
Findings of the Association for Computational Linguistics: EACL 2024, pages 7136–7148
November 12-16, 2024 ©2024 Association for Computational Linguistics

LONGHEADS: Multi-Head Attention is Secretly a Long Context Processor

Yi Lu1*, Xin Zhou1*, Wei He1, Jun Zhao1,
Tao Ji1†, Tao Gui2,3†, Qi Zhang1,3†, Xuanjing Huang1,3

1School of Computer Science, Fudan University, Shanghai, China
2 Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China

3 Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
yilu23@m.fudan.edu.cn, {xzhou20,taoji,tgui,qz}@fudan.edu.cn

Abstract

Large language models (LLMs) have achieved
impressive performance in numerous domains
but often struggle to process lengthy inputs ef-
fectively and efficiently due to limited length
generalization and attention’s quadratic com-
putational demands. Many sought to miti-
gate this by restricting the attention window
within the pre-trained length. However, these
methods introduce new issues such as ignor-
ing the middle context and requiring addi-
tional training. To address these problems, we
propose LONGHEADS, a training-free frame-
work that enhances LLM’s long context abil-
ity by unlocking multi-head attention’s un-
tapped potential. Instead of allowing each
head to attend to the full sentence, which strug-
gles with generalizing to longer sequences,
we allow each head to process in-distribution
length by selecting and attending to impor-
tant context chunks. To this end, we propose
a chunk selection strategy that relies on the
inherent correlation between the query and
the key representations, efficiently distribut-
ing context chunks to different heads. In this
way, each head ensures it can effectively
process attended tokens within the trained
length, while different heads in different
layers can collectively process longer con-
texts. LONGHEADS works efficiently and fits
seamlessly with many LLMs that use relative
positional encoding. LONGHEADS achieves
100% accuracy at the 128k length on passkey
retrieval task, verifying LONGHEADS’s effi-
cacy in extending the usable context window
for existing models. We release our code at
https://github.com/LuLuLuyi/LongHeads.

1 Introduction

LLMs are usually required to handle tasks with
long contexts, such as in-context learning (Dong
et al., 2023), tool learning (Qin et al., 2023), and

* Equal contribution.
† Corresponding authors.

All Heads

Picked ChunkLONGHEADS
All Heads

Head 2

Head n

Head 1

Evicted Tokens

Full Attention

Restricted Attention

Out of Pre-trained Length

0

0.2

0.4

0.6

0.8

1

8k 16k 32k

Accuracy on Passkey Retrieval

NTK LM-INF Ours

Figure 1: Left: Three types of long-context proces-
sors, (a) Attend all contexts but struggle with out-of-
pre-trained length; (b) Attend local context to generate
fluently but lose information; (c) Head attends short
chunks and HEADS attend LONG context. Right: Accu-
racy of three specific methods on passkey retrieval task.

retrieval-augmented generation (Gao et al., 2024).
However, enabling LLMs to process long contexts
presents significant challenges. When the context
length exceeds the pre-training length, the model
struggles to adapt to longer position encoding, lead-
ing to the out-of-distribution (OOD) issue(Han
et al., 2023). And quadratic complexity of atten-
tion introduces considerable training and inference
costs. Although OOD issue could be addressed
by zero-shot learning (Jin et al., 2024), fine-tuning
(Chen et al., 2023a; Peng et al., 2023), or re-training
(Sun et al., 2022; Press et al., 2022), the required
memory and computation still increases quadrati-
cally with context length, as shown in Figure 1(a).

To alleviate these issues, recent works restrict
the attention window to pre-trained length, which
reduces the computation cost and avoids the pro-
cessing of OOD tokens. One direction is to ex-
clude distant tokens (except for a few initial to-
kens, Han et al., 2023; Xiao et al., 2023) to restrict
the attention window in-distribution, as shown in
Figure 1(b). However, these methods could re-
sult in losing critical information, degrading per-
formance on downstream tasks. The other way to
constrain the attention window is to retrieve chunks
of long sequences (Mohtashami and Jaggi, 2023;
Zhang et al., 2024), but these approaches usually re-

7136

https://github.com/LuLuLuyi/LongHeads

quire special operations and continuous fine-tuning,
which makes it difficult for existing LLMs to be
directly applicable to long sequences. In summary,
improving the ability of LLMs to handle long con-
texts at a low cost is still challenging.

In this paper, we propose LONGHEADS, a novel
framework to enhance LLM’s long context abil-
ity without additional training. The key idea is to
fully unlock the potential of multi-head attention.
We utilize the inherent characteristic of multi-head
attention: different heads focus on different sub-
spaces of the context, and each head can effec-
tively process sequences within the pre-training
length(Michel et al., 2019). As shown in Figure 2
(c), we limit each head to selecting and attending
to important contextual chunks within pre-trained
length, rather than having each head attend to the
entire sentence, thereby mitigating the OOD issue
in attention distribution. Furthermore, we lever-
age the model’s inherent dot-product attention and
propose a chunk selection strategy to find impor-
tant chunks for each head. Drawing inspiration
from the fact that each head assigns different at-
tention weights to tokens based on the inher-
ent correlation between the query and the key
representations, we break the input into chunks
and create chunk-level features for each block. It
utilizes native token-level correlation to construct
chunk-level queries and key representations, which
allows each head to utilize its existing capabilities
(dot-product attention) to select chunks based on
the attention weights. In this way, each head ef-
fectively processes selected context chunks within
the trained length, and all heads in all layers work
together to handle longer contexts. Meanwhile, all
operations are based on the intrinsic capabilities
of multi-head attention, allowing LONGHEADS to
enhance LLMs without additional training.

