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Abstract

We present an approach for generating differ-
entially private synthetic text using large lan-
guage models (LLMs), via private prediction.
In the private prediction framework, we only
require the output synthetic data to satisfy dif-
ferential privacy guarantees. This is in contrast
to approaches that train a generative model on
potentially sensitive user-supplied source data
and seek to ensure the model itself is safe to
release. We prompt a pretrained LLM with
source data, but ensure that next-token predic-
tions are made with differential privacy guaran-
tees. Previous work in this paradigm reported
generating a small number of examples (<10)
at reasonable privacy levels, an amount of data
that is useful only for downstream in-context
learning or prompting. In contrast, we make
changes that allow us to generate thousands of
high-quality synthetic data points, greatly ex-
panding the set of potential applications. Our
improvements come from an improved privacy
analysis and a better private selection mecha-
nism, which makes use of the equivalence be-
tween the softmax layer for sampling tokens
in LLMs and the exponential mechanism. Fur-
thermore, we introduce a novel use of public
predictions via the sparse vector technique, in
which we do not pay privacy costs for tokens
that are predictable without sensitive data; we
find this to be particularly effective for struc-
tured data.

1 Introduction

Differentially private mechanisms process a source
dataset potentially containing sensitive user infor-
mation and perform a useful computation — as
simple as calculating a mean, or as complex as
training an ML model — whose output can be
safely shared while protecting the privacy of users
who contributed to the dataset.

*Authors ordered alphabetically. Author contributions are
listed at the end.

Perhaps the most general-purpose differentially
private mechanism is one that produces a synthetic
version of its input dataset, as the output of such
a mechanism would be suitable for all the same
purposes as the original dataset. For example, a
private synthetic dataset can be used to train an ML
model, but can also be used for auxiliary tasks such
as feature engineering, hyperparameter tuning, and
quality monitoring.

There has been recent interest in using large-
language models (LLMs) to generate differentially
private versions of text datasets. Existing ap-
proaches can be classified into several categories.
Private fine-tuning methods privately adjust the pa-
rameters of an LLM on the input dataset, using an
algorithm such as differentially private stochastic
gradient descent (DP-SGD), and then prompt the
LLM to generate similar text. Fine-tuning methods
have been used to produce high-quality synthetic
data, but the training procedure can be prohibitive,
available only to those with the time, compute, and
access necessary to train state-of-the-art LLMs con-
taining billions of parameters.

Private prediction methods do not modify the
LLM parameters at all. Instead, they directly
prompt the LLM with text from the source dataset,
asking for similar text in response, and then perturb
the LLM’s token distribution (i.e., its last layer) to
ensure that each sampled token, and thus the entire
generated response, is private. Since no training is
required, private prediction methods can quickly
generate synthetic data, typically producing some
data within minutes instead of hours, which allows
for rapid prototyping and iteration. However, un-
like private fine-tuning, the guarantees of private
prediction methods degrade with the volume of
data that is generated. Consequently, existing pri-
vate prediction methods have mostly been used in
applications that require only small amounts of syn-
thetic data (Tang et al., 2024), sharply limiting their
practicality.
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Figure 1: Algorithm 1, visualized. An LLM receives a batch of prompts, each instructing to generate text similar to a piece of
sensitive text. Synthetic text is generated token by token, by running inference on the batch in parallel. In each step, the logit
vectors produced downstream of sensitive text are aggregated and sampled from with differential privacy. Every token sampled
in such way incurs a privacy cost, motivating us to include an auxillary public prompt and sample from its logits when similar to
the sensitive logits.

1.1 Our contributions

In this paper we describe a new private prediction
method that produces hundreds of times as much
synthetic data as a state-of-the-art private predic-
tion method, while maintaining a comparable pri-
vacy guarantee. Similar to some existing work,
our method is based on running LLM inference
on several subsets of the input data in parallel and
privately aggregating their token distributions to
generate synthetic text. However, our approach is
distinguished by three novel algorithmic elements
that lead to its improved performance:

1. Better private token selection. Instead of
protecting the privacy of the entire token distribu-
tion with Gaussian or Laplace noise, we leverage
the uncertainty inherent in sampling to ensure pri-
vacy. We clip and aggregate token logits before
standard softmax sampling — which is differen-
tially private, since it can be viewed as the expo-
nential mechanism. Our approach induces much
less distortion of the original token distributions to
achieve the same level of privacy than prior work.

2. Avoiding prefix re-sampling. Prior work gen-
erated each token using a random subset of the
input data, leveraging privacy amplification by sub-
sampling in their analysis. This is computationally
undesirable, as it requires repeated re-computation
of the prefix for each decoding step, thus limiting
scalability towards generating large synthetic cor-

pora. Indeed, prior work describes this re-sampling
as the “main weakness” of the approach (Tang et al.,
2024). To resolve the problem, we instead gener-
ate each synthetic example using a fixed disjoint
subset of the input data, which yields substantial
savings in privacy cost – via parallel composition –
while allowing us to pay linear instead of quadratic
non-attention FLOPs in terms of sequence length
via KV cache accelerated decoding.

3. Leveraging public predictions. Our method
uses an auxillary token distribution from an LLM
without access to sensitive data, and draws the next
token from that distribution whenever it is very
similar to the token distribution induced by the
sensitive data. Our method incurs no privacy cost
when outputting “obvious” tokens, and as a result,
only a fraction of the tokens in the synthetic data
are generated using sensitive data (as little as 20%
in structured datasets). We leverage the sparse vec-
tor technique to privately calculate distributional
similarity.

Taken together, the combination of these algo-
rithmic techniques leads to significant improve-
ments over prior work. Roughly speaking, (1) and
(2) above keep our inference closely aligned to
standard (non-DP) inference.

In our experiments, we generate private syn-
thetic versions of publicly available, benchmark
machine learning datasets, and then use the syn-
thetic datasets for downstream classification and ex-
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traction tasks. Owing to the increased quantity and
quality of our synthetic data, we improve over an
existing state-of-the-art private prediction method
in terms of downstream accuracy. Furthermore,
while prior work in this paradigm only generated a
small (<10) number of examples, we demonstrate
the ability to generate thousands of training exam-
ples, enough for fine-tuning downstream models.

Finally, since synthetic data is intended for a
wide variety of applications, we also evaluate data
quality using a metric that is orthogonal to per-
formance on downstream tasks. Specifically, we
generate synthetic versions of a publicly available
dataset containing highly structured data records,
each of which is encoded as a JSON object. Our
results demonstrate that the sparse vector technique
helps preserve data structure at high privacy levels.

2 Related work

Private fine-tuning is widely used for synthetic text
generation. Yue et al. (2023) created private syn-
thetic versions of text datasets by using DP-SGD
(Abadi et al., 2016) to fine-tune an LLM on the
sensitive data. Kurakin et al. (2024) showed that
parameter efficient approaches to fine-tuning, such
as LoRA (Hu et al., 2022) can improve the qual-
ity of the synthetic data. Wu et al. (2024a) took a
two-stage approach: First they fine-tuned an LLM
on a public dataset that closely resembled the sen-
sitive data (which was itself generated by an LLM
using carefully designed prompts); then they com-
pleted the fine-tuning process by running DP-SGD
on the sensitive dataset. Concurrent to the present
work, Tran and Xiong (2024) describe a private
fine-tuning approach for generating synthetic tabu-
lar data that is formatting compliant.

