing (Zou et al., 2023;
Wu et al., 2024) adjusts the model’s conceptual-
ization of knowledge to revise the stored knowl-

3Fine-tuning includes instruct tuning and alignment tuning
(Zhao et al., 2023b).

edge within LLMs. Note that the other strategy
for knowledge editing adds external parameters
or memory banks for new knowledge while pre-
serving models’ parameters. We also provide the
comparison of the above methods in §B.2.1 for
better understanding.

3.2 Group Evolution

Besides individual learning, social interaction plays
a pivotal role in the acquisition of new knowledge
and is a key driver of human societal develop-
ment (Baucal et al., 2014; Levine et al., 1993).
LLMs, also known as agents, collaborate to ac-
complish complex tasks during group evolution,
each bearing unique knowledge that may some-
times contradict each other. Therefore, contrary to
individual evolution, group evolution encounters
intensified conflicts, such as conflicts in special-
ized expertise among agents, competing interests,
cultural disparities, moral dilemmas, and others.
To achieve consensus and resolve conflicts, agents
must first clarify their own and others’ goals (be-
liefs) through internal representations in models
(Zhu et al., 2024; Zou et al., 2023). Agents then
discuss, debate, and reflect on shared knowledge
through various communication methods (Chan
et al., 2024; Smit et al., 2024; Li et al., 2024e;
Soltoggio et al., 2024), e.g., prompt instructions,
task and agent descriptions, parameter signals (ac-
tivation and gradient), and representations of mod-
els. However, conformity of agents, which tends
to believe the majority’s incorrect answers rather
than maintaining their own, hinders conflict reso-
lution during group evolution (Zhang et al., 2023a;
Ma et al., 2024). Note that the group also strug-
gles with automating moral decision-making when
facing moral conflicts. Specifically, agents in the
group miss ground truth for moral “correctness”
and encounter dilemmas due to changes in moral
norms over time (Hagendorff and Danks, 2023).
Generally, when, what, and how to share knowl-
edge in the communication process to maximize
learning efficiency and long-term expectations are
still open questions in group evolution.

Through debate and collaboration, groups inte-
grate more knowledge and can surpass the cogni-
tion of individual units (Liang et al., 2023a; Qian
et al., 2023; Qiao et al., 2024; Talebirad and Nadiri,
2023; Zhang et al., 2023a). This derives from
the assumption that each individual unit can con-
tribute to and benefit from the collective knowledge
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(Soltoggio et al., 2024; Xu et al., 2024c). In addi-
tion, “When a measure becomes a target, it ceases
to be a good measure”, which implies that opti-
mizing one objective on a single individual will
inevitably harm other optimization objectives to
some extent. Hence, it is unrealistic for an individ-
ual to learn all knowledge compared to group op-
timization. Interestingly, LLM groups also follow
the collaborative scaling law (Qian et al., 2024a),
where normalized solution quality follows a logis-
tic growth pattern as scaling agents. Moreover,
some works (Huh et al., 2024; Bereska and Gavves,
2024) propose that knowledge tends to converge
into the same representation spaces among the
whole artificial neural models group with differ-
ent data, modalities, and objectives.

Note that the above mechanism analysis of
knowledge utilization and evolution may provide
an avenue to construct more efficient and trustwor-
thy models in practice. We further elaborate the
application and its implications in Appendix §E.

4 Discussion

In this section, we discuss some open questions and
seek to explore their essence and underlying prin-
ciples. Specifically, we discuss what knowledge
LLMs have learned in §4.1, examine the fragility
of the learned knowledge in application in §4.2,
analyze the dark knowledge not yet learned by ma-
chines or humans in §4.3, and explore how LLMs
can expand the boundaries of unknown knowledge
from interdisciplinary perspectives §F.

4.1 What Knowledge Have LLMs Learned?

Critics question whether LLMs truly have
knowledge or if they are merely mimicking
(Schwarzschild et al., 2024), akin to the “Stochas-
tic Parro” (Bender et al., 2021) and “Clever Hans”
(Shapira et al., 2024). We first review the doubts
from the following three levels through observation
phenomena: 1) Memorization: LLMs primarily
rely on positional information over semantic under-
standing (Li et al., 2022) to predict answers. Addi-
tionally, LLMs may generate different answers for
the same question due to different expressions. 2)
Comprehension and application: Allen-Zhu and Li
(2023b) argue that LLMs hardly efficiently apply
knowledge from pre-training data, even when such
knowledge is perfectly stored and fully extracted
from LLMs. Therefore, LLMs struggle with vari-
ous reasoning tasks (Wu et al., 2023b; Nezhurina

et al., 2024; Gutiérrez et al., 2024) as well as the
reversal curse (Berglund et al., 2023). Besides,
LLMs are not yet able to reliably act as text world
simulators and encounter difficulties with planning
(Wang et al., 2024d). 3) Creation: Although LLMs
are capable of generating new terms, their quality
often falls below that created by humans (Raiola,
2023). Even though LLMs possess knowledge,
some critics argue that current analysis methods
may only explain low-level co-occurrence patterns,
not internal mechanisms. The primary criticism
asserts that the components responsible for certain
types of knowledge in LLM fail to perform effec-
tively in practical applications (Hase et al., 2023).
In addition, the components responsible for spe-
cific knowledge within LLMs vary under different
methods. For these criticisms, Chen et al. (2024f,d)
propose degenerate neurons and posit that differ-
ent degenerate components indeed independently
express a fact. Chen et al. (2024e) delineate the dif-
ferences in the mechanisms of knowledge storage
and representation, proposing the Query Localiza-
tion Assumption to response these controversies.
Zhu and Li (2023) further observe that knowledge
may be memorized but not extracted due to the
knowledge not being sufficiently augmented (e.g.,
through paraphrasing, sentence shuffling) during
pretraining. Hence, rewriting the training data to
provide knowledge augmentation and incorporat-
ing more instruction fine-tuning data in the pre-
training stage can effectively alleviate the above
challenges and criticisms.

Despite considerable criticism, the mainstream
view (Didolkar et al., 2024; Jin and Rinard; Jin,
2024) is that current LLMs may possess basic
world knowledge via memorization but hardly
master underlying principles for reasoning and
creativity. In other words, LLMs master basic
knowledge via memorization (discussed in §2.1).
Although LLMs possess the foundational ability
to comprehend and apply knowledge (discussed
in §2.2), exhibiting plausible and impressive rea-
soning capabilities. Current LLMs still struggle
with reasoning and planning in complex tasks due
to the fragility of knowledge in LLMs (elaborated
in §4.2). These reasoning and planning abilities
usually require to be induced through techniques
such as ICL and CoT. Unfortunately, current LLMs
are nearly incapable of creation due to the archi-
tectural limitations (discussed in §2.3). Therefore,
some scholars explore various architectural choices
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(e.g., Mamba (Gu and Dao, 2023)) and training
procedures. Besides, recent research attempts to
manipulate neurons, knowledge circuits, or repre-
sentations (Allen-Zhu and Li, 2023b; Zou et al.,
2023; Wu et al., 2024; Li et al., 2023a) to explore
more knowledge and awaken the reasoning and
planning capabilities of LLMs.

Remarks: LLMs have learned basic knowl-
edge of the world by momorization. However, the
learned knowledge is fragile, leading to challenges
in knowledge comprehension and application. Un-
fortunately, due to architectural limitations, current
LLMs struggle with creation.