To evaluate the effectiveness of LONGHEADS,
we employ LLaMA-2-7B-Base and LLaMA-2-7B-
Chat as base models and evaluate on language
modeling, synthetic retrieval task and long con-
text benchmark. LONGHEADS achieving nearly
100% accuracy across context lengths from 4k
to 32k on the Passkey Retrieval task. On Long-
Bench, LONGHEADS achieves the state-of-the-art
(SOTA) performance among restricted attention
methods. Compared with full attention methods,
LONGHEADS achieves comparable performance
on 16K test lengths and the best performance on
32K test lengths while enjoying less computational
cost. The experimental results demonstrate that

LONGHEADS enables the LLMs to directly gen-
eralize to longer sequences and achieve compara-
ble or even superior performance compared to the
methods that require continuous fine-tuning.

Our contributions can be summarized as follows:
• We propose LONGHEADS, a training-free in-

ference framework that leverages the structural
properties of attention heads to process long se-
quences efficiently and effectively.

• We design a simple yet effective chunk selection
strategy that can accurately select useful chunks
and cover the full context.

• Experiments demonstrate that LONGHEADS is
a SOTA restricted-attention-based long context
processor and works efficiently, also with com-
parable performance to full-attention methods.

2 Method

In this section, we describe how the LONGHEADS

utilizes the inherent ability of multi-head attention
to encode and generate long sequences without
additional training.

2.1 Overview
An overview of LONGHEADS is shown in Figure 2.
We break the text into chunks and calculate the
chunk representations for each chunk (Section 2.2).
When generating token x14, we pick the relevant k
chunks based on the current token’s query vector
and chunk representations. In this way, each atten-
tion head of the LONGHEADS selectively focuses
on different text chunks according to its preference
(Section 2.3). The tokens of attended chunks are
then restructured, ensuring the subsequent causal
attention always performed within the pre-trained
length.

When encoding or generating an out-of-length
token, a parameter-free chunk selection network
picks the relevant k chunks based on the current
query vector and chunk representations. Unpicked
chunks can be approximated as having zero atten-
tion score (Vig, 2019; Abnar and Zuidema, 2020)
(this usually holds under the sparsity of the atten-
tion mechanism (Correia et al., 2019; Qin et al.,
2022)), and do not need to be computed. This
allows the attention matrix not to increase with
length, significantly reducing the memory and com-
putational cost (Section 2.4). Other works that re-
strict the scope of attention simply ignore distant
tokens beyond a few initial tokens, even if they
contain information worthy of attention.

7137

× N blocks

…

Chunk Selection

1.0 0.4 0.50.1

KV Cache

…Selected Chunks of Each Head Query

Value

Key

Chunk Query Vector

Chunk Representation Multi-Head
Attention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

Figure 2: An overview of LONGHEADS’s inference, generating token x14 in the current step. During inference,
LONGHEADS keeps the first chunk for stable computation, combined with the last chunk containing recent tokens.

2.2 Chunk Representation
Chunk representation is an indicator of whether the
tokens in this chunk should be attended to. We ob-
tain chunk representations in a training-free manner
by utilizing the attention’s intrinsic abilities.

Formally, given a long input sequence X =
(x1, ..., xn), we segment it into chunks according to
a predefined chunk size l, then the input sequence
can be denoted as X = (C1, ..., Cm),m = ⌈nl ⌉.
We use attention’s key states to generate chunk rep-
resentation for each chunk due to the existing atten-
tion mechanism that relies on query states. There
are numerous straightforward methods to obtain
chunk representation, such as mean pooling of the
key vectors of all tokens in the chunk. However,
they have demonstrated suboptimal performance
in preliminary experiments, particularly in select-
ing the correct chunks. We hypothesize that this is
attributed to the significance of individual tokens
within a chunk vary substantially.

To address the above problem, we should iden-
tify the tokens that can represent the entire chunk.
For that purpose, we evaluate each token’s signif-
icance to the chunk and perform scaled attention
aggregation on all tokens’ key states to obtain a
representative chunk representation as follows:

ci = flash-attention (qci ,Ki,Ki) (1)

where ci ∈ Rm×d is the chunk representation,
Ki ∈ Rl×d is the attention’s all key states of
chunk Ci, qci ∈ R1×d is a query vector to indicate
which token’s key state is suitable for representing
the chunk representation, we utilize flash-attention
(Dao et al., 2022) to perform scaled attention. Next,
we describe how to create the query vector.

A good chunk query vector should be able to
represent the chunk’s full semantic information,
i.e., the value vector of all tokens in the entire

chunk. However, different tokens do not contribute
equally to the semantic representation, e.g., con-
tent words hold a higher semantic weight, while
function words contribute less. Utilizing the in-
herent dot-product similarity between token-level
query and key representations, we construct seman-
tic weights for each token through a bidirectional
self-attention aggregation. From the perspective of
message passing, semantically rich content words
will transmit more of their information to other
tokens, whereas function words transmit little. Fi-
nally, the query vectors qci that successfully summa-
rize the complete semantics are obtained by mean-
pooling of the aggregated representations, and can
be formalized as follows.

Oi = flash-attention(Qi,Ki,Vi)

qci = mean (Oi) , (2)

where Qi, Ki, and Vi ∈ Rl×d are all query states,
key states, and value states of chunk Ci respec-
tively. Both Ki and Vi can be directly accessed
from the KV cache, whereas Qi requires tempo-
rary storage during the calculation of the current
chunk’s representation and is released thereafter.

