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Abstract

Process supervision, using a trained verifier to
evaluate the intermediate steps generated by
a reasoner, has demonstrated significant im-
provements in multi-step problem solving. In
this paper, to avoid the expensive effort of hu-
man annotation on the verifier training data, we
introduce Model-induced Process Supervision
(MiPS), a novel method for automating data cu-
ration. MiPS annotates an intermediate step by
sampling completions of this solution through
the reasoning model, and obtaining an accu-
racy defined as the proportion of correct com-
pletions. Inaccuracies of the reasoner would
cause MiPS underestimating the accuracy of
intermediate steps, therefore, we suggest and
empirically show that verification focusing on
high predicted scores of the verifier shall be
preferred over that of low predicted scores, con-
trary to prior observations on human curated
data. Our approach significantly improves the
performance of PaLM 2 on math and coding
tasks (accuracy +0.67% on GSM8K, +4.16%
on MATH, +0.92% on MBPP compared with
an output supervision trained verifier). Addi-
tionally, our study demonstrates that the verifier
exhibits strong generalization ability across dif-
ferent reasoning models.

1 Introduction

Multi-step problem solving (e.g., math problems
and coding challenges) showcases the capabilities
of machine intelligence. While researchers have
shown that model- and data-upscaling still hold
powerful for large language models (LLMs) on
multi-step problem solving (Achiam et al., 2023;
Touvron et al., 2023; Team Gemini et al., 2023;
Huang et al., 2022; Azerbayev et al., 2023; Luo
et al., 2023a; Yu et al., 2023b), even the state-of-the-
art LLMs still produce easily observable mistakes.

* This work was done during the author’s internship at
Google.
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Figure 1: An illustration of the reasoner-verifier
paradigm. The verifier predicts scores for the solutions
generated by the reasoner, and selects the solution with
the highest score.

Problem: Write a program for the Fibonacci Number.
Solution: def fibonacci(n):\n\tif n == 1:

def fibonacci(n):

  if n == 1:

    return 1

  elif n == 2:

    return 1

  return fibonacci(n - 1) + 

fibonacci(n - 2)

Pass

Completion by 
reasoner

Solution check

Correctness score = 1/3MiPS solution to train the verifier
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Figure 2: The Model-induced Process Supervision
(MiPS) data construction method we introduce in this
work. By completing an intermediate solution with a
reasoner several times, we can obtain the percentage
value of these completions being correct. These annota-
tions are used to train a process supervised verifier.

Furthermore, standard fine-tuning directly does not
yield consistent and significant improvements (Luo
et al., 2023a; Yu et al., 2023b; Ni et al., 2022).

The reasoner-verifier paradigm (Fig. 1) is as
an inference-time technique where the goal is to
pick one model-generated solution among many,
since it is observed that there often are some
correctly generated solutions. In particular, self-
consistency (Wang et al., 2022) is a special case of
the verifier that picks the solutions that shares the
majority answer with others (e.g., math tasks where
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the answer is a number). LLM-based verifiers are
more general, as they could apply to arbitrary text
solutions (e.g., code that implements a function)

Training a verifier in a supervised fashion has
demonstrated strong performance in both coding
and math language problems. Cobbe et al. (2021)
showed that by simply gathering correct and incor-
rect solutions to train a binary classification model
and using such model to pick the highest confi-
dence solution generated by the reasoner during
inference time, the accuracy can be improved sig-
nificantly. More recent studies suggest that verify-
ing on intermediate steps could offer better guid-
ance than training solely on the whole solutions (Li
et al., 2022; Uesato et al., 2022; Paul et al., 2023;
Lightman et al., 2023; Feng et al., 2023; Yu et al.,
2023a; Liu et al., 2023a; Wang et al., 2023). As
such, verifiers trained (and applied) on intermediate
steps are called process supervised verifiers (PSV),
whereas those trained on whole solutions are called
output supervised verifiers (OSV). In prior work,
process supervision data is either obtained by an
ad-hoc algorithm (Li et al., 2022; Paul et al., 2023),
or through expensive human annotations (Uesato
et al., 2022; Lightman et al., 2023), lacking an
automatic and generic way of constructing of anno-
tations of intermediate solutions.