Private prediction (Dwork and Feldman, 2018)
is an alternate approach to private machine learn-
ing that only guarantees the privacy of the predic-
tions output by an ML model, and not the model
itself. The predominant way this is realized is
via subsample-and-aggregate (Nissim et al., 2007):
First sensitive data is split into disjoint partitions;
then non-private predictions are made from each
partition and privately aggregated. PATE (Paper-
not et al., 2017, 2018) employs this approach to
get answers to a limited set of image classifica-
tion queries, which are then used to train a student
model that can be queried indefinitely.

Private prediction has been applied to synthetic
text generation by viewing each token sampled

by an LLM as a ‘prediction’, and perturbing the
LLM’s token distributions to ensure their privacy.
Tang et al. (2024) added noise to several indepen-
dent token distributions and averaged them, while
Hong et al. (2024) selected the most popular token
among the token distributions using the Limited-
Domain mechanism (Durfee and Rogers, 2019).
These methods can avoid the time, compute, and
access required to fine-tune an LLM with billions
of parameters. However, a privacy loss is suffered
for each token produced in this manner. As a result,
previous work has only been able to generate a
very small number of synthetic examples at reason-
able privacy levels (fewer than 10). Other work has
applied private prediction techniques to LLMs (Ma-
jmudar et al., 2022; Duan et al., 2023), including in
combination with fine-tuning (Ginart et al., 2022;
Flemings et al., 2024), but not for the purpose of
synthetic text generation.

Finally, another distinct set of approaches are
private filtering methods. Private filtering methods
operate directly on whole LLM responses and a
large corpus of public data that does not require
protection. Yu et al. (2024) and Xie et al. (2024)
used the sensitive responses to privately select simi-
lar responses from the public dataset. Similarly, Wu
et al. (2024b) aggregate response embeddings and
select the public response that is closest in embed-
ding space.1 One limitation of filtering methods is
that the menu of possible responses is constructed
without signal from the new source dataset.

3 Method

3.1 Standard LLM inference

Before describing our algorithm for generating pri-
vate synthetic text, we review the standard algo-
rithm for LLM inference. Let X be the token vo-
cabulary (i.e., the set of all possible tokens), and let
v = |X | be the vocabulary size. A token sequence
is an element of X ∗, and a logit vector is an ele-
ment of Rv (one logit per token in the vocabulary).
If x1 and x2 are token sequences then we write
x1x2 ∈ X ∗ to denote their concatenation.

A decoder-only LLM can be viewed as a func-
tion logits : X ∗ → Rv that maps each token
sequence to a logit vector. Standard LLM in-
ference generates a response x ∈ X ∗ by initial-
izing x = p, where p ∈ X ∗ is the prompt,

1Wu et al. (2024b) also proposes a non-filtering approach
based on privately selecting common keywords among the
sensitive data and using them to prompt an LLM.
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and then repeatedly executes the following pro-
cedure: (1) Let z = logits(x); (2) draw token x
from softmax(z/τ); and (3) append x to x. Here
softmax(z/τ) is the distribution that assigns prob-
ability proportional to exp(zi/τ) to the ith token,
and τ > 0 is a temperature parameter that flat-
tens or sharpens the distribution. The procedure
terminates when x = <eos>, a special token that
indicates the end of the response.

3.2 Our algorithm

One straightforward approach to generating a syn-
thetic version of a sensitive piece of text would
be to prompt an LLM with ‘Please generate text
similar to: <sensitive text>’. However, this could
easily lead to a privacy violation, as the response
could retain the semantics of the input sensitive
text.

Algorithm 1 describes our method for privately
generating a dataset of synthetic examples X from
a dataset of sensitive prompts D. Each prompt
in D resembles the sample prompt given above.
But instead of using a single prompt to generate
a synthetic example, Algorithm 1 takes a batch of
prompts S and runs LLM inference in parallel on
each prompt. A synthetic example is generated
one token at a time, with the average of the logit
vectors across the batch defining the distribution
from which the next token is randomly selected.
Before averaging, a logit vector z is clipped and
re-centered using the function

clipc(z)i = max{−c, zi −max
j
{zj}+ c} (1)

which maps each component i of z into the target
clipping range [−c, c]. Forcing each logit to lie
in a bounded range is key to proving the privacy
guarantee for our algorithm (see §4). While several
functions can achieve this purpose, Eq. (1) has an
additional desirable property: If the components of
z can be shifted by a constant so that they all lie in
the interval [−c, c], then clipc(z) is one such shift.
This property is desirable because the distribution
softmax(z) is invariant to any constant shift of z.
Empirically, we found that Eq. (1) performed bet-
ter than other functions considered. For example,
regular clipping to the range [−c, c] without recen-
tering requires twice as large c to sample without
distortion (see §B).

Since the average logit vector is computed us-
ing sensitive prompts, each token selected from a

Algorithm 1 Generate private synthetic examples
Parameters: LLM logits(·), public prompt ppublic, ex-
pected batch size s, private tokens to sample r. Sam-
pling: clipping bound c, temperature τ , public tempera-
ture τpublic. Public optionality: public/private distribution
distance d(·, ·), threshold θ, noise level σ.
Input: Dataset of sensitive prompts D; each prompt con-
tains a sensitive example
Output: Dataset of synthetic examples X

1: X ← ∅
2: Let S be a partition of D into disjoint batches
3: for each batch S ∈ S do
4: θ̂ ← θ + Laplace(σ) # Init noisy threshold

5: t← 0 # Private token counter

6: while t < r do
7: x← Empty token sequence
8: while x does not end with <eos> do
9: Z ← {logits(px) : p ∈ S}

10: zpublic ← logits(ppublicx)

# Check if pub/priv distributions are far

11: d̂← d(Z, zpublic) + Laplace(2σ)

12: if d̂ ≥ θ̂ then # Sample priv token

13: z̄← 1
s

∑
z∈Z clipc(z)

14: x ∼ softmax(z̄/τ)

15: t← t+ 1

16: θ̂ ← θ + Laplace(σ)

17: else # Sample pub token

18: x ∼ softmax(zpublic/τpublic)

19: Append x to x

20: X ← X ∪ {x}
21: return X

distribution determined by the average logit vector
incurs a privacy cost. To minimize this cost, Algo-
rithm 1 also has access to a non-sensitive public
prompt, ppublic, and uses this prompt to generate
the next token whenever doing so does not signifi-
cantly change the distribution from which the next
token is drawn. The distance function used to make
this determination is

d(Z, zpublic) = ‖1

s

∑

z∈Z
pz − pzpublic‖1, (2)

where pz := softmax(z), Z are the logit vectors
computed for each sensitive prompt in S, zpublic is
the logit vector computed using ppublic, and s is the
expected batch size. When this distance is small,
Algorithm 1 outputs a public token instead of a
private token. The privacy guarantee for Algorithm
1 leverages the analysis of the sparse vector tech-
nique (Dwork et al., 2009), and shows that while
privacy degrades with the number of private output
tokens, it is independent of the number of public
output tokens (see §4). Empirically, we observe
that the fraction of output tokens that must be pri-
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vate in order to generate high-quality synthetic data
can be as low as 20% for highly structured datasets.

