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Abstract
Sentence embeddings play a pivotal role in a
wide range of NLP tasks, yet evaluating and in-
terpreting these real-valued vectors remains an
open challenge to date, especially in a task-
free setting. To address this challenge, we
introduce a novel task-free test bed for eval-
uating and interpreting sentence embeddings.
Our test bed consists of five semantic similarity
alignment criteria, namely, semantic distinction,
synonym replacement, antonym replacement,
paraphrasing without negation, and sentence
jumbling. Using these criteria, we examined
five classical (e.g., Sentence-BERT, Universal
Sentence Encoder (USE), etc.) and eight LLM-
induced sentence embedding techniques (e.g.,
LLaMA2, GPT-3, OLMo, etc.) to test whether
their semantic similarity spaces align with what
a human mind would naturally expect. Our ex-
tensive experiments with 13 different sentence
encoders revealed that none of the studied em-
beddings aligned with all the five semantic sim-
ilarity alignment criteria. Yet, most encoders
performed highly on the SentEval dataset, a
popular task-specific benchmark. This find-
ing demonstrates a significant limitation of the
current practice in sentence embedding eval-
uation and associated popular benchmarks, a
critical issue that needs careful attention and
reassessment by the NLP community. Finally,
we conclude the paper by highlighting the util-
ity of the proposed alignment-based test bed
for analyzing sentence embeddings in a novel
way, especially in a task-free setting.

1 Introduction

One of the fundamental tasks in NLP is to com-
putationally map sentences into dense vector rep-
resentations for subsequent analysis. These dense
vectors, known as “sentence embeddings", have
proven valuable across a wide range of downstream
tasks, including translation, question answering,
and text classification (Hamann et al., 2019; Gupta
et al., 2023; Sarkar et al., 2023, 2022), etc. These

embeddings encapsulate the meaning of sentences
(and their similarity) in a latent semantic space.
However, interpreting and evaluating these dense
fixed-size vectors remains an open challenge, par-
ticularly in a task-free setting.

In this work, we introduce a novel task-free test
bed called ALIGN-SIM to address these challenges
and conduct a comprehensive evaluation of popu-
lar sentence embeddings using the same. Our test
bed is grounded on five semantic similarity align-
ment criteria that are intuitive to a human mind:
1) Semantic distinction, 2) Synonym replacement,
3) Antonym replacement, 4) Paraphrasing with-
out negation, and 5) Sentence jumbling. Based on
these five criteria, ALIGN-SIM systematically tests
whether the semantic similarity space of an existing
sentence embedding technique aligns with what a
human mind would naturally expect.

Computationally, given a sentence S and its
corresponding embedding Sx, the basic idea of
the test-bed is to (a) perturb S according to a
particular criterion to create S′ (with embedding
S′
x), (b) look at how similar Sx and S′

x are, and
compare those observations against the human ex-
pected behavior. For example (see Table 1), given
the original sentence: “Fewer than a dozen FBI
agents were dispatched to secure and analyze evi-
dence.”, an example of synonym replacement per-
turbation is: “Fewer than a dozen FBI agents were
deployed to secure and analyze evidence.”. Obvi-
ously, these two sentences are very similar, and in-
tuitively, one would expect their embeddings to be
very similar as well. On the contrary, an Antonym
Replacement or Sentence Jumbling perturbation
usually shifts/distorts the meaning of the original
sentence significantly, and therefore, it is natural
to expect a somewhat diverse embedding in the
case of Antonym Replacement/Jumbling perturba-
tion. These natural expectations set the basis of
our five semantic alignment criteria as well as the
ALIGN-SIM test bed. From a utility standpoint,
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Original Sentence: “Fewer than a dozen FBI agents were dispatched to secure and analyze evidence.”

Type of Perturbation Example Sentence Expected Encoding

Paraphrasing A small number of FBI agents, less than twelve, were sent to secure and
examine any relevant evidence.

Similar to Original

Synonym Replacement Fewer than a dozen FBI agents were deployed to secure and analyze evidence. Similar to Original

Antonym Replacement More than a dozen FBI agents were dispatched to secure and analyze evidence. Diverse from Original

Paraphrase without Negation Not more than a dozen FBI agents were deployed for the task of securing and
analyzing the evidence

Similar to Original

Sentence Jumbling Fewer than a analyze FBI agents were dispatched to secure and dozen evidence. Diverse from Original

Table 1: Example of the five sentence perturbation proposed to evaluate sentence encoders. Note: The example in
Paraphrasing without Negation serves only as an illustration and has not been utilized in our study.