Training verifier models require solution wise
or step-wise labels, which is expensive to collect.
There have been a series of work following an
LLM-as-a-verifier approach where an off-the-shelf
LLM is employed to judge the solutions through
prompting (Madaan et al., 2023; Kim et al., 2023;
Pan et al., 2023). However, while such work may
have seen improvements on language tasks, they
haven’t been very successful in math or coding
problems (Huang et al., 2023; Luo et al., 2023b).

In conclusion, to achieve optimal quality, train-
ing data is needed for building a strong verifier
model. On the other hand, manually collecting
solution verification labels is expensive and non-
scalable. In this work, we propose to use Monte
Carlo Sampling on the completions of the inter-
mediate solutions to obtain step-wise training an-
notations (Fig. 2). Specifically, for each interme-
diate solution, we complete the solution with the
reasoner several times through a sample decoding
mechanism, and the percentage of the completed
solutions being correct is referred to as the cor-
rectness of the solution. The correctness scores
are used to train a PSV. Because of the nature
of involving the reasoning model’s completion on

the intermediate solutions, we call the construction
of this data Model-induced Process Supervision
(MiPS). While such an idea is also explored in a
concurrent work (Wang et al., 2023), we supple-
ment with analysis of using MiPS constructed data.
We find that because the reasoner model, which
completes the solutions, is not perfect, the noises
it introduces would affect the design choices of
training and using the process supervised verifier:

• We analyzed various ways to merge step-wise
prediction scores to a single score value (we re-
fer to this process as using an aggregation func-
tion) when using the verifier. Prior work used
an aggregation function that focuses on low pre-
dicted scores and worked well for PSV trained on
noise-free human annotated data (Lightman et al.,
2023). For the noisy MiPS data, we suggest ag-
gregation functions that focus on high predicted
scores.

• We re-examine the usefulness of process super-
vision by isolating the trained PSV and studying
the benefits of incorporating the predicted score
from each intermediate step during verification.
Our results reveal that (1) the verification scores
from later intermediate steps are indeed useful
even for a PSV trained on the noisy MiPS data,
however, the earlier step scores could hurt the ver-
ification; and (2) only using the PSV predicted
score of the last step, in similar fashion as OSV,
can sometimes be much better than OSV itself,
indicating process supervision data can regular-
ize OSV training.

• We show that verifiers trained on MiPS data gen-
erated by a reasoner can transfer to validate so-
lutions by a different (and more competent) rea-
soner. This indicates that MiPS would not pro-
duce verifiers that are overly biased towards mis-
takes of the reasoner that generated the data.

Following in this paper, we will provide a more
complete review of related works, a precise defi-
nition of our method, and empirical results of the
method and analysis on two math problem datasets
and one coding dataset. The contributions of the
paper are mainly (1) we propose MiPS to construct
process supervision data automatically for train-
ing process supervision verifiers; (2) we extend the
evaluation of problem solving verifiers to coding
problems; (3) we provide empirical analysis on de-
sign choices and properties of the trained verifier
from MiPS data.
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2 Related Works