4.2 Why Is Learned Knowledge Fragile?

The knowledge learned by LLMs is fragile, leading
to challenges in application including hallucination,
knowledge conflicts, failed reasoning, and safety
risk 4. Hallucination denotes content generated
by LLMs that diverges from real-world facts or
inputs (Huang et al., 2023b; Xu et al., 2024d; Far-
quhar et al., 2024; Chen et al., 2024c). On the one
hand, factuality hallucination underscores the dis-
parity between generated content and real-world
knowledge. On the other hand, faithfulness halluci-
nation describes the departure of generated content
from user instructions or input context, as well
as the coherence maintained within the generated
content. Knowledge Conflict inherently denotes
inconsistencies in knowledge (Xu et al., 2024b;
Kortukov et al., 2024). On the one hand, internal
memory conflicts within the model cause LLMs to
exhibit unpredictable behaviors and generate differ-
ing results to inputs which are semantically equiv-
alent but syntactically distinct (Xu et al., 2024b;
Wang et al., 2023a; Feng et al., 2023b; Raj et al.,
2022). On the other hand, context-memory con-
flict emerges when external context knowledge con-
tradicts internal parametric knowledge (Xu et al.,
2024b; Mallen et al., 2023).

We posit that these challenges mainly derive
from improper learning data. Specifically, hal-
lucination is introduced by data (Kang and Choi,
2023; Weng, 2024; Zhang et al., 2024c), height-
ened during the pre-training (Brown et al., 2020;
Chiang and Cholak, 2022), alignment (Azaria and
Mitchell, 2023; Ouyang et al., 2022), and defi-
ciencies in decoding strategies (Fan et al., 2018;
Chuang et al., 2023; Shi et al., 2023). Internal mem-
ory conflict can be attributed to training corpus bias

4The secure risk is elaborated in §E.2.

(Wang et al., 2023b), and exacerbated by decod-
ing strategies (Lee et al., 2022b) and knowledge
editing. Context-memory conflict arises mainly
from the absence of accurate knowledge during
training, necessitating retrieval from databases and
the Web. Failed reasoning usually arises from
improper data distribution. Specifically, knowl-
edge may be memorized but not extractable or
applicable without sufficient augmentation (e.g.,
through paraphrasing, sentence shuffling) during
pre-training (Zhu and Li, 2023). Antoniades et al.
(2024) also delve into the mechanism between para-
metric knowledge and learning data, demonstrate
that training data distribution qualitatively influ-
ences generalization behavior (Jiang et al., 2024a).
Wang et al. (2024a) further suggest that improper
data distribution in the corpus causes LLMs to lack
essential reasoning components, such as the bridge
layer for two-hop reasoning. Similar mechanism
analysis also supports the above conclusion, in-
dicating that hallucinations arise from a lack of
mover heads (Yao et al., 2024; Yu et al., 2024b),
while knowledge conflicts stem from circuit compe-
tition failure in the last few layers (Lv et al., 2024;
Merullo et al., 2023b; Hase et al., 2023; Ju et al.,
2024; Jin et al., 2024b). Additionally, data quan-
tity is crucial for knowledge robustness. Specifi-
cally, LLMs can systematically learn comprehen-
sive understandings of the world from extensive
datasets, while little data during post-training stage
may compromise the robustness of knowledge rep-
resentation. This assumption is confirmed by nu-
merous failures of post-training. For example, SFT
exacerbates hallucinations (Gekhman et al., 2024;
Kang et al., 2024), and knowledge editing amplifies
knowledge conflicts (Li et al., 2023d; Yang et al.,
2024c). Note that safety issues usually caused by
the distribution of unseen data (adversarial input)
(Wei et al., 2023; Li et al., 2024c), which is elabo-
rated in §E.2.

Remarks: Improper learning caused by data
distribution and quantity might be the fundamental
and primary cause.

4.3 Does Difficult-to-Learn “Dark Knowledge”
Exist?

The distribution and quality of data are vital for
knowledge acquisition and robust operation within
the model (machine). Imagine an ideal scenario
where we have access to all kinds of data to train
the machine. The data includes all possible modali-
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ties, such as text, image, audio, video, etc. Models
can also interact with each other and the external
environment. In this long-term development, will
there still be unknown dark knowledge for intelli-
gence to human or model (machine)?

We hypothesize that there will still exist dark
knowledge for intelligence in the future. As
shown in Fig 3, dark knowledge describes knowl-
edge unknown to human or machine from the fol-
lowing three situations: 1) knowledge unknown to
human & known to machine (UH, KM). Machines
leverage vast amounts of data to explore internal
patterns, whereas humans struggle with process-
ing such data due to physiological limitations on
data processing capacity and computational limits
(Burns et al., 2023; McAleese et al., 2024). (UH,
KM) includes gene prediction, intelligent trans-
portation systems, and more. Specifically, the struc-
tural elucidation of proteins remains mysterious to
humans for a long time. Cryo-electron microscopy,
through capturing millions of images, first reveals
the three-dimensional structures of proteins. Now,
neural models can directly predict protein proper-
ties with high efficiency and accuracy (Pak et al.,
2023). 2) knowledge known to human & unknown
to machine (UH, KM). On the one hand, some
scholars claim that machine can possess a “Theory
of Mind” capability (Zhu et al., 2024) and emotions
(Normoyle et al., 2024). On the other hand, crit-
ics contend that machine lacks sentience (Alvero
and Peña, 2023) and merely probabilistically gen-
erates tokens. The causes, extent, and dynamics of
these emotions and sentience (like hunger, happi-
ness, and loneliness) are subtle and intricate, mak-
ing precise mathematical modeling by the machine
exceptionally challenging. Specifically, different
factors are tightly coupled, making it nearly impos-
sible to disentangle clear input-output relationships
as with well-defined factual knowledge. The sen-
tient knowledge also exhibits chaotic behavior (Li
et al., 2020; Debbouche et al., 2021), being highly
sensitive to initial conditions, where small changes
can lead to vastly different outcomes (Segretain
et al., 2020). Therefore, opponents argue that no
matter how many parameters machine possesses,
it cannot learn all the knowledge that human has
mastered. 3) knowledge unknown to human &
unknown to machine (UH, UM) is beyond our cog-
nition, e.g., the uncertainty in quantum mechanics
and the origin of the universe. Generally, Dark
knowledge extends beyond current data and model

Human

Machine Dark Knowledge

(UH, UM)

Unknown to Human

&Unknown to Machine

(UH, KM)

Unknown to Human

&Known to Machine

(KH, KM)

Known to Human

&Known to Machine

(KH, UM)

Known to Human

&Unknown to Machine

Plain Knowledge

known

unknown

known unknown

Figure 3: The future cognition of knowledge. The direc-
tion of the arrow represents the transition of knowledge
from known to unknown. Dark knowledge, represented
in gray, denotes knowledge unknown to human or ma-
chine. Plain knowledge known to both human and ma-
chine is highlighted in blue.

architectures (Tseng et al., 2024). (UH, UM) neces-
sitates human-machine collaboration. Yet, there is
no definitive conclusion on whether (UH, KM) and
(KH, UM) will be solved by model architecture,
training data, and computational resources. Note
that plain knowledge known to human and machine
in Fig 3 encompasses well-defined historical events,
mathematical theorems, physical laws, etc.

Remarks: Dark knowledge may persist for a
long time and requires human-machine collabora-
tion to explore.

Note that we also discuss some avenues to nar-
row the boundaries of dark knowledge from inter-
disciplinary insights in the Appendix §F

5 Conclusion

In this paper, we propose a novel knowledge mech-
anism analysis taxonomy and review knowledge
evolution. We further explore the knowledge LLMs
have learned, assess its fragility, and analyze un-
known dark knowledge. As for future works, we
discuss some promising directions, including Para-
metric VS. Non-Parametric Knowledge (§G.1),
Embodied Intelligence (§G.2), and Domain LLMs
(§G.3). We hope these insights may inspire some
promising directions for future research and shed
light on more powerful and trustworthy models.