2.3 Chunk Selection Strategy

During the encoding or generation of the next token
(denoted by xj), we employ a query-aware chunk
selection strategy, picking the k most relevant
chunks from those already generated. Based on
prior knowledge, there are two mandatory chunks.
One is aligning with Xiao et al. (2023)’s find-
ings, acknowledging the essential role of the few
start tokens of a sentence in preserving the stabil-
ity of LLMs. If the few start tokens are missing
from the context, the pre-trained LLMs will com-
pletely lose their expressive ability (i.e., exhibit

7138

very high perplexity). To ensure fluency, all at-
tention heads uniformly select the first chunk (i.e.,
C1) of the sentence. Otherwise, the LLM cannot
handle downstream tasks (as demonstrated in the
Ablation Study). The other is assigning the last
chunk (i.e., C−1) to all attention heads, in order
to provide the model with the local information
necessary for generation.

Next, we pick the remaining k− 2 most relevant
chunks for each attention head. In the attention
module of LLMs, the dot product score reflects
the relevance of the context token to the current
token. Inspired by it, we pick target chunks by the
dot product similarity between the current token’s
query state qj and the chunk representation ci.

P = {C1}∪{Ci | rank(qj ·ci) ≤ k−2}∪{C−1},
(3)

where P is the final set of selected chunks, and
the rank(·) function outputs the rank of the current
chunk’s computed similarity among all candidates.
In this way, different attention heads across the lay-
ers naturally attend to different parts of the context,
retrieving the important chunks for inference.

Position Remapping. There are text chunks in
the set P that exceed the pre-training length, so
the positional encoding of P needs to be remapped.
The total length of the selected chunks is controlled
to be within the pre-training length L, i.e., k∗l < L.
Here, LONGHEADS restructures the picked chunks
and concatenates them, while preserving the or-
der of precedence. In Figure 3, the current head
attends to chunks (1, 2, 5, 7) among the eight can-
didate chunks. The positions are assigned as [1, 4l],
in contrast to the original text positions, which
would be [1, l]∪ [l+1, 2l]∪ [4l+1, 5l]∪ [6l+1, 7l].
Position remapping avoids the out-of-distribution
problem encountered when extending the context
even without further training.

Picked

chunks

Figure 3: Demonstration of Position Remapping.

2.4 Inference with LONGHEADS

We separately describe the encoding of long in-
puts and the generation of long outputs during the
inference. Here we describe only the modified
multi-head causal attention layer.

Computation and Memory in Encoding Phase.
When the LONGHEADS receives long inputs, it
first computes the representations of all chunks in
parallel. This can be quickly achieved through two
passes of flash-attention, with the number of tokens
involved in the attention equal to the chunk size
(i.e., l=256, which is much smaller than the length
of the input, e.g., n=16k). The second step is to
select the k most relevant chunks for each query
based on chunk representations and to obtain their
key and value representations, making the attention
window equals to k∗l=w (e.g., w=2k, which is also
much smaller than n). Finally, length-restricted
causal flash-attention is performed efficiently.

Computation and Memory in Generation Phase.
During the generation process, LONGHEADS first
performs chunk selection, then loads the Key-Value
representations of the picked k chunks for length-
constrained causal attention. When generating with
very large inputs (e.g. 100K), the KV cache (except
the chunk representations) can be offloaded to CPU
to significantly reduce memory usage, and we only
load the picked chunks into the GPU memory. We
always retain the query-key-value representations
of recent tokens (not exceeding the chunk size)
during the generation process. When the number of
recent tokens equals the chunk size, we compute a
chunk representation, similar to the encoding phase,
and append it to the previous chunk representations.

Overall, the time complexity approximates an
LLM with window attention O(w2) (window size
w is equal to k ∗ l). Memory usage of the decoding
phase approximates O(n+w2), and can be further
reduced to O(k ∗ l + w2), avoiding a quadratic
increase in costs with sequence length. We empiri-
cally evaluate the LONGHEADS’ memory footprint
and speed in Appendix D.

3 Experiment

We evaluate the proposed LONGHEADS primarily
using the LLaMA-2 (Touvron et al., 2023) consider-
ing its wide adoption and popularity. The effective-
ness of LONGHEADS is evaluated on three kinds of
tasks: language modeling, synthetic retrieval task
and long context benchmark.

3.1 Settings

Implementation. Our method is applied to
LLaMA-2-7B base and chat models for empiri-
cal studies. In our setup, we set the size of each
chunk l to be 256. During each inference step, we

7139

PG19 Proof-pile

Method 4k 16k 32k 4k 16k 32k

Full Attention
PI-16K 7.42 6.72 >103 2.98 2.61 >103

NTK 6.98 9.58 19.3 2.99 3.00 4.05

Restricted Attention
LLaMA-2-7B 6.98 >103 >103 2.99 >103 >103

LM-Infinite 6.98 7.33 7.75 2.99 2.96 3.10
Landmark 10.03 10.13 10.14 4.98 4.86 4.92
LONGHEADS 6.98 8.15 8.41 2.99 3.26 3.42

Table 1: Sliding window perplexity of different context
window extension methods on PG19 and Proof-pile.
LONGHEADS extends the original LLaMA-2’s context
window length to 32k with 2k attention window.

employ our chunk selection strategy to perform
query-aware chunk selection. All evaluations are
conducted on a single NVIDIA A100 GPU.

Baselines. The following types of baselines are
chosen for comparison. 1) The method with full
attention, including “Dynamic NTK” interpolation
(NTK, Emozilla, 2023), Position Interpolation (PI,
Chen et al., 2023a), YaRN (Peng et al., 2023) and
ChunkLlama (An et al., 2024). 2) The method with
restricted attention, including LM-Infinite (Han
et al., 2023) and Landmark-Attention (Mohtashami
and Jaggi, 2023). The implementation details of
baselines are in Appendix A.

3.2 Long Context Language Modeling

The experiment on long context language model-
ing is performed with two datasets: PG19 (Rae
et al., 2019) and Proof-pile dataset (Azerbayev
et al., 2023). Details are shown in Appendix B.1.