The advances of problem solving of LLMs can
be broadly characterized into two regimes, first by
training a better reasoning model and the second by
validating the solution from the reasoning model
at inference time.
Pre-training/Fine-tuning Better Reasoners.
Standard training recipes also transfer to training
better reasoners for problem solving. During pre-
training, larger model sizes and training compute
yields an LLM that is more competent in multiple
aspects (Achiam et al., 2023; Touvron et al., 2023;
Anil et al., 2023, inter alia). Within fine-tuning, it
is also observed that transfer learning (Azerbayev
et al., 2023) from a pile of generic math datasets,
training on an augmented dataset of failure
examples or diverse statements (Huang et al.,
2022; Luo et al., 2023a; Yu et al., 2023b; Ni et al.,
2022; Khattab et al., 2023) leads to improvements.
Despite these approaches, it is apparent that (1)
the state-of-the-art LLM still can fail at simple
mistakes during multi-step problem solving and (2)
the improvement of a simple verification method
by majority voting (self-consistency (Wang
et al., 2022)) is still significant upon fine-tuning.
Therefore, the exploration of verifiers to validate
and pick the solutions is necessary.
Validating Through LLM-as-a-verifier. There
have been numerous attempts on using the LLM
reasoner itself to correct and validate its gener-
ated solutions. Madaan et al. (2023); Kim et al.
(2023) and many methods surveyed in Pan et al.
(2023) broadly follow the strategy where the LLM
validates and provides feedback to the generated
solutions through prompts. Huang et al. (2023)
and Luo et al. (2023b) revisited these methods and
found that LLMs are not good verifiers for equally
competent solutions, as such methods improves
marginally on math word problems.
Validating Through Trained Verifiers. In con-
trast, verifiers trained on a human labelled dataset
does show significant improvements (Cobbe et al.,
2021; Uesato et al., 2022; Lightman et al., 2023).
Importantly, Lightman et al. (2023) showed that on
a challenging competition-level mathematics prob-
lem set (Hendrycks et al., 2021), verifiers trained on
annotated intermediate solutions (PSV) surpasses
verifiers trained on final solutions by a large margin,
and both substantially better than self-consistency.
Other analysis also emphasized on the importance
of step-wise feedback: Uesato et al. (2022) showed

that PSV selects solutions that are more accurate
in their reasoning and Yao et al. (2023); Feng et al.
(2023); Liu et al. (2023b), inter alia, showed that
during decoding, LLMs can be guided towards bet-
ter solutions step-by-step. We believe that improv-
ing the training of a PSV, and especially, identi-
fying a scalable solution to generate the process
supervision data, is of imminent importance. There-
fore, in this work, we identify an automatic and
generic solution to generate process supervision
data (MiPS), and conducted detailed analysis cen-
tered on the noises of this automatic process.
Math-Shepherd. Coincidentally, such an auto-
matic process supervision data curation method
was studied concurrently and independently by
(Wang et al., 2023). We share a generally similar
methodology with their work, with a few minor de-
sign differences we highlight in later sections. The
empirical results of MiPS are similar on the two
datasets we share (GSM8K and MATH) despite
using different, but about competent, LLMs. Their
work extended training the verifier by applying it to
fine-tune the reasoner through reinforcement learn-
ing, while our work included an additional coding
dataset (MBPP) and provided analysis on the de-
sign choices of using the verifier, addressing the
data noises. We believe these two works comple-
ment each other.

3 Model-induced Process Supervision

We consider the reasoner-verifier framework where
we start with a fairly competent reasoner on a task,
generate verifier training data on a given set of prob-
lems with the reasoner, and train a verifier on the
data to validate some new generated solutions by a
reasoner. We first discuss Model-induced Process
Supervision, our data curation method that automat-
ically creates process supervision data. Then, we
discuss the details about the verification process.

3.1 Obtaining MiPS data

MiPS constructs process supervision data through
Monte Carlo sampling. First, we employ a reasoner
model rg to generate a fix number of ng solutions
for each problem, using temperature based decod-
ing with a temperature of tg. Then, for each so-
lution, we decompose them into individual steps
(we treat each line in a solution as an individual
step). After that, for each intermediate solution
containing a prefix list of steps, we employ a rea-
soner model rmc to generate again nmc solutions,
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with a temperature of tmc, completing the interme-
diate solution. For each completed intermediate
solution, we calculate the percentage (out of nmc)
of them being correct, and these correctness val-
ues comprises the MiPS data. In all experiments
in this paper, we consider rg = rmc, namely, the
reasoner model that is used to estimate the interme-
diate solution’s correctness is the same model that
generates the solution data. This is particularly the
most challenging case for MiPS, otherwise, using
a more capable reasoner for the completion can
enjoy a reduction of noise in MiPS data.