ALIGN-SIM complements existing task-specific
benchmarks by providing a novel way of evaluating
and interpreting sentence embedding techniques in
terms of how their sentence similarity spaces align
with human “expectations” of the same.

To demonstrate the utility of ALIGN-SIM, we
conducted an extensive evaluation of 13 sen-
tence encoders, including 5 classical models (e.g.,
Sentence-BERT, Universal Sentence Encoder) and
8 Large Language Model (LLM)-induced (e.g.,
LLaMA2, GPT3, OLMo) sentence embedding
techniques using our test bed. Experimental find-
ings revealed that none of the sentence embedding
techniques could fulfill all five semantic alignment
criteria, although most of them still achieved high
performance on the SentEval dataset (Conneau and
Kiela, 2018), a popular task-specific benchmark,
which is indeed interesting. In summary, our main
contributions are below.

1. We introduce a novel semantic similarity align-
ment test bed called ALIGN-SIM for evaluating
and interpreting sentence embedding techniques,
which consists of five semantic similarity align-
ment criteria: 1) Semantic Distinction, 2) Syn-
onym Replacement, 3) Antonym Replacement,
4) Paraphrasing without negation, and 5) Sen-
tence Jumbling.

2. We evaluated thirteen different sentence en-
coders (5 classical and 8 LLMs) using the
ALIGN-SIM test bed and found that none of
the studied embeddings could align with all the
five semantic similarity alignment criteria1.

3. We curated multiple datasets capturing Syn-
onym/ Antonym/ Jumbled sentence pairs for
evaluation (refer to Table 1), which will also
help future benchmarking efforts.
1All embedding techniques tested are based on open-

source models except for GPT-3

2 Related Works

A variety of techniques have been proposed dur-
ing the last decade to generate embedding for a
given sentence. Doc2Vec (Le and Mikolov, 2014)
is an unsupervised technique that generates em-
beddings for variable-length pieces of text and
creates unique embeddings for each paragraph
in a document. Later, others attempted to learn
sentence embedding using auto-encoders (Socher
et al., 2011; Hill et al., 2016), (Hu et al., 2017). On
the other hand, InferSent (Conneau et al., 2017a)
used SNLI (Dolan et al., 2004) and Multi-genre
NLI labeled data (Williams et al., 2017) and learned
the sentence embedding using a Bi-LSTM with
max-pooling and a Siamese network.

More recently, transformer-based models like
“Universal Sentence Encoder” (USE) (Cer et al.,
2018) were proposed. USE was trained on a
combination of supervised and unsupervised NLI
data, and it has effectively produced sophisticated
sentence embeddings. Sentence BERT (SBert)
(Reimers and Gurevych, 2019a) was trained on
Wikipedia and news-wire articles and later fine-
tuned on SNLI and Multi-Genre NLI datasets.
Later, SimCSE (Gao et al., 2021) employed con-
trastive learning to improve sentence embeddings
using a contrastive loss objective. These “classi-
cal” models have been trained rigorously on a large
corpus of data, and many of them used data par-
allelisms (Wieting and Gimpel, 2017; Artetxe and
Schwenk, 2019b; Wieting et al., 2019a,b), natural
language inference (NLI) (Conneau et al., 2017b,
2018; Reimers and Gurevych, 2019b), or a combi-
nation of both (Subramanian et al., 2018). These
classical models are computationally less demand-
ing due to using a relatively small number of pa-
rameters.

A paradigm shift in NLP occurred with the emer-
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Model MR CR SUBJ MPQA SSTb TREC MRPC Avg

SBERT 83.95 88.98 93.77 89.51 90.01 84.80 76.28 86.90
SimCSE 79.69 85.01 93.82 86.91 84.18 87.40 71.19 84.02

USE 75.58 81.83 91.87 87.17 85.68 92.20 69.62 83.42
Infersent 81.10 86.30 92.40 90.2 84.60 88.20 76.20 85.57
LASER 56.14 63.89 67.65 72.36 79.85 89.19 75.19 72.04