Note that the first step of Algorithm 1 partitions
the input dataset of sensitive prompts into disjoint
batches. We do not prescribe a procedure for as-
signing prompts to batches in Algorithm 1 since
many batching approaches are admissible as long
as they satisfy a minor technical assumption re-
quired for the privacy analysis of Algorithm 1,
which we explain in §4. While the batches are
not required to be any particular size, the algorithm
runs faster if each batch has size equal to the ex-
pected batch size s. And while prompts can be
batched together (almost) arbitrarily, more tailored
batching can lead to better synthetic data quality.
For example, in the experiments in §5, where we
generate synthetic versions of ML training datasets,
each sensitive prompt contains a label. In those
experiments we assign prompts with the same label
to the same batch.

3.3 Comparison to prior algorithms
Two major features of Algorithm 1 are that it lever-
ages the inherent randomness of token sampling
to guarantee privacy, and that it further reduces
privacy cost by using public data to generate a por-
tion of the synthetic data. Some prior work also
incorporated these algorithmic ideas, but with key
differences. Instead of clipping logits to ensure
that the token sampling is private, Majmudar et al.
(2022) mixed each sensitive token distribution with
the uniform distribution. This approach induced
a dependence on the vocabulary size in their pri-
vacy guarantee, and since LLM vocabularies are
typically very large, the resulting privacy guarantee
was quite weak: Majmudar et al. (2022) noted that
setting the differential privacy parameter ε lower
than 50 produced synthetic data that was “unus-
able”. Flemings et al. (2024) guaranteed the pri-
vacy of token sampling by mixing each sensitive
token distribution with a public token distribution,
but their approach was based on aggregating a set
of fine-tuned models, not a set of prompts. Neither
Majmudar et al. (2022) nor Flemings et al. (2024)
aim to generate synthetic data.

Tang et al. (2024) found that limiting the token
vocabulary to a fixed set of the most popular 100
public tokens caused their synthetic data genera-
tion algorithm to exhibit greater stability. However,
if the sensitive data contains many tokens that are
rare in public data, their approach cannot produce
synthetic data that is very similar to the sensitive

data. By contrast, our approach compares public
and private token distributions on-the-fly, and de-
termines which one to use for sampling the next
token by balancing a trade-off between privacy and
quality. Also, Tang et al. (2024) used a different
random subset of prompts to generate each token,
and left as an open problem how to use a single
subset to generate every token in a synthetic ex-
ample. Our algorithm resolves this open problem,
and consequently yields both improved privacy and
greater computational efficiency (see §6).

4 Privacy analysis

In this section we state formally how Algorithm
1 preserves the privacy of the sensitive prompts it
uses to generate synthetic examples.

Let D be the set of all possible prompt datasets.
A mechanism is a randomized function with do-
main D. Note that Algorithm 1 is a mechanism.
We say that a pair of prompt datasets D,D′ ∈ D
are neighbors if there exists a prompt p such that
D = D′∪{p} orD′ = D∪{p}. In the differential
privacy literature this is commonly referred to as
the add/remove neighbor relation.

Definition 1 (Dwork et al. (2006)). A mech-
anism M satisfies (ε, δ)-differential privacy if
Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ for
any neighboring datasets D,D′ ∈ D and subset O
of the range of M .

Theorem 1 below provides a differential privacy
guarantee for Algorithm 1. The proof of Theorem
1 requires a technical assumption about how the
prompts are partitioned into batches in the first step
of the algorithm.

Assumption 1. In Algorithm 1, the assignment of
a prompt to a batch depends only on the prompt
itself, and not on the other prompts.

The most straightforward way to satisfy Assump-
tion 1 is to apply a hash function to each prompt and
then use the hash value to determine its assigned
batch. For example, if h is the hash value, n is the
number of prompts and s is the expected batch size,
then we can assign the prompt to the (h mod n

s )th
batch. If we want to batch together prompts that
share a certain attribute (like a label), we can apply
another hash function to that attribute and concate-
nate the hash values. Using hash functions for
batch assignment can lead to batches whose sizes
differ from the expected batch size s, but this does
not impact the validity of Theorem 1.
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Theorem 1 (Privacy of Algorithm 1). Suppose As-
sumption 1 holds. Let ρ = r

(
1
2

(
c
sτ

)2
+ 2

(sσ)2

)
.

For all ε ≥ 0, Algorithm 1 satisfies (ε, δ)-
differential privacy, where

δ = inf
α∈(1,∞)

e(α−1)(αρ−ε)

α− 1

(
1− 1

α

)α
.

Also, for all δ ∈ (0, 1], Algorithm 1 satisfies (ε, δ)-
differential privacy, where

ε = ρ+
√

4ρ log(1/δ).

The proof is in §C and makes use of sharp pri-
vacy analyses of: (1) zCDP to approximate DP
conversion (Canonne et al., 2020); and (2) zCDP
bounds for the exponential mechanism (Cesar and
Rogers, 2021).

5 Experiments

Gemma 1.1 2B IT (Gemma Team, 2024) is the
data generator in our main private prediction ex-
periments. We choose it due to its lightweight,
open-source JAX implementation2 that makes easy
to implement and share sampling algorithms. Ta-
bles 1a and 1b give an overview of datasets and
models used.

Dataset ntrain Description

AGNews 120,000 4-way news classification
TREC 5452 6-way query classification
DBPedia 560,000 14-way topic classification
MIT-G 2,953 Movie genre extraction
MIT-D 1,561 Movie director extraction
IMDB 25,000 2-way review classification
Yelp 560,000 2-way review classification
WikiMoviesJSON 27,412 JSON with 6 fields

(a) Overview of datasets used.

Model Usage

Gemma 1.1 2B IT Generation; private prediction
LaMDA 8B Generation; DP fine-tuning

GPT-3 babbage-002 Evaluation; in-context learning
BERT-Base 12/768 110M Evaluation; fine-tuning

(b) Overview of models used in main experiments.

Table 1: Overview of datasets and models used in our main
experiments. Datasets are benchmark classification and ex-
traction tasks used in prior work on private synthetic text
generation, with the exception of WikiMoviesJSON, which is
used for structured data experiments. LaMDA and Gemma are
used for synthetic data generation, while the other models are
used to measure how useful our synthetic data is for improving
accuracy on real test data.

We perform 3 sets of experiments, targeting var-
ious datasets and utility criteria:

2https://github.com/google-deepmind/gemma

In-context learning (§5.1). We generate exam-
ples to use as in-context exemplars for prompt-
ing an LLM. We report downstream accuracy on
real test examples, when prompted with synthetic
data, on 3 classification tasks (AGNews (Zhang
et al., 2015), DBPedia (Zhang et al., 2015), TREC
(Voorhees and Tice, 2000)) and 2 extraction tasks
(MIT-G, MIT-D (Liu et al., 2012)).

Fine-tuning (§5.2). We generate synthetic exam-
ples to use for fine-tuning a BERT classifier. We
report downstream accuracy on real test examples
for 3 classification tasks (IMDB (Maas et al., 2011),
Yelp (Zhang et al., 2015), AGNews (Zhang et al.,
2015)).