3.2 Training an Output Supervised Verifier

To understand how well the process supervised ver-
ifier (PSV) trained from MiPS is, it is necessary
to consider the vanilla output supervised verifier
(OSV), which uses the same amount of human la-
beling resources. The training data for OSV are the
generations from the reasoner rg with the same tem-
perature value tg. The verifier itself is a standard
language model that supports a binary classifica-
tion on the final token of the input. The verifier is
trained on the cross entropy loss of the prediction.
This is also known as the solution-level verifier in
Cobbe et al. (2021).

3.3 Training a Process Supervised Verifier

The differences of training PSV and OSV are:
• To enable predicting a score at each step in the

solution, we mark the last token of each step (e.g.,
if each step is represented as a single line, the last
token will be the new line token), and optimize
step-wise predictions at each step at the same
time. During inference, we would also obtain a
score for each step in a solution.

• While for the output supervision data, or human
labelled process supervision data, the score is ei-
ther 0 or 1, for MiPS data, the correctness scores
are percentage values. The training objective
considered in this work is to learn the exact per-
centage values ci for the ith step in the solution
directly. However, we note that it is possible to
consider a different learning objective. For ex-
ample, Wang et al. (2023) considered learning a
binarized score:

c̃i =

{
1, if ci > 0.0

0. otherwise.

In later analysis, we compare these two objec-
tives.

Dataset GSM8K MATH MBPP
Domain math math coding
Fine-tuning # Data 2000 4000 0
Verification Training # Data 5000 8000 384
Testing # Data 1319 500 500
Average Steps 4.5 11.0 7.0

Table 1: We show the statistics of the datasets we use
in this paper. The average number of steps is depicted
with a granularity of 0.5, using PaLM 2-S for GSM8K
and MBPP, and PaLM 2-L for MATH. We note that
these are not the most standard data splits, for reasons
explained in Sec 4.2.

3.4 Aggregating Step-wise Predictions
The trained verifier is used to score the solutions
generated by the reasoner. For OSV, the verifier
prediction can be directly used as the score for the
solution. For PSV, the verifier predictions are a
list of predicted probabilities p1, p2, . . . , pn, one
for each step in the solution. Aggregating the pre-
dictions into a final score is necessary. Lightman
et al. (2023) considered two aggregation functions:

min = min{p1, p2, . . . , pn},

sum_logprob =

n∑

i=1

log pi = log

n∏

i=1

pi,

They claimed that both are equivalently good ag-
gregation functions. In later analysis, we show that
for MiPS data, these two functions are underper-
forming for the trained verifier, while,

max = max{p1, p2, . . . , pn},

sum_logit =

n∑

i=1

log
pi

1− pi
,

mean_odd =

∑n
i=1

pi
1−pi

n
,

are much better. We provide an analysis with a
much larger set of aggregation functions and sug-
gest that MiPS data prefers aggregation functions
that focus on high prediction scores rather than
lower ones.

4 Analysis

4.1 Models
In our experiments, we consider two LLMs,
PaLM 2-S and PaLM 2-L (Anil et al., 2023) to con-
duct our experiments on. We intend to understand
the capability of MiPS data and analyze design
choices of the verifier when trained on it. A concur-
rent work (Wang et al., 2023) conducted a similar
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Figure 3: We apply the trained output- and process-supervised verifiers on various combinations of model and
datasets. Self-consistency scores are given as a reference, however, it would be not applicable to general multi-step
reasoning tasks (e.g., figure (d), coding). We use the default training objective that directly learns the estimated
accuracies and the max aggregation function for the process verifier. In the x-axis, we vary the number of generated
solutions to apply the verifier on, and in the y-axis we plot the performance (accuracy %). The standard deviation
is also given. As a reference, we note that the purple line, representing the average performance of the generated
solutions of the reasoner without any verification, matches the expectation to be an (almost) flat horizontal line
with decreasing standard deviation. *While the reasoner that generates MiPS data and the reasoner that the verifier
validates on is PaLM 2-L, the verifier is trained from a PaLM 2-S.

experiment on a different set of LLMs, namely
LLama2, LLemma, Mixtral, and Deepseek (Tou-
vron et al., 2023; Azerbayev et al., 2023; Jiang
et al., 2024; Bi et al., 2024). Detailed experimen-
tal settings and hyperparameters can be found in
Appendix A.1.