Bloom 71.69 80.72 92.09 84.48 84.46 88.80 66.84 81.29
GPTNeo 79.91 83.36 93.48 84.62 88.19 92.40 70.78 84.68
LLaMA-2 83.34 87.15 95.80 87.46 91.65 94.00 65.97 86.48
LLaMA-3 85.14 88.93 96.00 87.94 90.66 94.60 70.09 87.62
GPT3-ada 88.36 93.08 95.31 91.29 93.63 96.00 73.97 90.23

Mistral 83.20 88.08 96.58 86.56 91.76 96.00 61.39 86.08
OLMo 81.15 88.22 95.80 86.79 90.66 95.60 72.41 87.23

OpenELM 83.73 88.00 95.61 88.38 92.04 96.00 71.77 87.93

Table 2: Evaluation of existing sentence encoders on SentEval Benchmark. The accuracy scores are generated using
the SentEval toolkit on different classification tasks. Here, GPT3 uses “text-embedding-ada-002“ for sentence
embeddings. The scores are generated using 10-fold cross-validation. BLUE and Pruple indicate best and second-
best performer respectively. More details can be found in Appendix A.3

gence of LLMs (Large Language Models) like GPT-
3 (Brown et al., 2020), LLaMA (Touvron et al.,
2023), OpenELM (Mehta et al., 2024). While these
decoder-only models were originally designed for
generation and machine translation tasks (Dankers
et al., 2022; Artetxe and Schwenk, 2019a; Lewis
et al., 2019; Hu et al., 2017), many researchers
recently explored LLMs for their potential in pro-
ducing high-dimensional sentence embeddings gen-
erally fetched from the last hidden layers (Haber
and Poesio, 2021; Fournier et al., 2020; Haber and
Poesio, 2024; Ethayarajh, 2019). This development
has sparked an interest in comparing the embed-
ding spaces of classical (mostly encoder-based) and
LLMs (mostly decoder-based).

Additionally, there has been a growing interest
in the evaluation and interpretability of sentence
encoders and language models. One approach fo-
cuses on accuracy-based probing, using classifiers
to evaluate model representations (Belinkov and
Glass, 2019; Anelli et al., 2022; Voita and Titov,
2020; Conklin and Smith, 2024). Another way to
understand embeddings is by showing how they
combine different meanings. This line of work in-
volves simple modification on embeddings to repre-
sent meaningful relationships, like analogies, at the
word level (Mikolov et al., 2013; Pennington et al.,
2014; Akter et al., 2023) and the at sentence-level
(Liu and Neubig, 2022; Yu and Ettinger, 2020;
Dankers et al., 2022; Huang et al., 2023a,b)

Our work is different from previous work in mul-
tiple ways: 1) we perform a comparative analysis

between classical sentence encoder models and the
latest large decoder models, aiming to compare and
interpret their embeddings in latent semantic space;
2) we propose a novel test bed by introducing five
intuitive semantic alignment criteria; 3) we curated
multiple new datasets to facilitate rigorous testing
of the proposed 5 semantic alignment criteria.

3 Task-Specific Benchmark: SentEval

We started our investigation by assessing the effec-
tiveness of sentence embeddings on downstream
tasks; we evaluated them on the popular SentE-
val Benchmark (Conneau and Kiela, 2018) (de-
tails in Appendix A.3). For this benchmark, we
compared five popular classical sentence encoders
and eight LLMs. The classical encoder-only mod-
els include 1) Universal Sentence Encoder (USE)
(Cer et al., 2018), 2) Sentence-BERT (SBert)
(Reimers and Gurevych, 2019a), 3) InferSent
(Conneau et al., 2017a), 4) SimCSE (Gao et al.,
2021). The only classical encoder-decoder model
is 5) Language-Agnostic-SEntence Representation
(LASER) (Artetxe and Schwenk, 2019a). The eight
decoder-only LLMs loaded using huggingface in-
clude: 1) GPT3-Ada2 (OpenAI, 2022), 2) Llama-
2-7b-hf (Touvron et al., 2023), 3) Meta-Llama-
3-8B (AI@Meta, 2024), 4) GPTNeo (EleutherAI,
2023) 5) Bloom (Scao et al., 2022) 6) Mistral-7B-
v0.3 (Jiang et al., 2023) 7) OpenELM-3B (Mehta
et al., 2024) 8) OLMo-7B (Groeneveld et al., 2024).