The evaluation results are reported in Table 1.
Although the PPL of LLaMA-2-7B-Base model
and PI remain low within the pre-training context
length, it increases significantly when the context
exceeds this window. The NTK approach can main-
tain low PPL values for sequences up to 16k length,
but PPL rises significantly at 32k context length. In
contrast, LONGHEADS, Landmark Attention and
LM-infinite successfully maintain a low PPL score
even at a sequence length of 32k.

3.3 Retrieval-Based Evaluation

We conduct experiments on the passkey retrieval
task introduced by (Mohtashami and Jaggi, 2023).
This task challenges a language model to accurately
locate and retrieve a simple passkey (a five-digit
random number) in a long text sequence and we

4k 8k 12k 16k 20k 24k 28k 32k
Context Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fine-tuned
PI-16K
Landmark

Training-free
Llama-2-7B
LM-Infinite
NTK
LongHeads

Figure 4: The evaluation of passkey retrieval task at
different context lengths. LONGHEADS achieves a com-
parable performance as Landmark Attention and outper-
forms other methods.

show the test example in Appendix E. The passkey
is placed with various context lengths (ranging
from 4k to 32k with 4k interval). For each con-
text length, we perform 50 tests with the passkey
placed at a random position in the context.

In Figure 4, we can see that all the models can
output the passkey within the pretrained length.
The base model completely fails at the extended
length. The NTK and LM-Infinite induce a sig-
nificant drop in accuracy for models at lengths
surpassing 6k tokens, with accuracy falling below
20% when token lengths exceed 16k. LM-Infinite
can only access 10% passkey with its local win-
dow, despite having low PPL at 32k length. Con-
versely, Landmark Attention and LONGHEADS

consistently retrieve with nearly 100% accuracy re-
gardless of sequence length. We further test LONG-
HEADS to 128k length after offloading KV cache
to CPU, the results are shown in Appendix F.

We further test “Needle in a Haystack” (gkam-
radt, 2023), the results are shown in Appendix G.

3.4 Long Context Benchmark Evaluation

Language modeling tasks have proven to be insuf-
ficient metrics for ensuring success in downstream
tasks (Sun et al., 2021), while synthetic password
retrieval tasks often do not align with real-world
scenarios. It is significant to conduct real down-
stream task evaluations to more comprehensively
reflect the model’s long sequence capabilities. We
opt LongBench (Bai et al., 2023) for downstream
NLP task evaluation, the details are shown in Ap-
pendix B.2. The results are listed in Table 2. We
also conduct experiments on LLaMA-2-7B-Chat
model, and the results are shown in Appendix I.

7140

Method
FT Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Full Attention
NTK - 16.47 29.62 31.42 31.31 28.75 10.20 22.70 17.65 6.31 64.67 77.36 37.95 3.99 5.12 65.64 52.97 31.38
ChunkLLaMa - 16.92 25.74 30.98 37.45 29.64 5.67 25.03 19.75 2.51 39.33 88.73 40.38 1.03 5.67 67.48 54.95 30.70
PI-16k 0.85B 21.37 31.78 36.67 37.56 27.47 15.98 13.55 20.69 1.18 63.00 89.24 25.64 5.67 11.33 67.05 56.02 32.76
YaRN 0.85B 14.87 27.15 36.60 37.77 29.16 4.60 17.10 21.34 3.00 37.50 88.64 40.88 5.03 7.33 68.21 56.21 30.96

Restricted Attention
LM-Infinite - 14.34 20.75 26.18 20.37 20.08 5.87 16.70 7.01 2.28 54.67 76.69 15.64 4.30 7.00 62.90 52.74 25.47
Landmark 0.80B 11.35 23.91 20.96 26.95 26.25 5.22 17.74 19.15 9.84 42.67 80.73 35.45 5.73 7.00 59.74 42.76 27.22
LONGHEADS - 14.51 21.58 30.32 30.07 25.28 9.15 24.74 20.26 6.30 55.00 83.26 34.27 2.45 9.39 65.01 50.65 30.14

w/ NTK init - 16.48 28.63 31.36 31.19 28.67 13.54 22.85 17.63 6.38 65.33 77.49 38.07 4.32 4.97 65.56 52.87 31.58
w/ PI init 0.85B 21.43 31.78 36.64 37.63 27.33 15.98 13.36 20.57 1.30 63.00 89.57 25.86 5.67 11.33 66.93 48.96 32.33

Extend to 32k
NTK - 5.74 29.05 31.39 28.98 27.03 9.34 22.00 15.13 5.40 64.67 48.34 34.50 3.89 4.85 57.54 45.29 27.07
ChunkLLaMa - 16.68 25.80 30.96 37.12 29.01 5.86 25.27 19.38 2.67 39.17 88.57 40.15 1.00 5.67 68.55 54.46 30.65
PI-16k 0.85B 8.43 30.15 35.20 29.47 24.72 1.74 13.23 12.59 1.30 55.00 66.15 19.16 5.42 11.33 33.21 27.21 23.39
YaRN 0.85B 8.28 24.79 35.81 31.56 28.93 1.06 17.11 13.63 3.25 34.50 68.67 35.29 4.92 7.33 37.17 31.00 23.96
LM-Infinite - 10.87 20.58 26.19 19.48 20.40 16.52 5.26 2.51 6.14 55.00 82.78 11.26 4.30 6.67 64.88 56.02 25.55
Landmark 0.80B 13.88 23.69 21.06 28.04 25.78 11.52 17.70 19.11 10.68 41.00 77.15 35.61 5.70 7.00 58.22 40.97 27.32
LONGHEADS - 13.38 21.81 30.33 29.59 24.90 11.48 27.43 19.87 6.07 55.00 81.15 33.56 2.79 10.06 63.75 47.97 29.95

w/ NTK init - 9.01 27.67 31.68 30.04 27.06 8.31 22.44 17.20 5.41 63.33 54.61 35.13 4.09 4.70 60.59 48.92 28.14
w/ PI init 0.85B 20.28 31.39 37.15 36.45 26.55 15.30 14.75 20.68 1.30 62.00 88.35 22.81 5.33 11.33 66.93 54.28 32.00

Table 2: The results of different methods based on the LLaMA-2-7B-Base model on LongBench. FT Tokens
indicate the number of tokens used for continuous training.