4.2 Datasets

We use two math datasets and one coding dataset
for evaluations in this paper.
• GSM8K (Cobbe et al., 2021) is a dataset of grade

school math problems.
• MATH (Hendrycks et al., 2021) is also a math

word problems dataset. It consists of math prob-
lems of high school math competitions.

• MBPP is an entry-level Python programming
dataset. The questions are coding challenges
along with a test case that defines the function
format and the solutions are Python code that is
expected to solve several hidden test cases.

Table 1 contains detailed statistics about the
datasets, and Appendix A contains more informa-
tion on how we split these datasets into training
and evaluation.

4.3 Directly Applying MiPS

We first present the performance of the process veri-
fier trained on MiPS data, using the default training

objective on correctness scores directly, and the max
aggregation function on the three datasets. For this
experiment, we varied the number of solutions to
be verified by the verifier from 2 to 128, to clearly
depict the trend of the compared verifier’s perfor-
mance. The results are shown in Fig. 3. The plots
convey several pieces of information.

• It is evident that using any verifier improves sig-
nificantly upon no verification, matching with the
initial assumption that verification plays a vital
role in multi-step problem solving.

• In all experiments, the verifier trained on MiPS
using the max aggregation function showed
stronger results than output verification. On
GSM8K, the process verification is better than
self-consistency. On MATH, the performance
lacks a bit. We note that this may be be-
cause we are training a less competent veri-
fier (PaLM 2-S) than the reasoner (PaLM 2-L).
Wang et al. (2023) showed improvements upon
self-consistency when the verifier and reasoner
are of the same sizes.

• The high performance of max may be unexpected,
as max seemly would be biased towards the first
few correct steps of an incorrect solution. In later
analysis, we will show that (1) max favors high
scores, similar to some other aggregation func-
tions that perform well, that is preferred on MiPS
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corresponding to the performance of OSV and a vertical line corresponding to the maximum accuracy achievable by
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Figure 5: We plot the performance of using various aggregation functions with PSV while restricting it to predict
only the last k steps or the last p percentage of steps.

data; (2) Due to higher noise in the earlier steps
in MiPS data, the prediction scores of the earlier
steps is of lower value (i.e., model confidence is
lower), thus showing less affect to max.

• In all experiments, the sum_logprob (product of
probabilities) and min aggregation function are
much worse than max or even using OSV, never-
theless still providing benefits over not using a
verifier.

• For several verifiers, we observe that the perfor-
mance of the verifier is on a decreasing trend
when the number of generations is high. This is
particularly interesting since the larger the gen-

erations, the closer the performance should ap-
proximate the true verification performance. This
would indicate that the while the verifier might
identify some correct solutions with high scores,
it also incorrectly predicts some fewer incorrect
solutions with even higher scores, a sign of im-
proper generalization.

From these results, we focus our analysis on two
subjects: (1) the choice of aggregation functions,
and (2) the effect of noise on generalization of the
PSV.
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Model Llemma MM-Llemma MM-Mistral
Soft + max 54.7 72.4 80.3
Soft + min 51.2 70.1 77.8
Hard + max 50.2 68.9 78.1
Hard + min 52.4 70.8 79.2

Table 2: We test on GSM8K the effect of different train-
ing objectives and aggregation functions (Hard & min,
the combination used in Wang et al. (2023), and Soft &
max, the combination we suggest). All 3 base models
are 7B in size, and MM denotes the MetaMath (Yu et al.,
2023b) fine-tuned version of them.