Note that the encoder-based models are trained
2We used GPT3 with "text-embedding-Ada-002" model.
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to generate sentence embeddings, whereas decoder-
only models are originally trained for text genera-
tion. More details can be found in Appendix A.4.

Results: The accuracy scores of each sentence
embedding model can be found in Table 2. Re-
sults reveal a strong performance by LLMs, with
GPT-3 achieving the highest average accuracy of
90.23% across datasets. However, classical en-
coders like SBERT remain highly competitive
(86.90%), underscoring their efficiency despite us-
ing x1000 times fewer parameters and even surpass-
ing LLaMA2 and a few other LLMs. Furthermore,
the close proximity of SimCSE, USE, and Infersent
highlights the capabilities of classical encoders.
Crucially, all models, both classical and LLMs,
perform very competitively with only marginal dif-
ferences in accuracy scores on the benchmark. But
how can we interpret these results? In terms of their
latent semantic space, how does SBERT compare
with LLaMA2? Indeed, while the task-specific
benchmarks are very important and indicative of
the extrinsic (task-specific) utility of each sentence
embedding technique, evaluating and interpreting
the intrinsic properties of sentence embeddings still
remains an open challenge to date, especially in a
task-free setting.

4 ALIGN-SIM Test Bed and Five Criteria

In this section, we introduce our semantic align-
ment test bed, ALIGN-SIM, for evaluating and in-
terpreting sentence encoders in a novel way, espe-
cially in a task-free setting. The test bed comprises
five semantic alignment criteria as follows.

1. Criterion-1 (Semantic Distinction or SD):
This criterion tests whether a sentence encoder
can properly distinguish between a highly se-
mantically related sentence vs. a distinct one.
Given a sentence pair (S, SP ) with high se-
mantic overlap and a pair of randomly se-
lected sentences (R1, R2), this criteria tests
whether a sentence encoder yields similar
embeddings for the semantically similar pair
(S, SP ) and distinct embeddings for the ran-
dom pairs (R1, R2). Consequently, Criterion-
1 tests whether the difference in similar-
ity/distance scores is significant, such that for co-
sine similarity Sim(S, SP )− Sim(R1, R2) >
ϵC1,S and for distance measure such as Nor-
malized Euclidean Distance (NED), whether
NED(S, SP ) − NED(R1, R2) < ϵC1,N ,

where C1, S/N is criterion-1 margin reflecting
human’s natural expectation when (N/S) is the
distance/similarity metric.

2. Criterion-2 (Synonym Replacement): Crite-
rion 2 assesses how sentence encoders handle
minor lexical variations. To test this, we create
a modified sentence (S′

P ) by replacing a small
number of words in the original sentence (S)
with their synonyms. We then test whether a
sentence encoder produces similar embeddings
for S and S′

P , as synonym substitution typi-
cally preserves the overall meaning. The natu-
ral expectation here is that the cosine similarity
scores should be high and NED scores should be
minimal, reflecting the intuition that synonym
replacements don’t significantly alter sentence
meaning.

3. Criterion-3 (Paraphrase Vs Antonym Re-
placement): The third criterion evaluates how
sentence encoders capture semantic changes
due to antonyms. This test includes three sen-
tences: an original sentence (S), its paraphrase
(S′

P ), and an antonym-replaced version (S′
A)

where one word (verb or adjective) from S
is substituted with its antonym. Criterion 3
tests whether a sentence encoder yields embed-
dings in a way where S is more similar to S′

P

than to S′
A. Mathematically, we test whether

Sim(S, S′
P ) − Sim(S, S′

A) > ϵC3,S , where
ϵC3,S denotes the human expectation of min-
imum margin.

4. Criterion-4 (Paraphrase without Negation):
Given an input sentence S with negation, crite-
rion 4 tests whether a sentence encoder can iden-
tify the semantic equivalence between S and
its affirmative paraphrase S′. We quantify this
by measuring the similarity or NED between
the embeddings of S and S′. A high similarity
score (or low NED) would indicate alignment
with natural human understanding of negation
and its paraphrases without negation.

5. Criterion-5 (Paraphrase Vs. Sentence Jum-
bling) : Criterion 5 assesses how sentence en-
coders handle word order changes. We compare
three sentences: an original sentence (S), its
paraphrase (S′

P ), and a jumbled version (S′
J )

created by randomly swapping word pairs in
S. Criterion 5 tests whether a sentence encoder
produces embeddings in a way such that S is
more similar to S′

P than to S′
J . Mathematically,
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we test whether Sim(S, S′
P )− Sim(S, S′

J) >
ϵC5,S , where ϵC5,S denotes the human expected
minimum margin.