Limitations

This work has some limitations as follows:

Hypothesis Despite reviewing a large body of
literature and proposing several promising hypothe-
ses, there are still some limitations. On the one
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hand, there may be other hypotheses for knowledge
utilization and evolution in LLMs. On the other
hand, the accuracy of these hypotheses requires
further exploration and validation over time.

Knowledge There are various forms of knowl-
edge representation. However, due to current re-
search constraints, this paper does not delve into
space (Li et al., 2024f), time (Gurnee and Tegmark,
2023), event-based knowledge, and geoscience
(Lin et al., 2024).

Reference The field of knowledge mechanisms
is developing rapidly and this paper may miss some
important references. Additionally, due to the page
limit, we have omit certain technical details. We
will continue to pay attention to and supplement
new works.

Models Despite mentioning artificial neural mod-
els in this paper, knowledge mechanism analysis
focuses on LLMs. We will continue to pay atten-
tion to other modal models progresses. Besides,
all existing work has not considered models larger
than 100 billion parameters. Whether the knowl-
edge mechanisms within large-scale models are
consistent with smaller ones remains to be studied.

Ethics Statement

We anticipate no ethical or societal implications
arising from our research. However, we acknowl-
edge that the internal mechanisms of large lan-
guage models might be exploited for malicious
purposes. We believe such malicious applications
can be prevented through model access and leg-
islative regulation. More critically, a transparent
model contributes to the development of safer and
more reliable general artificial intelligence.
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A Preliminary

A.1 Knowledge Scope
We denote a diverse array of knowledge as set K,
wherein each element k ∈ K is a specific piece
of knowledge, which can be expressed by various
records, e.g., a text record “The president of the
United States in 2024 is Biden” (denoted as rk).

A.2 Definition of Knowledge in LLMs
Given a LLM denoted as F , we formulate that F
master knowledge k if F can correctly answer the
corresponding question rk\t:

t = F
(
rk\t

)

(t ∈ T) ⇒ (F masters knowledge k),
(1)

t is the output of a LLM F , rk\t is a record about
knowledge k that lacks pivot information. Take an
example for illustration: rk\t is “The president of
the United States in 2024 is __”, the pivot informa-
tion is “Biden”. Note that, rk\t can be represented

by the above textual statement, captured through
a question-answering pair (“Who is the President
of the United States in 2024?”, or conveyed by
audio, video, image 5, and other equivalent expres-
sions. The pivot information for rk\t can be ex-
pressed by various fomarts, which are formulated
as T = {“Biden”, “Joe Biden”, · · · }. If the output
t is an element from the correct answer set T, we
hypothesize that F master knowledge k.

A.3 The Architecture of LLMs
An LLM F consists of numerous neurons, which
work systematically under a specific architecture.

Transformer-based architecture. The prevail-
ing architecture in current LLMs is the Transformer
(Vaswani et al., 2017). Specifically, a transformer-
based LLM F begins with a token embedding, fol-
lowed by L layers transformer block, and ends with
token unembedding used for predicting answer to-
kens. Each transformer block layer l consists of
Attention Heads (Attention) and Multilayer Percep-
tron (MLP):

hl+1 = hl + MLP (hl + Attention (hl)) , (2)

hl is the hidden state from l-th layer.

Other architectures. Other architectures includ-
ing competitive variants of the transformer, e.g.,
SSM (Gu and Dao, 2023), TTT (Sun et al., 2024)
and RWKV (Peng et al., 2023), and architectures in
computer vision (Li et al., 2023c) and multi-modal
fields are detailed in §C.1.

A.4 Knowledge Analysis Methods
Knowledge analysis method M aims to interpret
how LLMs work inside and reveal precise causal
connections between specific components and out-
puts (Bereska and Gavves, 2024). Furthermore, if
components C of F accurately infer t through anal-
ysis method M, it is assumed that the knowledge
k is presented by C:

t = MC⊆F
(
rk\t,C

)
,

(t ∈ T) ⇒ (C represents knowledge k),
(3)

The elements in set C may be individual neurons,
MLPs, attention heads, a transformer block layer,
or knowledge circuit (Yao et al., 2024). These meth-
ods are divided into two categories: observation
and intervention (Bereska and Gavves, 2024).

5While audio, video, and image records have been some-
what investigated, they are still relatively unexplored areas
and thus are only discussed in §G.2 and §C.2.
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Observation-based methods. These methods
aim to observe the internal information of F , di-
rectly projecting the output of component C into
human-understandable forms by E:

t = EC⊆F
(
rk\t,C,F

)
, (4)

E is a evaluation metric, which can be a probe
(Räuker et al., 2023), logit lens (nostalgebraist,
2020), or a sparse representation (Gao et al., 2024c).
Probe is a meticulously trained classifier, and its
classification performance is used to observe the re-
lationship between model’s behavior and the output
of C (Belinkov, 2022; Elazar et al., 2021; McGrath
et al., 2021; Gurnee et al., 2023). Logit lens usu-
ally translate output of C into vocabulary tokens
via token unembedding (Geva et al., 2022b; Bel-
rose et al., 2023; Pal et al., 2023; Din et al., 2024;
Langedijk et al., 2023). Sparse representation
maps the output of C into a higher-dimensional
space with strong sparsity through dictionary learn-
ing (He et al., 2024b; Olshausen and Field, 1997;
Yun et al., 2021; Karvonen et al., 2024), with sparse
auto-encoder (Sharkey et al., 2022; Cunningham
et al., 2023; Lee et al., 2006; Gao et al., 2024a) be-
ing a prominent example. The higher-dimensional
space represents independent (or monosemantic
(Bricken et al., 2023)) and interpretable features
more easily (Rai et al., 2024b). The output of C is
the combination (Elhage et al., 2022; Bricken et al.,
2023) of these features.

Intervention-based methods. These methods al-
low for direct corruptions in LLMs to identify the
critical C via intervention strategies I . Note that C,
encompassing various neuron combinations, corre-
lates with specific model behaviors:

C = I
(
rk\t,F

)
,

t = E
(
rk\t,C,F

) (5)

I is also known as causal mediation analysis (Vig
et al., 2020), causal tracing (Meng et al., 2022),
interchange interventions (Geiger et al., 2022),
activation patching (Wang et al., 2023c; Zhang
and Nanda, 2023), path patching (Goldowsky-Dill
et al., 2023), and causal scrubbing techniques
(LawrenceC et al., 2022). Specifically, I consists
of the following three steps. 1) Clean run: F gen-
erates the correct answer t based on the input rk\t.
2) Corrupted run: corrupt the generation process
of F in the clean run by introducing noise into the
input or neurons (Meng et al., 2022; Goldowsky-
Dill et al., 2023; Stolfo et al., 2023; Yao et al., 2024;

Conmy et al., 2023; Mossing et al., 2024; Lepori
et al., 2023; Huang et al., 2023a). 3) Restoration
run: recover the correct answer t by restoring un-
noised information from C (Meng et al., 2022; Vig
et al., 2020; Wang et al., 2023c; Zhang et al., 2017;
Nanda, 2023). For intervention-based methods,
E typically refers to the token unembedding used
for predicting answer tokens. Under the evaluation
metric E, there exists a causal relationship between
C and specific behavior of LLMs F in Eq 5.

Based on the aforementioned preliminary discus-
sion, the taxonomy of knowledge mechanisms in
LLMs is illustrated in Fig 4.