Structured data (§5.3). We generate examples
that must adhere to structural constraints to be use-
ful synthetic data. We consider a JSON generation
task (WikiMoviesJSON (Rust, 2024)), evaluating
structure preservation.

5.1 In-context learning

Experimental setup. Using our method, we gen-
erate 90-1500 examples using Gemma 1.1 2B IT.
We compare against real examples, and results re-
ported in the prior work of Tang et al. (2024), where
they generated 4-shot examples for in-context learn-
ing.3 To evaluate generated synthetic data, we put
synthetic examples in the context window before
querying with the real test example, as shown in
Figure 2.

1 Classify the following examples:
2 Text: lorem ipsum # synthetic text 1
3 Answer: label
4 # ...
5 Text: sed do eiusm # synthetic text n
6 Answer: label
7

8 Text: excepteur si # test text
9 Answer:

Figure 2: Example of n-shot in-context learning evaluation
for synthetic data.

Results. Results are presented in Table 2. Our
gains in quantity while maintaining quality are
realized in terms of 64-shot in-context learning
accuracy. In some cases, we can generate more
examples, but we limit ourselves to 64 for these

3It is no longer possible to reproduce their results, due to
changes in the OpenAI API since publication: GPT-3 babbage
is now deprecated, and it is no longer possible to query for top
100 logprobs, which is required by their method.
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GPT-3 babbage-002 Acc. (%)*

ε Method Shots Reported in Model AGNews DBPedia TREC MIT-G MIT-D

0 Zero shot 0 This work - 24.80.0 12.00.0 28.40.0 29.60.0 28.80.0

∞

Real data
4

This work -
75.33.0 73.60.3 34.95.0 56.02.0 83.15.3

64 84.71.5 92.51.6 50.36.1 56.45.4 89.10.7

Tang et al. (2024) 4 Tang et al. (2024)* GPT-3 babbage 69.34.8 82.33.7 50.66.9 54.47.0 -

Ours
4

This work Gemma 1.1 2B IT
76.84.8 72.32.5 38.86.0 47.72.5 81.72.4

64 77.51.8 91.51.7 57.93.4 56.41.2 87.10.2

1
Tang et al. (2024)

4 Tang et al. (2024)* GPT-3 babbage 64.13.9 81.23.0 50.74.1 46.37.8 69.27.9

4 This work Gemma 1.1 2B IT 74.93.8 80.93.6 36.72.2 34.19.3 78.71.9

Ours
4

This work Gemma 1.1 2B IT
75.93.5 75.10.5 39.23.7 47.16.0 84.51.0

64 78.71.8 90.42.6 53.61.3 51.62.3 86.40.6

Table 2: In-context learning results with GPT-3 babbage-002. We report mean and standard deviation over 3 random samplings
(equally many from each label for classification; fully random for extraction) of synthetic/real data. (*) Note: For the results
reported in Tang et al. (2024), they use GPT-3 babbage (now deprecated; we use GPT-3 babbage-002) as the downstream
in-context learner, and use the top 100 logprobs for contextual calibration (only top 5 are available now). While not directly
comparable, we report their results for context.

evaluations for cost and efficiency reasons. Our
results at 64 shots are comparable to real data at
64 shots. Notably, our synthetic data at 64 shots
improves over real data at 4 shots – a rough upper
bound on the performance of methods limited to
generating 4 examples (e.g., Tang et al. (2024)).
We also improve over results reported in Tang et al.
(2024) – however as there are differences in the
experimental setup, we also report the results of
our re-implementation.4

We evaluate with GPT-3 babbage-002 which has
a 16K context window. We report results on AG-
News, DBPedia, TREC, MIT-G, and MIT-D using
the implementation of Zhao et al. (2021). Follow-
ing the work of Tang et al. (2024), we enable con-
textual calibration (Zhao et al., 2021) for classifica-
tion but not extraction tasks. Our evaluation setup
is a best-effort reproduction of their setup, which
is no longer possible to completely reproduce due
to changes to OpenAI API access (see Table 2 cap-
tion). Due to cost, we follow prior work (Bertsch
et al., 2024; Ratner et al., 2023; Lu et al., 2022;
Zhao et al., 2021) and opt to subsample test sets to
250 test examples. We run 3 seeds of sampling of
exemplars from synthetic/real data. Additionally,
we present a limited set of results on Gemma 2
2/9/27B IT, studying the effect of model size on
classification performance in §A.2.

5.2 Fine-tuning

We achieve significant improvements over the best
available private inference method for in-context

4Specifically, we use their best hyperparameters (from
Appendix E, Table 9 of (Tang et al., 2024)) and algorithm, but
with our model, prompt, and evaluation setup.

learning tasks. Since our method is capable of
generating thousands of synthetic examples at
reasonable privacy budgets, it is natural to ask
whether it can compete with state-of-the-art private
fine-tuning methods, which can generate infinitely
many synthetic examples once the up-front costs
of model training are paid. This makes them capa-
ble of producing enough data to train downstream
classification models.

Experiment setup. We use our approach to gen-
erate a large quantity of synthetic data for the pur-
poses of fine-tuning 110M BERT-Base models. We
consider 3 classification tasks used in prior work
on private fine-tuning (Kurakin et al., 2024)), fol-
lowing the exact same evaluation procedure. We
omit comparison to prior private prediction work
(e.g. (Tang et al., 2024)), as they only generate 4
examples which is insufficient for fine-tuning.

Results. Main results are presented in Table 3.
Across various datasets and privacy levels, we gen-
erate between 2.5K (IMDB, ε = 1) and 200K
(Yelp, ε = 10) examples for fine-tuning. Prior
work generating fewer than 10 examples using pri-
vate prediction were unable to compare with pri-
vate fine-tuning on these tasks. While there re-
mains a gap between the best fine-tuning and best
private inference methods on downstream classifi-
cation tasks, we achieve reasonable performance,
even out-performing or matching the baseline of
privately tuning all the parameters in the model
reported in Kurakin et al. (2024).

Limited data regime. We additionally consider
the limited data regime. In §A.1 we present exper-
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BERT Acc. (%)

IMDB @ ε Yelp @ ε AGNews @ ε

Method Reported in Model ∞ 1 3 10 ∞ 1 3 10 ∞ 1 3 10

Real data (Kurakin et al., 2024) - 93.70.1 - - - 97.60.1 - - - 93.70.1 - - -

Fine-tune
(Kurakin et al., 2024) LaMDA 8B

93.20.2 79.11.7 83.90.6 84.00.7 95.90.1 84.10.3 84.60.1 84.20.3 91.10.1 65.72.9 65.32.7 65.15.3

Prompt-tune 92.00.1 88.10.4 87.40.2 90.70.2 93.90.1 94.10.1 93.50.1 94.10.1 88.30.3 83.90.8 86.20.2 86.90.1

LoRA 91.60.2 90.00.3 90.60.2 91.30.2 96.40.1 95.50.1 95.60.1 95.90.1 91.80.2 89.40.1 89.60.1 90.00.1

Ours This work Gemma 1.1 2B IT 83.62.9 82.72.1 83.61.9 85.52.3 91.80.6 91.10.2 91.60.8 92.60.2 81.21.2 79.81.8 79.32.1 79.80.3

+ SVT This work Gemma 1.1 2B IT - 84.31.1 84.41.5 85.01.0 - 88.40.6 89.10.3 89.01.9 - 79.20.3 79.80.4 80.40.6

Table 3: Results of fine-tuning on real and synthetic data with BERT. We report mean and standard deviation over 3 runs of
downstream fine-tuning and evaluation. We compare to results reported in (Kurakin et al., 2024) that fine-tunes a synthetic data
generator with DP-SGD. We generate 2.5-200K examples with private prediction, which suffices to train reasonably performing
models on.

iments on AGNews1K, a 1024-subsample of AG-
News. Our method, which employs parallel com-
position, is “pay-as-you-go”, i.e., we can put in a
small amount of data to get out a small amount,
while preserving quality. On the other hand, fine-
tuning based approaches necessarily pay upfront
to ensure the model and all future generations are
private. This means that without sufficient data,
all outputs will be low quality. Results in Table 5
demonstrate that our private prediction method gen-
erates more useful examples for in-context learning
in this limited data regime.