4.4 Aggregation Functions

To start with the analysis, we consider ten aggrega-
tion functions (sum and means of log probabilities,
probabilities, logits, and odds, and maximum and
minimum value over all steps). We obtain their per-
formance on the MiPS dataset and plot it with the
performance of the verifier using the aggregation
function on the test set (Fig. 4). We first observe
that in general, the two performances have positive
correlations, indicating that it is possible to select
an aggregation function on the MiPS dataset and
use it during inference. Second, we notice that both
min and sum_logprob have low performances not
only during inference, but also in MiPS. This indi-
cates that the poor performance of them likely is
related to the construct of MiPS. Indeed, we realize
that sum_logprob does not have a high correlation
with a correct solution, as it naturally penalizes
long solutions. For min, the possibility for a set of
solutions to be wrongly verified using min is when
the solution with the largest minimum correctness
over all steps turns out to be wrong. This is actu-
ally not an unlikely event to happen, particularly
in consideration when the reasoner makes an erro-
neous continuation to an initially correct solution.
To clarify these better, we answer the following
questions:
What are common in good aggregation func-
tions for MiPS data? We believe a rule of thumb
of a good aggregation function is a function that
values high scores highly. Consider two functions,
one that values high scores (selects the solution
with the highest high scores, e.g., max) and one that
values the low scores (selects the solutions with the
highest low scores, e.g., min). The first function
is wrong only when the highest score solution is
incorrect, in a simple case where there is only one
observed step score for each solution, the probabil-
ity is 1− smax, where smax is the score. Similarly,
for min, the probability that the solution with the

highest minimum score is wrong is 1− smin. Since
smax ≥ smin, the first function shall be preferred.
This is in line with the observation from Fig. 4 that
aggregations of odds and logits are usually better
than that of probabilities and log probabilities.
Why did sum_logprob and min work well in
Lightman et al. (2023) and Wang et al. (2023)?
In Lightman et al. (2023), the dataset is constructed
by human identifying all (earliest) incorrect steps,
which corresponds to a prediction of 0 for the ver-
ifier (i.e., following the analogy in the previous
discussion, this indicates that smax = smin = 1.0).
The min function would be correct on every in-
stance in the training dataset, and if the verifier
generalizes well, resembles human identification
of mistakes on the test dataset. For Wang et al.
(2023), we note a difference during MiPS data con-
struction as their training objective is to predict the
binary value of the correctness score, we discuss
this more in Sec 4.6.

The aggregation function analysis would indi-
cate that a good MiPS dataset score indicates a
good aggregation function. This is not completely
correct, since, a contradictory result is that the fi-
nal step score, which is used to train the output
supervised verifier, achieves 100% accuracy on the
training dataset, while not as good as the process
supervised verifier on the test set. This suggests
that the output supervised verifier might encounter
some generalization issues from the data, and MiPS
data can help relieve them.

4.5 Different Length Aggregations
To understand the generalization issue, we illustrate
the result of applying an aggregation function to
only the last k steps or last p percentage steps of
the solutions in Fig. 5. In the upper three plots, we
show the performance of an aggregation function
sum_logit on the three datasets with 1 ≤ k ≤ 5.
In the lower three plots, we show the performance
of three aggregation functions on MATH with 10 ≤
p ≤ 100. We only conducted this analysis on the
MATH dataset, as it have solutions long enough
such that looking at a percentage number of steps
is sensible.
• For all experiments, the performance increases

with a few more steps considered from the end.
This indicates that the PSV predictions on the
last steps brings in increasing value, suggesting
that process scores indeed are beneficial.