5 Experiments

5.1 Dataset

In this work, we utilized three publicly avail-
able paraphrasing datasets. The datasets are 1)
QQP (Quora Questions Pair) dataset (Chen et al.,
2018), 2) PAWS-WIKI (Paraphrase Adversaries
from Word Scrambling-Wikipedia) dataset (Zhang
et al., 2019) And, 3) MRPC (Microsoft Research
Paraphrasing Corpus) dataset (Dolan and Brockett,
2005). These datasets feature binary labels: label 1
sentences represent positive pairs/paraphrase pairs,
which we term high semantic overlap sentences
(POS pairs), acknowledging that not all pairs con-
stitute “true” paraphrases. Label 0 pairs were not
directly used due to their semantic relatedness, as
they were partial paraphrases in many cases. In-
stead, we randomly shuffled the non-paraphrased
pairs (Label 0) and labeled them as ‘random pairs’
(RND). Finally, Criterion 4 was tested on the Afin
dataset (Hossain and Blanco, 2022), which contains
sentences with negations and their paraphrases
without negation, representing challenging para-
phrase examples (Details in appendix A.2).

5.2 Implementation Details

All 13 models (mentioned in section 3) were eval-
uated on the five semantic-alignment criteria de-
signed to assess their alignment with natural hu-
man expectations. To facilitate a robust compari-
son between each model pair, we computed sim-
ilarity/distance metrics such as Cosine Similarity
and Normalized Euclidean Distance (NED)3. These
metrics offer insight into the semantic space of each
model. For criteria 2, and 4 (refer to Section 4),
we normalize the scores using equation 1 and equa-
tion 2 (refer to appendix A.5.2) for a fair compari-
son across models. Both cosine similarity and NED
scores were adjusted using model-specific factors:
αmodel for cosine similarity and βscore for NED
(refer to eq 2). These normalizations help account
for model-specific baseline similarities and allow
for more meaningful comparisons across different
encoders.

3NED is reported in appendix

QQP WIKI. MPRC
Models Sim NED Sim NED Sim NED

USE 85.4 67.7 93.6 71.9 85.8 67.9
SBERT 91.1 70.6 96.2 73.4 88.6 69.4
SimCSE 75.0 62.5 85.7 67.8 77.7 63.9
Infer-Sent 62.8 61.3 64.8 64.4 61.3 61.3
LASER 66.6 62.5 67.8 65.2 65.0 62.7
Bloom 50.1 50.1 50.2 50.1 50.1 50.0
GPTNeo 59.5 54.8 66.2 58.3 61.9 56.0
GPT3-Ada 60.5 55.2 63.3 56.7 61.0 55.5
LLaMA-2 66.7 58.5 75.8 63.0 67.9 59.1
LLaMA-3 68.2 59.1 75.0 62.5 70.9 60.5
Mistral 63.6 57.0 72.4 61.3 69.7 60.0
OpenELM 58.4 54.4 61.3 56.0 59.4 54.9
OLMo 69.3 59.7 78.7 64.4 73.3 61.7

Table 3: Criterion-1: Avg. % of samples across dif-
ferent values of epsilon which satisfy the criterion-
1 i.e. Sim(S, SP ) − Sim(S, SRND) > ϵC1,S and
NED(S, SP )−NED(S, SRND) < ϵC1,N

αmodel = 1− 1

n ∗ |D|
n=3∑

i=1

|D|∑

j=1

sim(RND-Pairs)

(1)
In Equation 1, n represents the number of

datasets and D represents the size of each dataset.
The inner average accounts for model randomness
by calculating the average "Random Pair (RND)"
similarity scores from criterion 1. Random pairs
(label 0) are shuffled, and their cosine similarities
are averaged across datasets, as shown in (Table 6).
For each model, the adjusted score is computed by
multiplying the average cosine similarity by equa-
tion 14. A similar process is followed for NED
scores by equation 2. The adjusting factors penal-
ize models with high similarity scores for random
pairs, allowing us to better differentiate between
models that align well with human expectations
against models that are always overly generous.