B Comparison of Different Analysis
Methods

B.1 Comparison of Different Mechanism
Analysis Methods

The above four Hypotheses are achieved by
Observation-based and Intervention-based meth-
ods. These two methods are typically combined to
trace knowledge in LLMs (Mossing et al., 2024;
Ghandeharioun et al., 2024). Most knowledge anal-
ysis methods are architecture-agnostic and can be
adapted to various models.

Each method is suitable for different scenar-
ios. Specifically, the Modular Region Hypothesis
can be analyzed using either Observation-based or
Intervention-based methods. In contrast, the Con-
nection Hypothesis, which examines inter-regional
connectivity, generally necessitates Intervention-
based methods. However, the results of knowledge
mechanism analysis depend heavily on different
methods and are sensitive to evaluation metrics
and implementation details (Schwettmann et al.,
2023b). Hence, Huang et al. (2024b) propose a
dataset, RAVEL, to quantify the comparisons be-
tween a variety of existing interpretability methods.
They suggest that methods with supervision are
better than methods with unsupervised featurizers.
Later, Zhang and Nanda (2023) further systemat-
ically examine the impact of methodological de-
tails in intervention-based methods. For corrupted
run, they recommend Symmetric Token Replace-
ment (e.g., “The Eiffel Tower”→“The Colosseum”)
(Sharma et al., 2024; Vig et al., 2020) instead of
Gaussian Noising (Meng et al., 2022), which dis-
rupts the model’s internal mechanisms. For metric
E, both logit lens and probe can be employed to
trace factual knowledge (Meng et al., 2022), where
the target output is typically few tokens. In this
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commonsense knowledge (Gupta et al., 2023), concept knowledge (Wang et al., 2024e),
unsafety (Wang et al., 2024b; Wu et al., 2023a), language (Tang et al., 2024; Zhao et al., 2023a)
2) Attention: grammar and semantic (Hoover et al., 2020), bias (Hoover et al., 2020),
fact knowledge (Yu et al., 2023c; Jiang et al., 2024b), mental state (Zhu et al., 2024)

Connection
1) MLP + Attention: fact knowledge (Geva et al., 2023; Lv et al., 2024; Li et al., 2023a)
2) Knowledge Circuit: linguistic, commonsense, factual and bias knowledge (Yao et al., 2024),
numbers (Lan et al., 2024), color object task (Merullo et al., 2023a)
indirect object identification task (Conmy et al., 2023; Wang et al., 2023c)

Comprehension &
Application (§2.2)

Reusing
Module

1) earlier layers (Kang and Choi, 2023; Zhao et al., 2024a; Kandpal et al., 2023)
2) MLPs (Stolfo et al., 2023; Hanna et al., 2023; Langedijk et al., 2023)
3) attention heads (Li et al., 2023a; Lv et al., 2024; Todd et al., 2023)
4) neurons (Tang et al., 2024; Zhao et al., 2023a)

Reusing
Connection knowledge circuit (Wang et al., 2024a; Merullo et al., 2023a; Lan et al., 2024; Dutta et al., 2024)

Creation (§2.3)

Novel
writing (Gómez-Rodríguez and Williams, 2023), molecules (Bagal et al., 2022; Fang et al., 2023),
video (Kondratyuk et al., 2023), proteins (Shin et al., 2021), code (DeLorenzo et al., 2024),
synthetic data (Stenger et al., 2024; Mumuni et al., 2024; Abufadda and Mansour, 2021),

Valuable evaluation challenge (Sæbø and Brovold, 2024; Xu et al., 2024d; Chakrabarty et al., 2024),
plasticity (Mukherjee and Chang, 2024), random walk (Sæbø and Brovold, 2024)

Knowledge
Evolution (§3)

Individual
Evolution (§3.1)

Pre-training primary accumulation of knowledge (Zhou et al., 2023a; Kaddour et al., 2023; Naveed et al., 2023)
(Singhal et al., 2022; Akyürek et al., 2022; Cao et al., 2024b; Zhou et al., 2023a)

Post-training

Fine-tuning
1) instruct tuning (SFT) (Zhang et al., 2023c; Ovadia et al., 2024)
2) alignment tuning: RLHF (Ziegler et al., 2019; Bai et al., 2022),
RLAIF (Lee et al., 2023b), SimPO(Meng et al., 2024),
DPO & variants (Rafailov et al., 2023; Ethayarajh et al., 2024)

RAG Huang and Huang (2024); Yang et al. (2024a); Gutiérrez et al. (2024)

Editing
1) knowledge editing: add, modify, and erase (Zhang et al., 2024a)
(Wang et al., 2023d; Geva et al., 2022b), circuit (Ge et al., 2024)
2) representation editing: representation engineering (Zou et al., 2023),
ReFT (Wu et al., 2024), circuit breakers (Zou et al., 2024)

Group
Evolution (§3.2)

debate and collaboration (Liang et al., 2023a; Qian et al., 2023; Qiao et al., 2024; Talebirad and Nadiri, 2023),
higher group intelligence (Goodhart, 1984; Soltoggio et al., 2024; Huh et al., 2024; Bereska and Gavves, 2024)

Figure 4: The taxonomy of knowledge mechanisms in LLMs.

scenario, Zhang and Nanda (2023) advocate using
the logit lens over probes for evaluation metric E
due to its fine-grained control over localization out-
comes. Moreover, probe is capable of exploring
abstract knowledge and abilities, such as theory of
mind or mental states (Zhu et al., 2024; Ye et al.,
2024; Jin, 2024), where the target output requires
multiple tokens to express. Jin (2024) suggest that
deeper probes are more (generally) more accurate.

B.2 Comparison of Different Evolution
Strategies

Individuals and groups achieve dynamic intelli-
gence primarily through two strategies: updating
internal parametric knowledge (Zhou et al., 2023a;
Qiao et al., 2024) and leveraging external knowl-
edge 6 (Huang and Huang, 2024; Xie et al., 2024).
These two strategies are usually used together in
applications (Yang et al., 2024b).

Updating internal parametric knowledge neces-
sitates high-quality data for parameter adjustments
(Vashishtha et al., 2024; Cao et al., 2024a). Data
proves pivotal when fine-tuning models to acquire

6Leveraging external knowledge includes using prompts
(Xie et al., 2024), ICL, and RAG.

new knowledge. Ovadia et al. (2024) also posit
that the continued training of LLMs via unsuper-
vised tuning generally exhibits suboptimal perfor-
mance when it comes to acquiring new knowledge.
Note that updating internal parametric knowledge
requires resolving conflicts among internal param-
eters. The crux of effective internal knowledge
updating lies in preserving the consistency of the
model’s parameter knowledge before and after tun-
ing. In contrast, leveraging external knowledge
requires managing conflicts within the external
knowledge itself 7 as well as conflicts between ex-
ternal and internal knowledge (Xu et al., 2024b;
Liu et al., 2024a). Besides, parametric knowl-
edge compresses extensive information, promot-
ing grokking and enhancing generalization (Wang
et al., 2024a). In contrast, leveraging external
knowledge avoids high training costs but neces-
sitates substantial maintenance and retrieval costs
for every user query. Therefore, the combination
of these two strategies is promising. An attempt
for combination (Yang et al., 2024b) suggests em-

7Inconsistencies in external information are common, as
external documents often contain conflicting data, particularly
in contexts for RAG.
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ploying RAG for low-frequency knowledge and
parametric strategy for high-frequency knowledge.

B.2.1 Comparison of Methods for Knowledge
Evolution

Note that due to the page limit, §3 does not pro-
vide a detailed enumeration of various techniques
and details, such as machine unlearning and knowl-
edge augmentation. Hence, we briefly outline com-
mon methods during post-training stage in this sec-
tion and illustrate their associations and differences
(Zhang et al., 2024a) in Fig 5.
• Continual Learning aims to continually acquire

new skills and learn new tasks while retaining
previously acquired knowledge.