Comparison with Restricted Attention Methods.
LONGHEADS surpasses the current methods with
restricted attention. Specifically, LONGHEADS per-
forms better than the method with the sliding win-
dow mechanism on LongBench (+4.67 vs. LM-
Infinite). Compared to the method with chunking
strategy (i.e., Landmark Attention), LONGHEADS

exceeds the average score by 2.92 on LongBench
without additional training. This indicates that the
chunk selection strategy in LONGHEADS can accu-
rately supplement LLMs with relevant contextual
information, enabling efficient and effective under-
standing on long sequences.

Comparison with Full Attention Methods. Full
attention methods can increase the maximum se-
quence length of LLMs but also raise computa-
tional and memory costs. LONGHEADS can be
augmented with PI or NTK methods during the en-
coding phase, achieving comparable or even better
results with a shorter window size, significantly re-
ducing computational overhead. This suggests that
LONGHEADS has the potential for scalability, and
can be strengthened with a stronger base model.

Performance when extending to 32k Con-
text window. A desirable attribute for RoPE-
extension methods is that the models should main-
tain their performance when directly extending to
a longer context window. When extending to 32k

context windows, PI, NTK and YaRN struggle with
the out-of-demonstration issue and tend to com-
promise model performance. In contrast, LONG-
HEADS maintains its performance and outperforms
all the baseline methods.

4 Discussion

4.1 Analysis

In this section, we explore how different attention
heads handle long contexts and whether they find
important information. We set LONGHEADS’s at-
tention window to 2048 and analyze on passkey
retrieval and summary tasks. We visualize the tests
for both tasks in Figure 5 and show the statistical
results in Table 3. The details of analytical experi-
ments are in Appendix C.

Attention heads focus on important parts in con-
text. On the passkey retrieval task, shown in Fig-
ure 5(a), all attention heads focused on the same
chunk containing the answer and predicted it accu-
rately. Even when the passkey is not successfully
predicted in Figure 5(b), the chunks containing
the answer are still selected by multiple heads. In
contrast, on the summary task in Figure 5(c), the
attention heads spread their focus more evenly to
summarize the entire information. Similarly, Table
3 reveals a lower uniformity score for the summary
task compared to the passkey retrieval task. These

7141

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(a) Passkey Retrieval Task (Success)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(b) Passkey Retrieval Task (Fail)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(c) Summarization Task

0

5

10

15

20

25

30

At

te
nt

io
n

He
ad

s

Figure 5: Visualization of chunks selected by different attention heads at each layer represented by color blocks. For
the passkey retrieval task, the chunk containing the passkey is delineated with a red border. In example (b), the red
border encompasses two chunks due to the passkey-containing sentence coincidentally spanning two chunks. We
conduct a statistical analysis to investigate the influence of chunking the key into different chunks in Appendix H.

Input Cover Uniformity Hit Rate

Length Rate Top 1 Top 5

Passkey Retrieval
4k 100 0.52 0.55 0.96
8k 100 0.52 0.89 0.96

16k 99.2 0.60 0.99 1.00
32k 82.0 0.76 0.98 0.98

Summary
4k 100 0.31 / /
8k 100 0.44 / /

16k 100 0.49 / /
32k 100 0.57 / /

Table 3: Statistical results with different sequence
lengths. Cover Rate is defined as the percentage of
selected chunks out of the total number of chunks. Uni-
formity of the distribution of chunk selection is evalu-
ated by the Gini coefficient, with lower values indicating
a more uniform distribution. Hit Rate means the proba-
bility that the top-1 and top-5 selected chunks contain
the correct answer in the past key retrieval task.

findings suggest that our chunk selection strategy
results in a more uniform distribution of selections
in the summary task, while the distribution in the
passkey retrieval task is more concentrated. We
attribute this to the specificity of chunks required
for the passkey retrieval task, whereas the sum-
mary task necessitates various parts of the text to
formulate a comprehensive answer. Moreover, the
probability of the top 5 selected chunks containing
the answer is almost 100% across all test lengths
in Table 3. These results suggest that our chunk se-
lection strategy adaptively fits the characteristics of
different tasks, and allows different attention heads
to concentrate on task-related content.

Attention heads can handle long sequences in a
short window. In Figure 5, the lower layer atten-
tion heads focus on the more dispersed text in both
tasks, while the upper layer attention heads focus
more on specific chunks. We speculate that dif-
ferent attention heads naturally focus on different
parts of the information in the text at lower layers,
collecting and aggregating the entire long docu-
ment information in a short length, while the upper
layer attention heads are responsible for process-
ing the aggregated information, mainly focusing on
the chunks needed to complete the task. In Table
3, the Cover Rate is 100% in most cases. Given
that different heads in each layer can select varying
chunks, the maximum theoretical length accessi-
ble by LONGHEADS is |P | × n_heads×n_layers
(e.g., the maximum length for LLaMA-2-7B with
4k attention window is 512k). These observations
demonstrate that we have successfully utilized a
limited attention window to capture almost all in-
formation from the entire long document.

4.2 Ablation Study
We conduct ablation experiments to investigate
the influence of chunk selection strategy, attention
heads flexibility, number of chunks K, and chunk
size l. The ablation study is constructed on Long-
Bench and the results are presented in Table 4.