5.3 Structured data

We conclude our experiments with a demonstra-
tion of the lift in performance provided by using
the sparse vector technique (SVT) against a public
prompt. Informally, the privacy loss of our method
only scales with the information density of a new
example vis-a-vis the public prompt. This contrasts
with other private inference methods that incur pri-
vacy loss on every token. This is especially useful
for structured data, where we avoid incurring pri-
vacy loss on syntactic elements of the data.

Experiment setup. For JSON generation, we
evaluate on a dataset of information about Ameri-
can movies scraped from Wikipedia (Rust, 2024).
Entries contain fields such as title, year, cast,
and extract (a short synopsis). We lightly cu-
rate the data: we omit uninteresting fields (i.e.,
thumbnail dimensions and URLs) and remove en-
tries with incomplete entries. We refer to the re-
sulting 34,266 JSON examples with 6 fields as
WikiMoviesJSON. We evaluate two criteria: the
rate at which output generated constitutes well-
formed JSON (Parses (%)), and rate at which the
output passes basic schema validation (Validates
(%)). This includes checks such as: no extra fields,

ε Method τ Parses (%) Validates (%) m

1

Ours
2 80.61.3 74.21.9 94.31.2

2.5 4.91.1 1.50.1 138.07.5

+ SVT, θ = 0.9
2 91.72.1 88.63.2 289.719.4

2.5 74.12.7 64.04.1 356.725.9

+ SVT, θ = 1.5
2 95.51.0 93.10.7 893.020.2

2.5 79.31.0 72.71.4 1178.310.1

Table 4: Results for generating JSON records from Wiki-
MoviesJSON. We report mean and standard deviation over 3
runs of dataset generation. τ refers to the sampling temper-
ature, and m refers to the number of raw samples produced
(before parsing and validation checks). The batch size used
is 255. We present results at two different SVT thresholds θ,
and see gains in structure preservation and quantity.

all required fields are present, values are the cor-
rect type, and other custom constraints (e.g. no
whitespace in the href field).

Results. Results are in Table 4. Targeting a large
number of examples at small ε necessitates in-
creases in the sampling temperature τ , to ensure
privacy, but compromises the well-formed-ness of
outputs. For structured generation, there is a large
amount of tokens that (a) are crucial to get right for
structure preservation, and (b) easily predictable
without access to sensitive data. Here the SVT en-
ables us to get these tokens reliably and for free,
leading to better generation quantity.

6 Discussion

We believe that our significantly improved perfor-
mance relative to Tang et al. (2024) is primarily
attributable to two algorithmic innovations.

First, for each generated token, Tang et al. (2024)
preserve the privacy of the entire distributions from
which the token is sampled (by taking argmax),
even though only the token itself is included in
the synthetic data. By contrast, our method uses
a discrete choosing mechanism, the exponential
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mechanism. As a result, we do not need to main-
tain a DP version of the entire token distribution to
release a single token. This decision leads to signif-
icantly lower noise requirements, as a straightfor-
ward calculation reveals. Empirically, we obtained
good synthetic data quality with s = 250, τ = 2,
c = 10 and δ = 10−6. In order to switch to the
Gaussian mechanism using its standard (ε, δ)-DP
guarantee, and achieve comparable privacy guaran-
tees we would would require σ ≈ 0.53 to achieve
a comparable privacy guarantee. (See §D). Better
analyses of the Gaussian mechanism exist, but do
not offer much help. Using the improved analy-
sis in Balle and Wang (2018) to attain the same ε
would require σ ≈ 0.34. Conducting the analysis
so that both mechanisms have equivalent privacy
loss under zCDP yields σ = 0.2. These are all very
large noise magnitudes relative to probabilities in
[0, 1].5

Secondly, Tang et al. (2024) generated each to-
ken using a different random sample of the sensi-
tive prompts, which is computationally very expen-
sive, as it prevents the use of KV cache-accelerated
decoding, since the cache is invalidated upon ev-
ery resample. While resampling less often would
be more practical, Tang et al. (2024) noted that
in this case the privacy amplification benefits of
subsampling would not be adequately realized, and
characterized this limitation as the “main weakness”
of their approach. Instead, our method generates
each synthetic example using a fixed disjoint subset
of the sensitive prompts, allowing us to leverage
parallel composition in our analysis, and thus avoid
this privacy versus computation tradeoff.

7 Conclusion

As proprietary models become increasingly pow-
erful, we anticipate more practitioners will be able
to generate inferences from state-of-the-art mod-
els, while fewer practitioners will be able to train
networks that perform like state-of-the-art models.
This makes it increasingly important to develop pri-
vate prediction methods that compete with private
fine-tuning.

5To put independent noise of magnitude σ = 0.2 into
perspective: suppose the ground truth next-token prediction
is deterministic, i.e., p̄ = [1, 0, ..., 0] ∈ Rv , v = 256128 in
the case of Gemma. Now with probability ≥ 0.15, the noised
distribution p̃ has p̃1 < 0.8. Each other pi is ≥ 0.8 w.p.
≥ 3 · 10−5 independently. Hence the probability of one of
these being promoted to argmax is ≥ 0.15 · (1 − (1 − 3 ·
10−5)v−1) ≈ 0.15. At this rate, the chance of generating a
30 token span without a corruption is < 1%.

We demonstrate that private prediction can be
used to generate large amounts of synthetic text
with reasonable differential privacy guarantees. We
produce 2-3 orders of magnitude more private syn-
thetic data than what was demonstrated in prior
work in this paradigm. Access to more synthetic
data lets us fine-tune downstream models, as well
as yields performance improvements via many-shot
in-context learning. Furthermore, we introduce a
novel use of public models in which we are able to
sample predictable tokens at no privacy cost, which
is particularly effective for structured data.

Limitations

While our work demonstrates that private predic-
tion is a practical technique for privately generating
a large volume of high-quality synthetic data, there
remains a gap between our results and the results
obtained from privately fine-tuning the parameters
of the LLM. Currently, private prediction methods
pay a privacy cost for every generated token, while
private fine-tuning methods do not. Finally, any
method for ensuring data privacy will inevitably
entail some loss of data utility.