• Parameter-efficient Fine-tuning (PET) (Zhang
et al., 2019) only updates a minimal set of pa-
rameters instead of full fine-tuning. A promising
strategy is LoRA (Hu et al., 2022).

• Knowledge Augmentation is proposed to assist
the model in handling unknown knowledge for
LLMs (Zhang et al., 2019; Han et al., 2022).
RAG (Huang and Huang, 2024) is the is the
most prevalent methods. Beside, knowledge
augmentation also includes prompt engineering
(Gu et al., 2023; Kraljic and Lahav, 2024; Liang
et al., 2023b) and in-context learning (Luo et al.,
2024a).

• Machine Unlearning (Nguyen et al., 2022; Tian
et al., 2024; Liu et al., 2024d) focuses on discard-
ing undesirable behaviors from LLMs.

• Editing, including knowledge editing (Zhang
et al., 2024a) and representation editing (Wu
et al., 2024), aims to enable quick and precise
modifications to the LLMs. Usually, editing first
identifies the knowledge location in LLMs and
then precisely modifies model behavior through
a few instances.

C Universality Intelligence

To validate the hypotheses in this paper across dif-
ferent architectures, we first introduce other pop-
ular model architectures in §C.1, and observe the
generalizability of our hypotheses across other
model architectures in §C.2. Besides, recent work
further claims that models trained with different
data, modalities, and objectives are converging to
shared representation spaces (Huh et al., 2024). Ar-
tificial and biological neural networks 8 also share

8Unless otherwise specified as biological networks, the
terms models, neural networks, neural models, and machines
refer to artificial neural networks.
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Figure 5: Comparison of Different Methods for Knowl-
edge Evolution.

similar features and circuits, suggesting a universal
underlying mechanism (Sucholutsky et al., 2023;
Chan et al., 2023; Kornblith et al., 2019). There-
fore, analogous to biological taxonomy, we intro-
duce artificial neural model family and discuss the
potential universality intelligence in the future in
§C.3.

C.1 Model Architecture
C.1.1 Transformer
MLP The Multilayer Perceptron (MLP) is a cru-
cial component in neural networks, usually com-
prising multiple fully connected layers. Within the
Transformer architecture, the MLP plays a vital
role in applying nonlinear transformations to the in-
put hidden states, thereby enriching the model’s ca-
pacity for expression. More precisely, every MLP
block involves two linear transformations separated
by a point-wise activation function σ:

MLPl
(
hl
)
= σ

(
W l

Khl
)
W l

V , (6)

where σ is the point-wise activation function, typi-
cally a non-linear function such as ReLU or GELU.
W l

K is the weight matrix for the first linear transfor-
mation in the l-th layer, mapping the input hidden
state hl to an intermediate representation. W l

V is
the weight matrix for the second linear transforma-
tion in the l-th layer, transforming the intermediate
representation to the output of the MLP block.

Attention is a mechanism in neural networks, es-
pecially in models like Transformers, that captures
dependencies between different positions within
a sequence. It works by transforming each input
element into Query (Q), Key (K), and Value (V )
vectors, computing attention scores between ele-
ments, and then calculating a weighted sum of val-
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ues based on these scores. Specifically, for an input
sequence represented as matrix X , the transforma-
tions are as follows:

Q = XWQ,

K = XWK ,

V = XW V ,

(7)

where WQ, WK , and W V are learned projection
matrices. The attention scores are computed using
the scaled dot-product attention mechanism:

H = Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V,

(8)
where dk is the dimensionality of the Key vectors.
This allows the model to focus on different parts
of the sequence adaptively, making it effective for
tasks like natural language processing where under-
standing long-range dependencies is important.

Variants of Transformer Variants of the Trans-
former also achieve success. For instance, RWKV
(Peng et al., 2023) combines the efficient paral-
lelizable training of transformers with the efficient
inference of RNNs while mitigating their limita-
tions. TTT (Sun et al., 2024) replaces the hidden
state of an RNN with a machine learning model.
TTT compresses context through actual gradient
descent on input tokens. RetNet (Sun et al., 2023)
theoretically derives the connection between re-
currence and attention, simultaneously achieves
training parallelism, low-cost inference, and good
performance.

C.1.2 SSM

Mamba introduced by Gu and Dao (2023), is a
recent family of autoregressive language models
based on state space models (SSMs). Mamba em-
ploys a unique architecture called MambaBlock,
which replaces the attention and MLP blocks used
in Transformer layers.

Specifically, Mamba maps a sequence of tokens
x = [x1, x2, . . . , xT ] to a probability distribution
over the next token y. Each token xi is first embed-
ded into a hidden state of size d as h(0)i , which is
then transformed sequentially by a series of Mam-
baBlocks. The hidden state h(ℓ)i after the ℓ-th Mam-
baBlock is computed as follows:

h
(ℓ)
i = h

(ℓ−1)
i + o

(ℓ)
i

(9)

The output o(ℓ)i of the ℓ-th MambaBlock for the
i-th token is a combination of s(ℓ)i (from Conv and
SSM operations) and g

(ℓ)
i (a gating mechanism):

o
(ℓ)
i = MambaBlock(ℓ)

[
h
(ℓ−1)
1 , h

(ℓ−1)
2 , . . . , h

(ℓ−1)
i

]

= W (ℓ)
o

[
s
(ℓ)
i ⊗ g

(ℓ)
i

]

(10)
Here, ⊗ denotes element-wise multiplication.

The calculation of s(ℓ)i is as follows:

a
(ℓ)
i = W (ℓ)

a h
(ℓ)
i

(11)

c
(ℓ)
1 , c

(ℓ)
2 , . . . , c

(ℓ)
i =

SiLU
[
Conv1D

[
a
(ℓ)
1 , a

(ℓ)
2 , . . . , a

(ℓ)
i

]] (12)

s
(ℓ)
i = selective-SSM

[
c
(ℓ)
1 , c

(ℓ)
2 , . . . , c

(ℓ)
i

]
(13)

The operations in Equations (12) and (13) corre-
spond to Conv and SSM operations, respectively.
The gating mechanism g

(ℓ)
i is given by:

g
(ℓ)
i = SiLU

[
W (ℓ)

g h
(ℓ−1)
i

]
(14)

The formulas and concepts used here are adapted
from Sharma et al. (2024).

Compared to Transformer, Mamba’s design en-
ables more efficient parallel training and effectively
captures dependencies in sequences, making it suit-
able for various natural language processing tasks.

C.1.3 Vision and Multi-modal Models
In the realm of vision and multi-modal models,
various architectures have emerged, each with its
unique approach to tackling complex visual tasks.
For example, GANs (Generative Adversarial Nets)
(Goodfellow et al., 2014) consist of two neural net-
works: a generator and a discriminator. Through
adversarial learning, the generator aims to produce
realistic data samples (such as images), while the
discriminator attempts to distinguish between real
and generated data. Diffusion Model (Li et al.,
2023c; Sohl-Dickstein et al., 2015) is a power-
ful tool for generating high-quality images and
data. It simulates a diffusion process by gradu-
ally adding and removing noise to achieve data
generation. ResNet (Residual Network) (He et al.,
2016) introduced residual learning, revolutioniz-
ing deep network training by improving efficiency

7129



and performance through skip connections. ViT
(Vision Transformer) (Dosovitskiy et al., 2021) in-
tegrated the Transformer architecture into vision
tasks, capturing long-range dependencies by pro-
cessing image patches.