Effect of Chunk Selection Strategy. We find
that the performance when selecting the highest-
scoring chunks significantly surpasses that of the
lowest-scoring (Last K) chunks, and even Ran-
dom P\{C1, C−1} yields better results than Last
K Selection. We also observe a significant per-
formance degradation when the first chunk is not

7142

Method Setting LongBench Avg.

LONGHEADS 30.14
- Random P 7.12
- Random P\{C1, C−1} 28.77
- Last K Selection 26.22
- w/o C1 14.06
- Fix Head 29.46
- Fix Layer 28.78
- Fix Head & Layer 28.72
- Number of Chunks K = 8 29.09
- Number of Chunks K = 4 26.64
- Chunk Size l = 512 29.95
- Chunk Size l = 128 29.35

Table 4: Ablation study on LongBench, by default
l = 256, K = 16, and Top K Selection. Random P
means all chunks are randomly selected and Random
P\{C1, C−1} means keep the first and last chunk and
randomly select the remaining chunks.

preserved(Random P and w/o C1). This is be-
cause the absence of the first chunk results in the
model’s output distribution collapsing directly. Our
findings are consistent with StreamingLLM (Xiao
et al., 2023) and LM-Infinite (Han et al., 2023).

Effect of Heads Flexibility. When the flexibility
of attention heads is constrained, the model’s per-
formance is compromised to varying degrees (-0.68
Fix Head, -1.36 Fix Layer, -1.42 Fix Head&Layer).
This demonstrates that within the LONGHEADS

framework, the collaboration of different attention
heads in each layer plays a crucial role.

Effect of Number of Chunks & Chunk Size. In-
creasing the number of chunks in a text may pro-
vide more information, but the benefits show a
diminishing return. This indicates that four chunks
provide enough information to ensure performance,
and eight chunks are already adequate to access the
entire sequence’s information with chunk selection
strategy, Different chunk sizes do not lead to a sig-
nificant impact on the results, indicating larger or
smaller chunk sizes are feasible for LONGHEADS.

5 Related Work

Expanding Positional Encoding (PE). Context
extension studies typically target the popular RoPE
encoding, aiming to scale unseen PE into the
space of positions seen during pre-training. Chen
et al. (2023a), and concurrently kaiokendev (2023)
discovered that interpolating the position indices
within the pre-trained limit works well with the
help of a small amount (a few billion, Chen et al.,
2023a) of fine-tuning. However, position interpola-

tion (PI) equally stretches all dimensions of RoPE,
neglecting the variations in frequency. As an alter-
native, Bloc97 (2023b) proposed the “NTK-aware”
interpolation by taking the loss of high-frequency
components into account. Subsequently, Emozilla
(2023) proposed the “Dynamic NTK” interpolation
method, which performs well without the need for
fine-tuning. Bloc97 (2023a) introduced the “NTK-
by-parts” interpolation method, which performs the
best when fine-tuned on a small amount of longer-
context data. Peng et al. (2023) proposed YaRN,
an improved method to efficiently extend the con-
text window by fine-tuning on less than 0.1% of
the original pre-training data. This work directly
modifies the PE to expand to a theoretically infinite
context length. In contrast, our method does not
require modifying the PE, and only a finite chunk
participates in the attention calculation, which im-
proves efficiency and reduces memory usage.

Restricted Attention. In addition, the global
causal attention could be restricted to local atten-
tion, thus avoiding exceeding the pre-trained posi-
tion length. ReRoPE (Su, 2023) truncates all con-
text lengths to the max length during pretraining.
LM-Infinite (Han et al., 2023) restricted the global
attention window into a chevron-shaped window,
retaining only a few tokens from the beginning of
the text and a local window. Mohtashami and Jaggi
(2023) insert a learnable landmark token after each
text fragment with a fixed length, and use these
landmarks to retrieve relevant fragments. Zhang
et al. (2024) similarly insert a learnable beacon to-
ken and use its representation to summarise the cor-
responding whole fragment. Although restricted at-
tention offers advantages in terms of memory usage
and inference speed, they risk losing valuable con-
text information. Existing methods employ local
windows that are either fixed or selected through
fine-tuning. In our approach, local windows are
flexibly composed of chunks from the context and
do not rely on additional fine-tuning.

6 Conclusion

We present LONGHEADS, a novel, training-free
framework for efficiently processing long contexts
in pre-trained LLMs. Utilizing the intrinsic capa-
bilities of attention heads, LONGHEADS smartly
segments and assigns long text to relevant heads,
streamlining the handling of extended sequences
without extra computational load. Experiment
results validate LONGHEADS’s superiority in re-

7143

stricted attention setups and its competitive edge
against full attention methods when applied to the
LongBench suite. Our approach paves the way for
performance breakthroughs in long context LLM
operations, leveraging existing model structures to
unlock new potential without further training.

Limitations

We summarize the limitations of our method as
follows: (1) Splitting the text into chunks may
disrupt the continuity of the content. When the
correct answer is in the middle of two chunks,
this kind of splitting can affect the performance
of downstream tasks. (2) The theoretical maximum
length accessible by LONGHEADS is confined to
|P | × n_heads×n_layers. LONGHEADS cannot
fully access inputs that surpass this threshold. How-
ever, LONGHEADS can still perform well on long
document tasks by selecting important parts from
the context. (3) The success of LONGHEADS in
downstream tasks depends on the non-parametric
chunk selection function. For complex compre-
hension tasks, the effectiveness of the selection
function may be affected.

Acknowledgements

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation
of China (No.62206057, 62076069, 61976056),
Shanghai Rising-Star Program (23QA1400200),
and Natural Science Foundation of Shanghai
(23ZR1403500), Program of Shanghai Academic
Research Leader under grant 22XD1401100.