Author contributions
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A Additional experiments

A.1 Private prediction beats fine-tuning in
the limited data regime

We do LoRA fine-tuning with DP-SGD on AG-
News1K, with the same setup that beats our method
in the full data regime. We sample synthetic data
from the fine-tuned model. We also run our private
prediction method on AGNews1K. We evaluate per-
formance on 4 and 16 shot in-context learning with
GPT-3 babbage-002 (the same experimental setting
as §5.1). Our private prediction approach outper-
forms the fine-tuning setup that does better in the
full data regime.

ε Method Shots Model Acc. (%)

1
LoRA 4 LaMDA 8B 63.38.0

16 68.15.9

Ours 4 Gemma 1.1 2B IT 73.98.3

16 80.12.5

Table 5: Results on AGNews1K, a 1024-subsample of AG-
News. Our method is “pay-as-you-go”, and is capable of
generating a few high quality examples for in-context learn-
ing in this regime. On the other hand fine-tuning does worse
due to the stricter requirement that all future model outputs
must be private. Evaluation setup is the same in §5.1, except
here we run 16 instead of 64-shot, because 16 examples pro-
duced by the LoRA model fills up the entire context length of
babbage-002.

A.2 Effect of model size

We report results on the effect of the data genera-
tor’s size on in-context classification performance
on DBPedia. Our setup is the same as the exper-
iments in §5.1, with the change that we use the
Gemma 2 2/9/27B IT models to get more size
variation in the same model family. This neces-
sitated a slight change in the prompt (specifically,
we append to the instruction: “No formatting
or explanations.” For this evaluation, we see
limited improvement due to scale.

ε Shots Model Acc. (%)

1

4 Gemma 2 2B IT 75.70.8

64 91.20.0

4 Gemma 2 9B IT 76.41.2

64 92.41.4

4 Gemma 2 27B IT 76.92.2

64 91.91.9

Table 6: Results on DBPedia classification. Evaluation setup
is the same as in §5.1. We see limited improvement from the
increase in model size.

B Design choices

B.1 Logits clipping function

In Figure 3, we compare results for different logits
clipping functions. The baseline approach it to clip
all logits to the interval [−c, c] before aggregation
and softmax – we refer to this as “fixed interval
clipping”. Alternatively, we can clip to the range
[maxj{zj} − 2c,maxj{zj}] and then translate to
the interval [−c, c] (Eq. 1). In Figure 3 we plot the
distortion as a consequence of clipping in terms of
L1 error, and find that the latter approach allows us
clip more than twice as aggressively, thus improv-
ing the privacy guarantee, without compromising
utility.

C Proof of Theorem 1

Our proof of Theorem 1 is organized into sections.
§C.1 provides basic definitions. §C.2 and §C.3 es-
tablish key results related to composition and sen-
sitivity. §C.4 proves the privacy of simpler mecha-
nisms that each account for a portion of the func-
tionality of Algorithm 1. C.5 puts all the pieces
together and completes the proof.

C.1 Definitions

In §4 we defined neighboring prompt datasets. We
extend the definition to arbitrary sets.

Definition 2. Let U be a set. Let S, S′ ⊆ U . We say
that S and S′ are neighbors if there exists u ∈ U
such that S = S′ ∪ {u} or S′ = S ∪ {u}.

The sensitivity of a function is an upper bound
on how much its value can change over neighbors.

Definition 3. Let U be a set. Let k ≥ 1. Let
f : 2U → Rk. The sensitivity of f is

sup
S,S′

∥∥f(S)− f(S′)
∥∥
∞

where the supremum is over neighbors S, S′ ∈ U .

Zero-concentrated differential privacy (zCDP) is
a relaxation of ε-differential privacy.

Definition 4 (Bun and Steinke (2016)). A mecha-
nism M satisfies ρ-zCDP if

Dα(M(D) ‖M(D′)) ≤ ρα

for all α > 1 and neighboring datasets D,D′ ∈ D,
where Dα(P ‖ Q) is Rényi divergence of order α
betweeen distributions P and Q.
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(a) Distribution of L1 error induced by fixed interval clipping.

(b) Distribution of L1 error induced by clipping with recentering.

Figure 3: We sample a few hundred tokens using logits aggregation with no clipping. At each sampling step, we compute the
L1 distances between the post-softmax distributions of aggregated clipped logits vs. aggregated unclipped logits, at various
settings of c, and plot them in a histrogram. We observe less error, at lower choices of c when clipping with recentering (note the
x-axis scales).

C.2 Composition

Zero-concentrated differential privacy obeys a sim-
ple sequential composition rule.

Lemma 1. If mechanisms M1 and M2 satisfy ρ1-
zCDP and ρ2-zCDP, respectively, then the sequen-
tial composition of M1 and M2 satisfies (ρ1 + ρ2)-
zCDP.

Parallel composition is a well-known technique
in differential privacy that is useful for establishing
privacy guarantees in scenarios where a mechanism
is independently applied to disjoint subsets of a
dataset. Many versions of parallel composition
require that the subsets are chosen in a fully data-
independent manner. We show that the same result
holds under a weaker assumption.

Lemma 2. Let k be a positive integer. Let f be
a function that maps prompts into [k]. For any
dataset of prompts D and i ∈ [k] let

Di = {p ∈ D : f(p) = i}.

Let M be a mechanism that satisfies ρ-zCDP. If M̂
is the mechanism defined by

M̂(D) = (M(D1), . . . ,M(Dk))

then M̂ satisfies ρ-zCDP.

Proof. Let D,D′ ∈ D be neighboring datasets.
Without loss of generality assume D = D′ ∪ {p},
where p is a prompt. There exists j ∈ [k] such that
Di = D′i for all i 6= j and Dj = D′j ∪ {p}. We
have for all α > 1

Dα(M̂(D)‖M̂(D′)) =

k∑

i=1

Dα(M(Di)‖M(D′i))

= Dα(M(Dj)‖M(D′j))

≤ ρα

C.3 Sensitivity analysis

In this we compute the sensitivity of several func-
tions used in Algorithm 1. Each function depends
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on a set of logit vectors. Recall that a logit vector
is an element of Rv. Let

`(Z) =
1

s

∑

z∈Z
clipc(z)

where clipc(·) was defined in Eq. (1). Also recall
the distance function defined in Eq. (2):

d(Z, z) =

∥∥∥∥∥
1

s

∑

z′∈Z
pz′ − pz

∥∥∥∥∥
1

where pz = softmax(z).

Lemma 3. The function ` has sensitivity c
s , and for

all z ∈ Rv, the function d(·, z) has sensitivity 1
s .

Proof. Let Z,Z ′ ⊆ Rv be neighbors. Let z̃ ∈ Rv
be the logit vector they do not have in common.
We have

∥∥`(Z)− `(Z ′)
∥∥
∞ =

1

s
‖clipc(z̃)‖∞ ≤

c

s
.

We also have
∣∣d(Z, z)− d(D′, z)

∣∣

=

∣∣∣∣∣∣

∥∥∥∥∥
1

s

∑

z′∈Z
pz′ − pz

∥∥∥∥∥
1

−
∥∥∥∥∥

1

s

∑

z′∈Z′
pz′ − pz

∥∥∥∥∥
1

∣∣∣∣∣∣

≤
∥∥∥∥∥

1

s

∑

z′∈Z
pz′ −

1

s

∑

z′∈Z′
pz′

∥∥∥∥∥
1

=

∥∥∥∥
1

s
pz̃

∥∥∥∥
1

=
1

s

where we used the reverse triangle inequality.