C.2 Knowledge Mechanisms in Other
Architectures

Surprisingly, similar mechanisms as those found
in transformer-based LLMs have also been dis-
covered in other architectural models. Specifi-
cally, Mamba employs the knowledge memoriza-
tion mechanism similar to Transformer (Sharma
et al., 2024). Vision and multi-modal architec-
tures also adopt function region (Modular Region
Hypothesis) for knowledge utilization (Pan et al.,
2023a; Schwettmann et al., 2023a; Koh et al., 2020;
Bau et al., 2017), e.g., multi-modal neuron regions
are responsible for multi-modal tasks. Besides, the
connections hypothesis between neurons is found
in vision architecture models (Olah et al., 2020).
Olah et al. (2020) further suggest that different
types of knowledge reuse partial components, e.g.,
cars and cats reuse the same neurons (Reuse Hy-
pothesis). As for the Dynamic Intelligence Hypoth-
esis, it inherently focuses on entire artificial neural
models. Generally, neural models across various
architectures, trained with different objectives on
different data and modalities, are converging to a
shared statistical model of reality in their repre-
sentation spaces (Huh et al., 2024). These neural
models may tend to share similar knowledge mech-
anisms and imagination (Zhou et al., 2024)

C.3 Machine and Human

Analogous to the Hominidae Family in biological
taxonomy, artificial neural models can be regarded
as Neural Model Family:

• Family: Neural Model, likened to “Ho-
minidae”.

• Genus: Transformer architecture, Mamba ar-
chitecture, etc., likened to “Homo” and “Pan”.

• Species: BERT, GPT, Llama, Mistral, Mamba,
etc., likened to “Sapiens”, “Pan troglodytes”,
and “Pan paniscus”.

Metaphorically, Llama-7B, Llama-13B, Llama-
70B, etc., can be viewed as the infancy, childhood,
and adulthood of humans. Shah et al. (2024) fur-
ther find that, regardless of model size, the develop-
mental trajectories of PLMs consistently exhibit a

window of maximal alignment with human cogni-
tive development. Therefore, we hypothesize that
artificial neural networks (machine) and biologi-
cal neural networks (human) tend to converge to
universality intelligence. In other words, huamn
and machine share similar features and circuits.

Specifically, extensive evidences demonstrate
that machine and human share the same mecha-
nism of knowledge memorization, i.e., modular re-
gion and connection (de Schotten et al., 2022). The
activations of modern language models can also
linearly map onto the brain responses to speech
(Caucheteux et al., 2023). Caucheteux et al. (2023)
pioneer the explanation via predictive coding the-
ory: while transformer-based LLMs are optimized
to predict nearby words, the human brain would
continuously predict a hierarchy of representations
that spans multiple timescales. The above phe-
nomenon indicates that machine and human share
similar underlying mechanisms of knowledge (Su-
cholutsky et al., 2023; Chan et al., 2023; Kornblith
et al., 2019), irrespective of their specific configu-
rations, process and comprehend information. This
could be due to inbuilt inductive biases (Sæbø and
Brovold, 2024) in neural networks or natural ab-
stractions (Chan et al., 2023) – concepts favored by
the natural world that any cognitive system would
naturally gravitate towards (Bereska and Gavves,
2024).

D Tools for Mechanism Analysis

Numerous tools exist for interpreting knowledge
mechanisms in LLMs. TransformerLens (Nanda
and Bloom, 2022) is a library for the mechanis-
tic interpretability using observation and interven-
tion. TransformerLens allows users to cache, re-
move, or replace internal activations during model
running. XMD (Lee et al., 2023a) provides vari-
ous forms of feedback via an intuitiveness, which
enable explanations align with the user feedback.
NeuroX (Dalvi et al., 2023) implements various
interpretation methods under a unified API then
provides interpretability of LLMs. PatchScope
(Ghandeharioun et al., 2024) is a tool developed
by Google that employs a novel model to eluci-
date the hidden states in the original model. Trans-
former Debugger (Mossing et al., 2024), an inter-
pretability tool from OpenAI, utilizes GPT-4 and
sparse auto-encoders to explain language neurons.
Sparse autoencoders (Gao et al., 2024b) leverages
sparse auto-encoders to extract interpretable fea-
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tures from a language model by reconstructing acti-
vations from a sparse bottleneck layer. Transcoders
(Dunefsky et al., 2024) decomposes model compu-
tations involving MLPs into interpretable circuits.

E Application of Knowledge Mechanism

The mechanism analysis of knowledge utilization
and evolution may provide an avenue to construct
more efficient and trustworthy models in practice.

E.1 Efficient LLMs
Researchers have been working to reduce the cost
of training and inference for LLMs through var-
ious optimization strategies, including architec-
ture (Ainslie et al., 2023; Fedus et al., 2022), data
quality (Kaddour, 2023), parallelization (Qi et al.,
2024), generalization theory (Zhang et al., 2024d),
hardware (Dey et al., 2023), scaling laws (Hoff-
mann et al., 2022), optimizer (Liu et al., 2023a),
etc. The underlying knowledge mechanisms offer
LLMs new potential for efficiently storing, utiliz-
ing, and evolving knowledge.

For knowledge storage and utilization in
LLMs, knowledge (memory) circuit provides the
theory to decompose the knowledge computations
of an LLM into smaller, recurring parts (Yang et al.,
2024b). These smaller parts guide the determina-
tion of which types of knowledge should be en-
coded into parameters. Therefore, Memory3 (Yang
et al., 2024b) designs an explicit memory mecha-
nism for Transformer-based LLMs, alleviating the
burden of parameter size. Specifically, Memory3

designs external information, explicit memory, and
implicit memory for different usage frequencies,
reducing writing and reading costs. For knowledge
evolution, the knowledge mechanism analysis in-
spires editing and model merging. The details of
editing technologies can be found in §3.2. Model
merging technologies 9 leverage parameter direc-
tions to combine multiple task-specific models into
a single multitask model without performing ad-
ditional training rather than training from scratch.
For instance, Task Arithmetic (Ilharco et al., 2023)
identifies the weight directions of task capabilities
in different models, and then integrates a more pow-
erful model by arithmetic operations on weight di-
rections. TIES (Yadav et al., 2023) resolves param-
eters directions conflicts, and merges only the pa-

9Model merging also includes methods that directly inter-
polation (Goddard et al., 2024) or randomly fusing (Yu et al.,
2023b), ignoring parameter directions. These methods are
naive and are not the focus of our discussion here.

rameters that are in alignment with the final agreed-
upon sign. Akiba et al. (2024) further propose evo-
lutionary optimization of model merging, which
automatically discovers effective combinations of
open-source models, harnessing their group intel-
ligence without requiring extensive training data
or computational resources. Besides, the Lottery
Ticket Hypothesis (Frankle and Carbin, 2019) pro-
vides a cornerstone for model compression, gen-
eralizing across various datasets, optimizers, and
model architectures (Morcos et al., 2019; Chen
et al., 2021). However, model compression often
limits the success of editing and model merging
(Kolbeinsson et al., 2024). This phenomenon poses
challenges for practical implementations, highlight-
ing the need for more effective strategies.

E.2 Trustworthy LLMs

Numerous studies investigate the underlying causes
of security risks (Reuel et al., 2024; Ren et al.,
2024b; Li et al., 2024a; Bengio, 2024; Bengio et al.,
2024; Dalrymple et al., 2024). In particular, Wei
et al. (2023) delve into the safety of LLM and re-
veal that the success of jailbreak is mainly due to
the distribution discrepancies between malicious
attacks and training data. Geva et al. (2022b) and
Wang et al. (2024b) further discover that some pa-
rameters within LLMs, called toxic regions, are
intrinsically tied to the generation of toxic content.
Ji et al. (2024) even conjecture that LLMs resist
alignment. Therefore, traditional aligned meth-
ods, DPO (Rafailov et al., 2023) and SFT, seem
to merely bypass toxic regions (Lee et al., 2024;
Wang et al., 2024b), making them susceptible to
other jailbreak attacks (Zhang et al., 2023d).