• For most experiments, the performance starts
to drop after including some early steps. This
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GSM8K PaLM 2-S No Verifier Self Consistency OSV PSV w/ sum_logit
→ PaLM 2-S 61.6 78.7 89.5 90.5
→ PaLM 2-L 80.7 89.4 92.1 92.6
→ gpt-turbo-3.5 72.5 86.2 88.0 89.1
MBPP PaLM 2-S No Verifier OSV PSV w/ sum_logit PSV w/ sum_logit (last 3 steps)
→ PaLM 2-S 41.7 56.8 54.2 57.8
→ PaLM 2-L 42.4 56.6 55.0 57.4
→ gpt-turbo-3.5 66.2 67.6 67.6 68.2

Table 3: We train a verifier based on PaLM 2-S and data generated by PaLM 2-S and test its applicability to transfer
to validate solutions generated by two different reasoners, PaLM 2-L and gpt-turbo-3.5. A reference score of
validating solutions generated by PaLM 2-S itself is also given. We evaluate this on two tasks, GSM8K and MBPP.

suggests that the quality of the predictions for the
first steps are poor. We believe this is because
MiPS has a poorer estimation of the first steps
than the last steps, since intuitively it is hard to
predict the correctness of a very early solution,
causing burden for the verifier to learn.

• For max, the performance does not change signif-
icantly across including more earlier steps. We
examined the predicted scores and find the usu-
ally earlier steps are smaller in value, causing it to
contribute little to max. This is another evidence
that PSV trained on MiPS data might suffer from
noise in the earlier steps.

• In all experiments, using the last-step process
verifier predicted value is more beneficial than
output supervision alone. Recall that this is not
because of the problem of data quantity, as we
upscaled the data to train the output verifier. We
suggest that this is because the process supervi-
sion data is of more diverse context, thus helping
the model in generalization.

4.6 Different Training Objectives

The main difference in the method of ours and
Wang et al. (2023) is the training objective of the
verifier, where we train the verifier to directly pre-
dict the estimated accuracies (Soft Objective), and
they train the verifier to predict a binarized value
(non-zeroness) of the accuracy (Hard Objective). In
our previous analysis, we noted that since the rea-
soner is imperfect, MiPS would provide underesti-
mated accuracies of the intermediate steps, which
is harmful to aggregation functions that focus on
low values (e.g., min). In contrast, the non-zeroness
of the accuracy would cause an overestimation of
the accuracy, which, by the same argument, would
be harmful to aggregation functions that focus on
high values (e.g., max). To verify this, we conduct
the experiments using the same language model as
Wang et al. (2023) on the GSM8K dataset, using
both training objectives and aggregation functions.

The experiment setting is detailed in Ap-
pendix A.2. The results are in Table 2. It is ob-
served that, indeed, the max aggregation is better
for the soft objective and the min aggregation is bet-
ter for the hard objective. It also turns out that soft
objective with the max aggregation consistently
outperforms hard objective with min aggregation.
We believe this to be a strong motivation for the
use of the soft objective in MiPS.

4.7 Transferring to a Different Reasoner
Finally, we provide an auxiliary experiment to
check whether the trained verifiers would trans-
fer to different reasoning models. We apply the
verifiers trained on reasoning data generated by a
PaLM 2-S and use it to valid solutions generated
by stronger reasoners (reasoners having higher No
Verifier accuracy). We find the sum_logit aggrega-
tion function working well in this case. The result
is shown in Tab. 3, which shows that the trained
verifier transfers to different and stronger reasoners
with a strong validation ability, indicating that the
verifier is not learning something overly specific to
the reasoner that generates the data.

5 Conclusion

In this work, we introduce MiPS to automatically
annotate intermediate solutions for multi-step prob-
lem solving. Such data can be used to train a pro-
cess supervised verifier that validates solutions gen-
erated by a reasoner. On two math datasets and
one coding dataset, we demonstrated that MiPS
improves the ability of picking the correct solu-
tion over an otherwise trained output supervised
verifier. We conduct analysis on the aggregation
function used to pick the solution and suggest that
compared to verifiers trained on human-annotated
process supervision, MiPS data trained verifiers
prefer different aggregation functions. We also
showed that such verifiers do not overly emphasize
on the mistakes of the reasoner that produced the
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data, and can be transferred to different reasoners.
Future work could explore creating a scalable way
to obtain MiPS data for each token in solutions to
train a more competent verifier and use it to tune
the reasoner via reinforcement learning.