5.3 Results

Criterion-1 (Semantic Distinction): For criterion
1, we utilized paraphrase pairs and random pairs
from each dataset for our analysis (see section 5.1).
Each sentence was encoded using the sentence en-
coders described in section 3. The results of crite-
rion 1 are shown in Tables 3, 6 and 7. Latter two
tables are found in the appendix.

4For criteria 3 and 5 (refer to Section 4), we did not nor-
malize cosine-similarity because we are comparing the raw
similarity/distance difference with the expected minimum mar-
gin ϵ’s. Our results are described below.
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QQP WIKI. MPRC
Models n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3

USE 0.812 0.735 0.671 0.863 0.818 0.777 0.861 0.816 0.771
SBERT 0.842 0.757 0.689 0.909 0.865 0.827 0.901 0.851 0.803
SimCSE 0.628 0.587 0.554 0.658 0.634 0.601 0.658 0.633 0.609
Infer-Sent 0.310 0.296 0.287 0.320 0.311 0.303 0.322 0.315 0.309
LASER 0.412 0.395 0.383 0.427 0.420 0.413 0.426 0.418 0.411

Bloom 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
GPTNeo 0.274 0.267 0.260 0.278 0.273 0.268 0.279 0.275 0.270
GPT3-Ada 0.257 0.249 0.244 0.263 0.260 0.257 0.263 0.260 0.257
LLaMA-2 0.442 0.393 0.347 0.462 0.432 0.397 0.462 0.430 0.388
LLaMA-3 0.468 0.438 0.412 0.482 0.460 0.435 0.480 0.454 0.424
Mistral 0.413 0.396 0.382 0.420 0.408 0.394 0.419 0.404 0.389
OpenELM 0.218 0.211 0.204 0.220 0.216 0.210 0.220 0.214 0.207
OLMo 0.524 0.488 0.459 0.546 0.524 0.500 0.544 0.518 0.491

Table 4: Criterion 2: Adjusted Average Cosine Similarity between the Original and the Synonym Replaced
Sentence pairs. Columns are grouped by dataset and subdivided by the number of word replacements, n = {1, 2, 3}.
The blue and violet indicate the best and second-best performer.

These results show varying degrees of alignment
with the semantic distinction criteria for different
sentence embedding models. Table 3 shows the per-
centage of samples satisfying Criterion-1 on both
evaluation metrics: Cosine Similarity (Sim) and
NED. Notably, SBERT and USE show the highest
alignment across all datasets for both metrics, indi-
cating they are highly effective in distinguishing be-
tween semantically similar and random sentences.
In contrast, LLM-induced encoders demonstrated
lower alignment compared to classical models with
an average of ∼ 61% samples satisfying criterion-1
across all three datasets and two metrics, whereas
classical models achieved ∼ 72% alignment under
the same conditions.

Further, Tables 6 and 7 (refer to appendix) show
the absolute difference in similarity/distance met-
ric scores. Table 6 indicates that SBERT and USE
effectively distinguish paraphrase pairs from ran-
dom pairs, unlike LLMs. One potential reason for
the misalignment of LLMs may be attributed to
their original design principle: these models are
primarily trained as decoder-only models specif-
ically designed for text generation, whereas clas-
sical models are encoder-only or encoder-decoder
(LASER model) models explicitly trained to pro-
duce useful sentence embedding.

This disparity becomes more evident when com-
paring the findings with the SentEval benchmark
(refer to Table 2). While SBERT performed reason-
ably well on SentEval, it excelled in the semantic
distinction criterion. Conversely, GPT-3, a lead-
ing performer on SentEval, performed poorly on
this criterion. This raises questions on whether the

current practice of inducing embeddings from the
hidden layers of LLMs is indeed a good idea or
not.

Criterion-2 (Synonym Replacement): To cre-
ate the synonyms perturbed sentence, we first ran-
domly chose n (n = 1, 2, 3) words that are verbs or
adjectives and replace them with the synonyms re-
trieved from WordNET toolkit (Miller, 1995). Note
that these sample pairs have high lexical overlap,
which is not usually the case in Criterion 1.