References
Samira Abnar and Willem Zuidema. 2020. Quantifying

attention flow in transformers.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong,
Xipeng Qiu, Chang Zhou, and Lingpeng Kong. 2024.
Training-free long-context scaling of large language
models.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, multi-
task benchmark for long context understanding.

Bloc97. 2023a. Add NTK-Aware interpolation "by
parts" correction.

Bloc97. 2023b. NTK-Aware Scaled RoPE allows
LLaMA models to have extended (8k+) context size
without any fine-tuning and minimal perplexity degra-
dation.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023a. Extending context window
of large language models via positional interpolation.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models.

Together Computer. 2023. Redpajama: An open
source recipe to reproduce llama training dataset.
https://github.com/togethercomputer/
RedPajama-Data.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

Emozilla. 2023. Dynamically Scaled RoPE further in-
creases performance of long context LLaMA with
zero fine-tuning.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language models: A
survey.

gkamradt. 2023. Needle in a haystack - pressure testing
llms.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. 2024. Llm maybe longlm: Self-extend
llm context window without tuning.

kaiokendev. 2023. Things iḿ learning while training
superhot.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one?

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-
mark attention: Random-access infinite context
length for transformers.

7144

http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2402.17463
http://arxiv.org/abs/2402.17463
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
https://github.com/jquesnelle/scaled-rope/pull/1
https://github.com/jquesnelle/scaled-rope/pull/1
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/1909.00015
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2301.00234
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2401.01325
https://kaiokendev.github.io/til#extending-context-to-8k
https://kaiokendev.github.io/til#extending-context-to-8k
http://arxiv.org/abs/1905.10650
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,
and Yiran Zhong. 2022. cosformer: Rethinking soft-
max in attention.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, and Timothy P. Lillicrap. 2019. Compressive
transformers for long-range sequence modelling.

Jianlin Su. 2023. Rectified rotary position embeddings.
https://github.com/bojone/rerope.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context?

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2022. A length-extrapolatable
transformer.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Jesse Vig. 2019. Visualizing attention in transformer-
based language representation models.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024. Soaring from
4k to 400k: Extending llm’s context with activation
beacon.

7145

http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
https://github.com/bojone/rerope
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1904.02679
http://arxiv.org/abs/1904.02679
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462

A Baseline Implementation Details

We conduct experiments on 4 methods as our base-
lines.We illustrate the details of each baseline as
follows:

For NTK, we set the scale factor of NTK to 2.0
for base model and 1.0 for chat model. For LM-
Infinite, we set the number of preserved initial to-
kens to 10 and the local window at the end to 4096
tokens. In the context of training-free methods,
we did not evaluate StreamingLLM (Xiao et al.,
2023) as their framework does not support inputs
exceeding 4K tokens, and their method is similar to
LM-Infinite. For Position Interpolation and YaRN,
we use the Redpajama (Computer, 2023) dataset
for training. Following (Chen et al., 2023b), we set
the per-device batch size as 1 and gradient accumu-
lation steps as 8, which means that the global batch
size equals 64, using 8 GPUs. We train the mod-
els for 1000 steps. For Landmark-Attention, we
adopted their configuration settings for consistency.
We finetune LLaMA-2-7B Base model for 15000
steps using their method. We fine-tune the model
with context length 512 on Redpajama dataset. For
ChunkLlama, We set the chunk size to 3072 and
local window to 512.

B Evaluation Details

B.1 Language Modeling Evaluation Details
We evaluate the long context language modeling
performance on the book corpus dataset PG19 (Rae
et al., 2019) and the cleaned Arxiv Math proof-pile
dataset (Azerbayev et al., 2023). For both datasets,
a subset of one hundred instances from the test
corpus is utilized to gauge language modeling pro-
ficiency. Following (Press et al., 2022), we evaluate
perplexity by using a sliding window approach with
S = 256.

B.2 Long Context Benchmark Evaluation
Details

Following Jin et al. (2024); Zhang et al. (2024), we
opt Longbench (Bai et al., 2023) for downstream
NLP task evaluation, including Single-Document
Question Answering (QA), Multi-Document QA,
Summarization, Few-shot Learning, and Code
Completion. To ensure a more balanced and ratio-
nal evaluation of the model’s long-text capabilities,
we employed tasks from LongBench-E to replace
the corresponding tasks in Longbench for our test-
ing. We follow LongBench (Bai et al., 2023) to
evaluate the models on 16k context window sizes

by truncating the prompt from the middle when the
task length exceeds a designated context window
size.

For LONGHEADS, the attention window size is
set to 4k. LONGHEADS can be integrated with
other extrapolation methods belonging to the Full
Attention methods, significantly reducing their
computational cost. LONGHEADS w/ NTK init
refers to integrated “Dynamic NTK” interpola-
tion (Emozilla, 2023). LONGHEADS w/ PI init
refers to integrated Position Interpolation (Chen
et al., 2023a).

C Analysis Experiments Details

We conduct analytical experiments on the tasks of
passkey retrieval and summary. For the passkey
retrieval task, we compiled statistics for the results
with sequence lengths of 4k, 8k, 16k, and 32k, as
mentioned in Section 3.3. Regarding the summary
task, we select the government report dataset from
the LongBench, from which we chose 5 samples
each for lengths of 4k, 8k, 16k, and 32k for statisti-
cal analysis.

D Efficiency Analysis

We empirically evaluate the LONGHEADS’ mem-
ory footprint and speed. In comparison to the
full attention method with Flash-Attention 2 (Dao
et al., 2022), as the context length increases, LONG-
HEADS exhibits superior throughput and reduced
memory consumption (achieving a speedup of 1.4x
on 16k and 1.9x on 32k). Compared to current
methods such as LM-Infinite(Han et al., 2023),
LONGHEADS demonstrates distinct advantages in
memory and throughput across various lengths.