Inspired by the knowledge mechanism analysis
in LLMs, a promising trustworthy strategy may
be designing architecture and training process
during the pre-training phase to encouraging modu-
larity (Liu et al., 2024c, 2023b), sparsity (Chughtai
et al., 2023), and monosemanticity (Bricken et al.,
2023; Jermyn et al., 2022), which make the re-
verse engineering process more tractable (Jermyn
et al., 2022; Bricken et al., 2023; Liu et al., 2024c;
Tamkin et al., 2023). Yet, maintaining sparsity for a
vast amount of world knowledge requires substan-
tial resources, and whether monosemantic archi-
tecture can support advanced intelligence remains
elusive. Besides, machine unlearning (Nguyen
et al., 2022; Tian et al., 2024; Yao et al., 2023a)
aims to forget privacy or toxic information learned
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by LLMs. However, these unlearning methods suf-
fer overfitting, forgetting something valuable due
to the difficulty of disentangling verbatim mem-
orization and general capabilities (Huang et al.,
2024c; Blanco-Justicia et al., 2024). Another alter-
native technique is knowledge editing, precisely
modifying LLMs using few instances during the
post-training stage (Mazzia et al., 2023; Yao et al.,
2023b; Wang et al., 2023d; Hase et al., 2024; Qian
et al., 2024b). Extensive experiments demonstrate
that knowledge editing has the potential to detoxify
LLMs (Yan et al., 2024). Specifically, (Wu et al.,
2023a) and Geva et al. (2022b) deactivate the neu-
rons related to privacy information and toxic tokens,
respectively. (Wang et al., 2024b) identify and then
erases toxic regions in LLMs. However, knowledge
editing also introduces side effects, such as the in-
ability of the modified knowledge to generalize to
multi-hop tasks (Zhong et al., 2023; Li et al., 2023d;
Cohen et al., 2023; Kong et al., 2024) and the po-
tential to impair the model’s general capabilities
(Gu et al., 2024; Qin et al., 2024). Therefore, recent
efforts focus on representation editing instead of
editing parameters in knowledge editing (Zou et al.,
2023; Turner et al., 2023; Zhou et al., 2023b; Zhu
et al., 2024). These representations (hidden states)
within LLMs can trace and address a wide range of
safety-relevant problems, including honesty, harm-
lessness, and power seeking. Later, (Wu et al.,
2024) develop a family of representation finetun-
ing methods to update new knowledge. (Zou et al.,
2024) propose circuit-breaking (Li et al., 2023b),
directly controlling the representations that are re-
sponsible for harmful outputs. However, these rep-
resentation editing strategies require meticulous hy-
perparameter tuning for each task. More efficient
optimization methods are needed to align with com-
putational or temporal constraints.

F How to Explore More Knowledge from
Interdisciplinary Inspiration?

How can LLMs continuously narrow the bound-
aries of dark knowledge and achieve higher level
intelligence by leveraging the human experience
of perpetual knowledge exploration throughout his-
tory? We may draw inspirations from the following
interdisciplinary studies.
Neuroscience studies the structure and function of
the brain at molecular, cellular, neural circuit, and
neural network levels (Squire et al., 2012). Gener-
ally, both mechanism analysis in LLMs and neuro-

science utilize observation and intervention meth-
ods to investigate the basic principles of knowledge
learning and memory, decision-making, language,
perception, and consciousness. The biological sig-
nals of the human brain and the internal activation
signals in LLMs are capable of reciprocal transfor-
mation (Caucheteux et al., 2023; Feng et al., 2023a;
Mossing et al., 2024; Flesher et al., 2021). Bene-
fiting from advancements in neuroscience (Jamali
et al., 2024; de Schotten et al., 2022; Lee et al.,
2022a), mechanism analysis in LLMs has identi-
fied analogous function neurons and regions (Zhao
et al., 2023a), and knowledge circuits (Yao et al.,
2024). Besides, leveraging plasticity theory in neu-
roscience, LLMs explain the underlying technical
support for intelligence (Sæbø and Brovold, 2024).
In the future, mechanism analysis of LLMs may
draw inspirations from neuroscience, guiding the
next generation of artificial intelligence in orga-
nizing neural frameworks and in the storage and
utilization of knowledge (Ren and Xia, 2024; Mo-
meni et al., 2024; Yang et al., 2024b).

Cognitive Science focuses on the mind and its
processes (Kolak et al., 2006; Baronchelli et al.,
2013), which include language, perception, mem-
ory, attention, reasoning, emotion and mental state.
Although cognitive science and neuroscience over-
lap in their research content, cognitive science fo-
cuses more on abstract knowledge such as mental
states and emotions rather than specific knowledge.
Therefore, Zhu et al. (2024) track beliefs of self and
others (formulated as “Theory of Mind”) in LLMs
from the psychological perspective within cogni-
tive science. (Wang et al., 2022) further observe
social-cognitive skill in multi-agent communica-
tion and cooperation. Generally, there is potential
to explore advanced cognitive capabilities in LLMs
from the perspective of cognitive science (Vilas
et al., 2024).

Psychology is the scientific study of mind and be-
havior, which include both conscious and uncon-
scious phenomena, and mental processes such as
thoughts, feelings, and motives. Benefiting from
decades of research in human psychology, ma-
chine psychology aims to uncover mechanisms of
decision-making and reasoning in LLMs by treat-
ing them as participants in psychological experi-
ments (Hagendorff, 2023). Machine psychology
may delve into mysteries of social situations and
interactions shaping machine behavior, attitudes,
and beliefs (Park et al., 2023a). Besides, group
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psychology paves an auspicious path for exploring
dynamics such as debates and collaboration among
LLMs (agents). For instance, Dunning–Kruger ef-
fect (Mahmoodi et al., 2013; Brown and Esterle,
2020) in cognitive psychology filed describes that
individuals with limited competence in a particular
domain overestimate their abilities, and vice versa.
This phenomenon may guide the final vote in group
debates and discussions. Promisingly, psychology
of learning can be applied to study prompt designs,
boost learning efficiency, improve communication
strategies, and develop feedback mechanisms for
LLMs (Leon, 2024).
Education is the transmission of knowledge, skills,
and character traits and manifests in various forms.
Inspired by education in humans, Zhang et al.
(2024a) categorize knowledge acquisition in LLMs
into three distinct phases: recognition, association,
and mastery. Besides, education instructs humans
managing various types of conflicts: identifying in-
consistencies in external information (inter-context
conflict), deciding between external sources and
internal memory (context-memory conflict), resolv-
ing memory confusion (internal memory conflict),
and addressing cultural conflicts. The above knowl-
edge conflicts and integration also exist in knowl-
edge evolution of LLMs across individuals and
groups (Dan et al., 2023). Fortunately, education
facilitates humans in learning to learn. Can LLMs
similarly self-evolve to continuously adapt to soci-
etal changes and requirements?

Remarks: LLMs may improve their architec-
ture and mechanisms for knowledge learning, stor-
age, and expression, drawing inspiration from neu-
roscience. Besides, cognitive science and psychol-
ogy provide promising alternatives for sophisti-
cated intelligence, emergent capabilities and behav-
iors in evolution. Educational studies can inspire
the learning strategy of LLMs, navigating conflicts
and integrating knowledge during their evolution.