6 Limitation

6.1 Underperformance on the MATH dataset

In our work, we did not manage to conduct all ex-
periments using the same, large model. Especially
for the MATH dataset, we had to train a smaller ver-
ifier to compensate of the long sequence length and
data size. This probably led to us finding a lower
performance of process and output verifier than
the straightforward self-consistency. We believe
in general that this is not true, as Lightman et al.
(2023) and Wang et al. (2023) both showed that pro-
cess/output verifier should output self-consistency
on the MATH dataset.

6.2 Efficiency

MiPS, while automatic, requires a non-trivial
amount of computation effort in generating the
dataset to train the verifier. We did not attempt
to reduce the computational effort, as we’d like to
show the most direct comparison with no verifiers
and output supervised verifiers. We do believe it
is very possible to reduce the computation costs,
for example, by avoiding creating data on every
intermediate solutions, and we suggest future work
to explore this direction.
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A Datasets

• GSM8K (Cobbe et al., 2021) is a dataset of grade
school math problems. The solution is given
in a one-line-per-step format with an exact nu-
merical answer in the last line in the format of
####{answer}. To enforce the reasoner fol-
lowing this format, we use the first 2000 in-
stances in its training set to fine-tune the reasoner
model to follow such a format. The solutions to
fine-tune are from the training set. We use the
coming 5000 data to train the verifier and eval-
uate the verifier on solutions generated by the
reasoner on the test set.

• MATH (Hendrycks et al., 2021) is also a math
word problems dataset. It consists of math prob-
lems of high school math competitions. The so-
lutions are given in a format that mixes latex
code and natural language. A dedicated solution
checker was developed (Hendrycks et al., 2021;
Lightman et al., 2023). While the dataset itself
does not resemble steps into different lines, we
prompted GPT-4 to break down the reference so-
lutions into one step per line, and fine-tuned the
reasoner on the line separated dataset to make it
follow the format. We use the test split suggested
in Lightman et al. (2023).

• MBPP is an entry-level Python programming
dataset. The questions are coding challenges
along with a test case that defines the function
format and the solutions are Python code that is
expected to solve several hidden test cases. We
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treat each individual line in the generated code as
a step. For languages like Python, this resembles
one statement per step. Due to the small dataset
size, we can not afford to fine-tune the reasoner
model, and decide to use 3 prompts in the valida-
tion split as in context examples to make sure the
model generates code in the expected format.

A.1 Settings
Throughout the paper, we choose to use a temper-
ature value of rg = rmc = 0.7 for both construct-
ing MiPS and generating solutions on the test set.
The number of generations for constructing MiPS
ng is set to 32 for GSM8K and MBPP, and 8 for
MATH. The number of completions nmc is also
32 for GSM8K and MBPP, and 8 for MATH. For
GSM8K, we experiment with both PaLM 2-S and
PaLM 2-L in the reasoner-verifier framework. For
MATH, due to compute constraints, the reasoner
we use is the PaLM 2-L, and the verifier trained is
the PaLM 2-S. For MBPP, we find marginal dif-
ferences in performance between using PaLM 2-S
and PaLM 2-L as the reasoner, therefore we exper-
iment only with the PaLM 2-S. During generation,
all models are 8-bit quantized, and during training,
we use a bfloat16 precision. Since MiPS contains
an annotation for each intermediate step in the solu-
tion, it is naturally the number of steps times larger
than output supervision. Therefore, we additionally
generate more data to train the OSV. For training,
we follow standard reward model training recipes,
with an exception on the training epochs. Similar
to Lightman et al. (2023), we also find it better
to train the OSV for 1 epoch and the PSV for 2
epochs. For the OSV on MATH data, we find that
training with a small 0.2 epochs (essentially train-
ing on less data) is better than training longer. For
all experiments, we report the results of the average
of 5 independently trained verifiers with different
random seeds.

A.2 Settings of the Objective Experiment
To reduce the cost, when conducting the experi-
ment to compare the two training objectives, we
scaled down the experiment. On GSM8K, we used
2000 data points for verification training data gen-
eration, and ng = nmc = 8.
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