LONGHEADS also offers a trade-off between
memory and time by offloading the Key-Value
(KV) cache to the CPU. After this offloading pro-
cess, the model achieves 100% accuracy on the
passkey retrieval task at a text length of 128k, with
the peak GPU memory usage being only 42.3 GB.
The offloading operation is flexible and is triggered
when memory is insufficient.

E Passkey Retrieval Example

We provide the prompt details for the passkey re-
trieval test in Table 6. For tests of different lengths,
we use garbage context of varying lengths to pad
the text, ensuring that the position of the passkey is
randomly inserted.

7146

Method 4k 16k 32k 128k

Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%)

Llama2 0.03 18.8 100 - OOM - - OOM - - OOM -
Flash Atten 0.03 17.2 100 0.11 30.8 0 0.21 49.0 0 - OOM -

PI 0.03 17.2 100 0.11 30.8 100 0.21 49.0 0 - OOM -
NTK 0.04 17.2 100 0.11 30.8 12 0.21 49.0 0 - OOM -
YaRN 0.03 17.2 100 0.11 30.8 92 0.21 49.0 0 - OOM -

Landmark 0.17 18.8 100 0.45 31.2 96 0.87 48.0 100 - OOM -
ChunkLLaMa 0.07 17.4 94 0.12 31.2 80 0.16 49.8 64 - OOM -
LM-Infinite 0.05 17.2 32 0.10 38.6 14 0.17 65.6 8 - OOM -
LongHeads 0.03 19.0 96 0.08 29.9 94 0.11 47.1 98 4.14∗ 42.3∗ 100∗

Table 5: Statistical results with decoding speed, memory usage, and passkey retrieval accuracy. Decoding speed
(seconds / per token) is averaged over 100 token inferences at each length. Memory consumption corresponds to
peak GPU usage during inference. ∗ denotes LONGHEADS with offloading the Key-Value (KV) cache to the CPU.
Passkey retrieval accuracy is tested by 50 tests at each length. All tests are conducted on a single NVIDIA A100
80GB GPU.

Input Prompt:
There is an important info hidden inside a lot of irrele-
vant text. Find it and memorize them. I will quiz you
about the important information there. [Garbage context]
The pass key is {pass_key}. Remember it. {pass_key}
is the pass key. [Garbage context]

Instruction:
What is the pass key? The pass key is

Table 6: Prompt details for passkey retrieval.

4k 16k 32k 64k 128k
Context Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama-2-7B
LongHeads
Llama-2-7B
LongHeads

Figure 6: The evaluation of passkey retrieval task from
4k to 128k.

F LONGHEADS on 128k Context

We further extend LLaMA-2-7b to 128k with
LONGHEADS without additional training. LONG-
HEADS achieves 100% accuracy at 128k length
on passkey retrieval task, the results are shown in
Figure 6. After offloading the KV cache to CPU,
peak GPU memory usage is 26.51GB and 44.48
GB when inference with 64k and 128k context.

G “Needle in a Haystack” Passkey
Retrieval

Following (gkamradt, 2023), We place the passkey
at various document depths, ensuring that they are

Passkey Unsplit Passkey Split

Acc. 96.9% (690/712) 87.5% (77/88)

Table 7: Statistical analysis of the effects of splitting the
passkey into different chunks.

distributed uniformly. For each document depth,
we run 10 times with different passkeys and we
test the input sequence length from 1k to 50k with
a 3k interval. The performance results are shown
in Figure 7. Notably, LONGHEADS outperforms
other baselines and achieves an overall accuracy
score of 99.6% across all examples tested.

H Chunking Influence

We conduct a statistical analysis to investigate the
influence of chunking the key into different chunks
on the performance of the passkey retrieval task.
We statistic all test samples (800 in total) of dif-
ferent lengths in the passkey task, calculating the
accuracy when the passkey is divided and undi-
vided into different chunks, as shown in Table 7.

I More Results on LongBench

Tabel 8 shows that LONGHEADS also has strong
performance on LLaMA2-7b-Chat models. When
encoding is enhanced with NTK, LONGHEADS is
able to achieve comparable performance to the full
attention method.

7147

1K 8k 16k 32k 50k

0%

33%

67%

100%

Llama2 Acc: 7.7%

1K 8k 16k 32k 50k

LM-Infinite Acc: 26.4%

1K 8k 16k 32k 50k

NTK Acc: 24.2%

1K 8k 16k 32k 50k

0%

33%

67%

100%

PI Acc: 31.2%

1K 8k 16k 32k 50k

Landmark Acc: 97.1%

1K 8k 16k 32k 50k

LongHeads Acc: 99.6%

De
pt

h
of

 P
as

sk
ey

Figure 7: Testing “Needle in a Haystack” Passkey Retrieval with a 50K Context. The X-axis represents the input
context length, and the Y-axis indicates the depth of the passkey within the document. For each depth, we run 10
different test cases.

Method
FT Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Chat Model
LM-Infinite - 0.00 18.57 25.33 9.87 11.73 0.48 11.30 2.99 8.72 32.50 29.22 13.82 5.61 5.20 34.19 24.55 14.63
NTK - 15.18 30.89 36.14 35.10 25.79 13.53 31.48 20.21 23.86 61.67 80.94 39.43 7.40 13.33 48.96 42.45 32.90
LONGHEADS - 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 6.39 9.67 53.85 44.22 29.12

w/ NTK init - 16.87 30.32 38.59 36.04 26.72 10.21 31.28 20.91 24.46 55.67 76.72 39.07 6.07 14.67 49.97 40.27 32.37

Table 8: The results of different methods based on the LLaMA-2-7B-Chat model on LongBench.

7148