G Future Directions

G.1 Parametric VS. Non-Parametric
Knowledge

LLMs can be conceptualized as parametric
knowledge stores, where the parameters of the
model—typically the weights of the neural net-
work—encode a representation of the world’s
knowledge. This parametric approach to knowl-
edge storage means that the knowledge is im-
plicitly embedded within the model’s architecture,

and it can be retrieved and manipulated through
the computational processes of the neural net-
work (Allen-Zhu and Li, 2023b). In contrast,
non-parametric knowledge storage involves meth-
ods where the knowledge is explicitly represented
and can be directly accessed. Examples of non-
parametric knowledge storage include knowledge
graphs, databases, and symbolic reasoning sys-
tems, where knowledge is represented as discrete
symbols or facts. Parametric knowledge enables
LLMs to deeply compress and integrate informa-
tion (Huang et al., 2024d; Shwartz-Ziv and LeCun,
2024), allowing them to generalize and apply this
knowledge across various contexts. This is akin to
LLMs mastering the mathematical operation rule
of “mod” through parametric knowledge, enabling
them to generalize and seamlessly solve all mod-
related problems (Pearce et al., 2023; Hu et al.,
2024). Conversely, non-parametric knowledge re-
quires extensive searches across the knowledge
space for each user query. Subsequently, Wang
et al. (2024a) also prove that non-parametric knowl-
edge severely fails in complex reasoning tasks, with
accuracy levels approaching random guessing. Un-
fortunately, parametric knowledge within LLMs
is opaque, often encountering challenges such as
interpretability issues, outdated information, hallu-
cinations, and security concerns.

Addressing these issues often requires leverag-
ing external non-parametric knowledge, which of-
fers transparency, flexibility, adaptability, and ease
of operation. However, augmenting parametric
knowledge in LLMs with non-parametric knowl-
edge (Yang et al., 2024b; Luo et al., 2023; Wen
et al., 2023; Ko et al., 2024) remains an ongoing
challenge due to retrieval accuracy from haystack,
context lengths, and resources 10 limitations (Shang
et al., 2024; Zhao et al., 2024b). Besides, simul-
taneously retrieving relevant information from a
long context and conducting reasoning is nearly
impossible in reasoning-in-a-haystack experiments
(Shang et al., 2024). Similarly, augmenting non-
parametric knowledge—either by distilling knowl-
edge from an LLM’s parametric knowledge (West
et al., 2022; Kazemi et al., 2023) or by using it
to parse text directly (Zhang et al., 2023b)—also
poses significant challenges. Moreover, Yang et al.
(2024b) propose a novel explicit memory that lies

10On the one hand, storing large amounts of non-parametric
knowledge requires a lot of space and high maintenance costs.
On the other hand, retrieving information for each user query
is very resource-intensive.
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between parametric and non-parametric knowl-
edge. LLM with explicit memory enjoys a smaller
parameter size and lower resource consumption for
retrieving external non-parametric knowledge.

Generally, inspired by the knowledge mecha-
nisms analysis in LLMs, we have the potential to
develop more architectural and learning strate-
gies for organizing knowledge within LLMs.
These efficient LLMs (Sastry et al., 2024) are
advancing toward lower GPU, computation, and
storage resource requirements, as well as smaller
model sizes by combining the strengths of para-
metric and non-parametric knowledge (Yang et al.,
2024b; Momeni et al., 2024; Chen, 2024; Pan et al.,
2024b, 2023b).

G.2 Embodied Intelligence

The current LLM still cannot be regarded as a truly
intelligent creature (Bender and Koller, 2020; Bisk
et al., 2020). The process of human language acqui-
sition is not merely a passive process of listening
to language. Instead, it is an active and interactive
process that involves engagement with the physical
world and communication with other people. To en-
hance the current LLM’s capabilities and transform
it into a powerful agent, it is necessary to enable it
to learn from multimodal information and interact
with the environment and humans.

Multimodal LLMs. The integration of multiple
modalities is a critical challenge in the field of
LLMs and embodied AI. While LLMs have demon-
strated impressive capabilities when processing lan-
guage data, their ability to seamlessly incorporate
and synthesize information from other modalities
such as images, speech, and video is still an area of
active research. However, the current multi-modal
model faces challenges, particularly in complex
reasoning tasks that require understanding and in-
tegrating information from both text and images.

Recent studies (Huang et al., 2024a; Chen et al.,
2024b) have highlighted the discrepancy between
the model’s performance in language tasks and
its ability to integrate knowledge from different
modalities effectively. These findings suggest that
current models often prioritize linguistic informa-
tion, failing to fully exploit the synergistic potential
of multimodal data (Wang et al., 2024c). There are
some pioneering efforts in this direction (Pan et al.,
2024a; Schwettmann et al., 2023a) , aiming to un-
cover the mechanisms by which multi-modal mod-
els store and retrieve information. Despite these

advancements, there is still a need for further explo-
ration to deepen our understanding of multi-modal
knowledge storage.

Self-evolution. As discussed in the previous part,
current language models are mainly based on tun-
ing to gain knowledge, which requires a lot of train-
ing and high-quality data. These learnings are pas-
sive whereas, to be a human, evolution usually also
undergoes communication and interaction. As an
intelligent agent, the models should be able to learn
through interactions and learn by themselves spon-
taneously. Recently, some work has attempted to
enable the model to learn by themselves (Zhang
et al., 2024b) or learn by interaction with the en-
vironment (Xu et al., 2024a; Xi et al., 2024). By
integrating self-evolving mechanisms, models can
continuously update their knowledge base and im-
prove their understanding without relying solely on
manually curated datasets. This not only reduces
the dependency on large-scale labeled data but also
allows the models to adapt to evolving linguistic
norms and cultural contexts over time.

G.3 Domain LLMs

The success of general-purpose LLMs has in-
deed inspired the development of domain-specific
models that are tailored to particular areas of
knowledge (Calderon and Reichart, 2024), such
as biomedicine (Yu et al., 2024a; Moutakanni
et al., 2024), finance (Yang et al., 2023), geo-
science (Deng et al., 2023), ocean science (Bi et al.,
2024), etc. However, unlike human language, the
knowledge of these different domains bears specific
characteristics. It remains unclear whether LLMs
can acquire complex scientific knowledge or if such
knowledge still resides within the realm of cur-
rent dark knowledge. Furthermore, does domain-
specific knowledge such as mathematics share the
same underlying mechanisms as textual knowledge
(Bengio and Malkin, 2024), or does it exhibit more
intricate mechanisms of knowledge acquisition?
Currently, there is a relative lack of research fo-
cusing on the mechanism of these domain-specific
knowledge and there is an increasing recognition
of the importance of developing a deeper under-
standing of these mechanisms.

Data sparsity and diversity in domain-specific
models pose another challenge. Sparsity is usu-
ally caused by confidentiality, privacy, and the cost
of acquisition in specialized fields. As for diver-
sity, the presentation of knowledge varies across
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different fields. For instance, in the biomedical
domain, knowledge includes complex biological
concepts such as the structure and function of pro-
teins and molecules. This requires models to in-
tegrate understanding that extends beyond natu-
ral language, often involving graphical represen-
tations like chemical structures, which cannot be
directly expressed in text. Similarly, in fields such
as finance and law (Lai et al., 2023), models must
engage in sophisticated reasoning and decision-
making processes based on domain-specific knowl-
edge. Hence, the critical tasks of collecting high-
quality data for domain-specific models (including
synthetic data generation) and effectively embed-
ding domain knowledge into LLMs require imme-
diate attention.
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