C.4 Constituent mechanisms

In this section we prove privacy guarantees for sev-
eral simpler mechanisms that we will later compose
together to show that Algorithm 1 is private.

Both Algorithms 2 and 3 accept a sensitive
prompt dataset and a token sequence as input. Al-
gorithm 2 appends a private token to the token
sequence, while Algorithm 3 appends zero or more
public tokens to the token sequence. The operation
of both algorithms is governed by the parameters
of Algorithm 1 (e.g., temperature, noise level, etc).

Lemma 4. LetA(D,x0) be Algorithm 2. For each
x0 ∈ X ∗ the mechanism M : D 7→ A(D,x0)
satisfies ρ-zCDP, where ρ = 1

2( c
sτ )2.

Algorithm 2 Private token generation

Input: Sensitive prompt dataset D, initial to-
ken sequence x0

Output: Token sequence x ∈ X ∗
1: x← x0

2: Z ← {logits(px) : p ∈ D}
3: z̄← `(Z)

4: x ∼ softmax(z̄/τ)

5: Append x to x

6: return x.

Proof. Consider a function f : D → Rv with sen-
sitivity ∆. By an analysis of the exponential mech-
anism due to Cesar and Rogers (2021),6 choosing
a token according to the distribution softmax( ε

2∆)
satisfies 1

8ε
2-zCDP. Observe that mechanism M is

the exponential mechanism with f = 1
τ `, which by

Lemma 3 has sensitivity c
sτ .

Algorithm 3 Public token generation

Input: Sensitive prompt dataset D, initial to-
ken sequence x0

Output: Token sequence x ∈ X ∗
1: x← x0

2: θ̂ ← θ + Laplace(σ)

3: while True do
4: Z ← {logits(px) : p ∈ D}
5: zpublic ← logits(ppublicx)

6: d̂← d(Z, zpublic) + Laplace(2σ)

7: if d̂ ≥ θ̂ then
8: Break
9: else

10: x ∼ softmax(zpublic/τpublic)

11: Append x to x

12: return x.

Lemma 5. LetA(D,x0) be Algorithm 3. For each
x0 ∈ X ∗ the mechanism M : D 7→ A(D,x0)
satisfies ρ-zCDP, where ρ = 2

(sσ)2
.

Proof. Observe that mechanism M is an instance
of the AboveThrehold mechanism (Dwork et al.,
2009), which accepts a private dataset, a threshold,
and a sequence of queries as input. In each itera-
tion, the AboveThreshold mechanism applies the

6See also Rogers and Steinke (2021).
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next query in the sequence to the dataset and com-
pares it to a noisy threshold, and returns the index
of the first query that exceeds the threshold. The
queries can be chosen adaptively and adversarially.
In mechanism M , each query is specified by a to-
ken sequence x, and the index of the first query that
exceeds the threshold is determined by the length
of the returned token sequence. Furthermore, by
Lemma 3 each query has sensitivity 1

s . Thus by the
analysis due to Dwork et al. (2009), mechanism M
satisfies 2

sσ -differential privacy, which by Bun and
Steinke (2016) implies that mechanism M satisfies

2
(sσ)2

-zCDP.

C.5 Putting it all together

Consider a sequence of iterations of the inner loop
of Algorithm 1 in which the value of t (the private
token counter) is constant. Observe that the op-
eration of Algorithm 1 during these iterations is
equivalent to the sequential composition of Algo-
rithms 2 and 3, since these iterations generate zero
or more public tokens followed by a private token.7

Moreover, there are at most r such sequences of
iterations, since r is an upper bound on the pri-
vate token counter for any batch. By Lemmas 1, 4
and 5 we have that Algorithm 1 applied to a single
batch satisfies ρ-zCDP (where ρ is specified in the
statement of Theorem 1). And therefore by As-
sumption 1 and Lemma 2 we have that Algorithm
1 applied to the whole dataset satisfies ρ-zCDP. It
remains to convert this zCDP guarantee to an (ε, δ)-
differential privacy guarantee, which we do two
different ways using two existing results: Corollary
13 due to Canonne et al. (2020) and Lemma 3.5
due to Bun and Steinke (2016).

D Privacy-equivalent Gaussian noise

Given the average token distribution p̄ in a batch,
Tang et al. (2024) protect the privacy of p̄ by using
the Gaussian mechanism, which achieves (ε, δ)-

differential privacy with ε =

√
2 log(1.25/δ)

sσ , where
s is the batch size and σ is the standard deviation
of the noise added to each probability in p̄. On
the other hand, we use the exponential mechanism
to protect the privacy of a sample drawn from p̄,
which achieves ε-differential privacy with ε = 2c

sτ ,
where c is the maximum absolute value of any
log-probability in the batch and τ is the sampling

7The special treatment of the <eos> token complicates this
story a little, but we can always assume that the LLM ignores
any tokens before the last <eos> token.

temperature.
Empirically, we obtained good synthetic data

quality with s = 250, τ = 2, c = 10 and δ =
10−6.

Setting the ε values equal to each other yields

σ =
τ
√

log(1.25/δ)√
2c

, which is the noise level needed
for the two mechanisms to have comparable privacy
guarantees (setting aside that δ > 0, an omission
that only favors the Gaussian mechanism). Plug-
ging in the above parameters yields σ ≈ 0.53.

The analysis in Theorem 8 of Balle and Wang
(2018) does not admit a closed-form solution. In-
stead, we binary search for a solution to:

Φ

(
∆

2σ
− εσ

∆

)
− exp(ε)Φ

(
−∆

2σ
− εσ

∆

)
≤ δ

where Φ is the Gaussian cdf, ε = 2c
sτ , δ = 10−6,

and ∆ is the L2 sensitivity of a vector computed as
the average of s user-provided probability vectors,
namely ∆ = 1/s. This procedure yields σ ≈ 0.34.

Finally, equating the zCDP loss for the exponen-
tial mechanism given by ε2

8 = c2

2s2τ2
(Cesar and

Rogers (2021)) to that of the Gaussian mechanism
given by 1

2s2σ2 (Bun and Steinke (2016)), yields
σ = 0.2.

E Experiment details

E.1 Hyperparameter tuning
There are a significant amount of hyperparameters
associated with our approach. See Table 7 for a list
of the main ones and the values they take. In this
section we describe the hyperparameter evaluation
procedure, as well as the rationale for our decisions
on what hyperparameter settings to couple together
or that we altogether avoid running.

Hyperparameter evaluation procedure. For
fine-tuning experiments, we set aside a real val-
idation set consisting of 10% the real train set.
We choose dataset generation parameters based
on which resulting dataset induces the the best clas-
sifier on this real validation set. However, the pro-
cess of tuning the classifier itself on synthetic data
(choosing the best learning rate and checkpoint)
does not use real data – we do that tuning with
synthetic data. This is because the output of our
method is a dataset, and its usefulness to train a
model includes how well subsets of it can be used
for downstream task hyperparameter selection. Af-
ter identifying the best synthetic dataset in this
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manner, we run the tuning process based on syn-
thetic data only and report accuracy of the resultant
classifier on the real test set.

Hyperparameter choices. Based on initial ex-
periments, we found that setting c = 10 and τ = 2
produced well formed text, so we fix c = 10 and try
a low temperature (τ = 1.5) and a high tempera-
ture (τ = 2.25) setting. At τ = 2.25, we observed
text degeneration. This is due to the combination
of Gemma’s large vocabulary (256K) and clipping,
which raises the “probability floor” of nonsense
tokens. So for τ = 2.25 settings only, we follow
Tang et al. (2024) and reduce the vocabulary to the
public prediction’s top 1024. We emphasize that
(1) we do not do this for any of the other settings of
τ , and (2) use a larger value than prior work (they
use top 100).

Keeping other parameters fixed and increasing
the batch size s decreases ε. At the same time, it
raises the amount of compute spent to decode a
single example.8 Hence our approach for selecting
the batch size is based on the following: given a
target epsilon and dataset, choose s large enough
so that we can hit at least 1K examples at the low
temperature setting τ = 1.5. When targeting a
large ε, choosing large s results in too many tokens
to decode at too high of a cost per token.

For the sparse vector hyperparameters, we
consider the following paired (θ, σ) settings:
{(−∞,−), (0.3, 0.1), (0.5, 0.2), (0.7, 0.3)}. The
first setting corresponds to no use of the SVT, the
next 3 represent different privacy levels per token:
moving to the right uses noisier queries (less pri-
vacy budget) and more often uses the free public
tokens. For large datasets and target ε, we do not
run the high privacy settings (too much compute to
finish), and for smaller datasets and smaller ε we
omit the settings that do not produce at least 1K
examples.

E.2 Prompts used

We report the prompts used for our experiments.
Generally, we use the same prompt for private and
public predictions, with "<text of xxx>" in the
public prompt replaced with an actual private ex-
ample in the private prompt. The exception is for
WikiMoviesJSON (Figures 11 and 12), where the

8The way we interpret this is that s is a compute multiplier
that broadens the search space to include better utility config-
urations in the low ε regime. This is analagous to the role of
the noise multiplier σ in DP-SGD, where the best results at
low ε come from taking more steps at higher noise levels.

α Description Values

s batch size 127, 255, 511,
1023, 1535, 2047

c logits clip bound 10
τ temperature 1.5, 2, 2.25

θ SVT threshold −∞, 0.3, 0.5, 0.7
σ SVT noise level −, 0.1, 0.2, 0.2

τpublic public temperature 1.5

Table 7: Values for hyperparameters explored in this work.

public prompt contains a schema description in
place of the example.

F Artifacts

Tables 1a and 1b list all artifacts we use in this
work. AGNews, TREC, DBPedia, MIT-G, MIT-D,
IMDB, and Yelp are all standard academic datasets
permissible for research use; we cite their original
publications when introduced. WikiMoviesJSON
is scraped from Wikipedia data, courtesy of (Rust,
2024); their work is covered by an MIT license.
Wikipedia content is licensed under the Creative
Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA) and the GNU Free Documen-
tation License (GFDL).

We use open-source models BERT-Base, re-
leased by (Turc et al., 2019), and Gemma. Our
use of Gemma for academic purposes is in ac-
cordance of the Gemma terms of use: https:
//ai.google.dev/gemma/terms. GPT-3 is acces-
sible for academic purposes under OpenAI’s terms
of use, which supports educational and research
activities. LaMDA 8B is not publically available,
but we received sufficient authorization to use it for
the academic purposes of this paper.

G Compute budget

Our main experiments for synthetic data genera-
tion run on Gemma 1.1 2B IT. A run of synthetic
data generation takes between 8-48 accelerator
hours. Including exploratory runs and hyperpa-
rameter search, the total compute budget for this
project is roughly 14,000 accelerator hours.
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1 # [User]
2 Here are texts with News Type: Business.
3

4 Text: <text of News Type: Business >
5

6 Please give me another one.
7

8 # [Assistant]
9 Text:

Figure 4: Generation prompt for AGNews.

1 # [User]
2 Here are questions with Answer Type: Entity.
3

4 ```
5 Text: <question of Answer Type: Entity >
6 ```
7

8 Please give me another one.
9

10 # [Assistant]
11 ```
12 Question:

Figure 5: Generation prompt for TREC.

1 # [User]
2 Here are entries of Category: School.
3

4 Entry: <entry of Category: School >
5

6 Please give me another one.
7

8 # [Assistant]
9 Entry:

Figure 6: Generation prompt for DBPedia.

1 # [User]
2 Give me text about a film and the extracted Phrase about its Director.
3

4 Phrase: "josh trank"
5 Text: "<text containing phrase "josh trank">"
6

7 Please give me another Phrase and Text: "josh trank". IMPORTANT: The exact
Director phrase "josh trank" must be mentioned in Text.

8

9 # [Assistant]
10 Phrase: "josh trank"
11 Text: "

Figure 7: Generation prompt for MIT-D.
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1 # [User]
2 Give me text about a film and the extracted Phrase about its Genre.
3

4 Phrase "comedy"
5 Text: "<text containing phrase "comedy">"
6

7 Please give me another Phrase and Text. IMPORTANT: The exact Genre phrase
"comedy" must be mentioned in Text.

8

9 # [Assistant]
10 Phrase: "comedy"
11 Text: "

Figure 8: Generation prompt for MIT-G.

1 # [User]
2 Here are texts with Sentiment: Negative.
3

4 Text: <text of Sentiment: Negative >
5

6 Please give me another one.
7

8 # [Assistant]
9 Text:

Figure 9: Generation prompt for IMDB.

1 # [User]
2 Here are texts with Sentiment: Negative.
3

4 Text: <text of Sentiment: Negative >
5

6 Please give me another one.
7

8 # [Assistant]
9 Text:

Figure 10: Generation prompt for Yelp.

1 # [User]
2 Here is a JSON record:
3 ```
4 {
5 "title": "$50 ,000 Reward",
6 "year": 1924,
7 "cast": [
8 "Ken Maynard",
9 "Esther Ralston"

10 ],
11 "genres": [
12 "Western",
13 "Silent"
14 ],
15 "href": "$50 ,000 _Reward",
16 "extract": "$50 ,000 Reward is a 1924 American silent Western film directed

by Clifford S. Elfelt and starring Ken Maynard , Esther Ralston and Bert
Lindley."

17 }
18 ```
19 Please give me another JSON record that complies with the above schema.
20

21 # [Assistant]
22 ```
23 {

Figure 11: Private generation prompt for WikiMoviesJSON.
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1 # [User]
2 Here is the schema for a JSON record:
3 Schema:
4 ```
5 {
6 "title": "str",
7 "year": int ,
8 "cast": [ # list of str
9 "str1", # 0 or more total entries

10 ],
11 "genres": [ # list of str
12 "str1", # 0 or more total entries
13 ]
14 "href": "str", # URL slug , e.g.: Link_to_Page
15 "extract": "str"
16 }
17 ```
18 Please give me another JSON record that complies with the above schema.
19

20 # [Assistant]
21 ```
22 {

Figure 12: Public generation prompt for WikiMoviesJSON.
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