Results of Criterion-2 are presented in Table 4,
where it is evident that SBERT and USE exhibit
the highest similarity scores for synonym-perturbed
pairs across all datasets, with SBERT leading, fol-
lowed by USE and SimCSE. Although the scores
decrease as n increases (which is expected), this
trend persists. Remarkably, in comparison to the
three classic models, SBERT, USE, and SimCSE,
LLM-based embeddings performed poorly, with
most failing to meet the criterion (all scores < 0.55)
expectation. A similar outcome is observed for the
NED metric as well (see Table 8).

When comparing this criterion and the SentEval
benchmark, Table 3 and 4 reveal opposite outcomes.
While most LLMs dominated the SentEval bench-
mark, they yield lower alignment with Criterion 2,
which is very interesting.

Criterion-3 (Paraphrase Vs. Antonym Replace-
ment): In the third criterion, we expect that a para-
phrase sentence S′

P should be closer to the orig-
inal sentence S compared to S′

A, which is a per-
turbed version of S by replacing one word with its
antonym from the WordNet (Miller, 1995) toolkit.
Figure 1 summarizes the alignment results with
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Model Bloom GPTNeo GPT3-Ada LLaMA2 LLaMA3 Mistral OpenELM OLMo

Adjusted Sim. score 0.006 0.267 0.260 0.423 0.441 0.391 0.210 0.491

Model USE SBERT SimCSE InferSent LASER

Adjusted Sim. score 0.693 0.757 0.58 0.293 0.383

Table 5: Criterion-4: Adjusted Avg. Similarity score (equations 1) of negation-affirmative sentence pair sentences
from the AFIN dataset. The blue and purple indicate the best and second-best performer.

(a) Classical Model - Antonym Replacement on QQP

(b) LLMs - Antonym Replacement on QQP

Figure 1: Criterion-3: The figures demonstrate the
cosine similarity difference between paraphrase pairs
and antonym pairs. The score are calculated based on
Sim(S, S′

P ) − Sim(S, S′
A) > ϵC3,S . On the x-axis,

the data is grouped into bins, and each bin represents
the samples that fall within that ϵC3,S . This figure rep-
resents the QQP dataset. Appendix A.5.3 presents the
figures for MRPC, PAWS-WIKI datasets, and NED met-
ric. Note* (We intentionally remove Bloom model from
Figure 1 for better visibility and interpretability.)

Criterion-3 by plotting a histogram of the number
of sentences that fall into different ϵC3,S ranges for
cosine, i.e., Sim(S, S′

P ) − Sim(S, S′
A) > ϵC3,S

(NED results provided in appendix).

Upon examining Figure 1a, we notice that all
classical sentence encoders display left-skewed his-
tograms (assuming 0 as the center). This skewness

suggests their limitations in interpreting the differ-
ence between S′

A and S′
P relative to their deviation

from the original sentence, S. Such an observation
underscores the failure of these encoders to meet
Criterion 3, as a majority of the samples lie within
the ϵC3,S range of -0.3 to 0, with fewer instances
exhibiting positive differences.

Turning to Figure 1b a similar trend is evident
among LLMs, where they all seem to fail to sat-
isfy the criterion. Observing the distribution of the
samples, it is clear that LLMs struggle to properly
differentiate between antonym replacements and
paraphrases. Bloom (refer to figure 4) performs
the worst among the LLMs, with most samples
found near zero. This indicates that capturing the
nuanced differences in semantically overlapping
but opposite pairs remains a significant challenge.

More notably, while LLaMA2 performs poorly
compared to other LLMs on SentEval (Table 2),
it is the only one that is somewhat able to differ-
entiate between antonym replacements and para-
phrases. Similar outcome hold for the other two
datasets (refer appendix figures 5,6), and NED met-
ric (refer appendix section A.5.3 figures 7,8, 9).
Such observations raise questions about whether
the SentEval benchmark is hard enough for testing
sentence encoders at a nuanced level.

Criterion-4 (Paraphrase without Negation): To
evaluate the paraphrasing without negation cri-
terion, we utilized the Afin dataset (Hossain
and Blanco, 2022), which provides negation-
affirmation sentence pairs. This dataset allows us to
assess how well encoders capture semantic equiva-
lence under lexical alterations involving negation.
The expectation for a semantically aligned encoder
is to generate high similarity scores (or low NED
scores) between these sentence pairs despite the
presence of negation in one sentence. This is be-
cause the pairs are essentially paraphrases of each
other, conveying the same meaning through differ-
ent lexical structures (refer to Table 1 for examples).
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We computed adjusted Cosine Similarity and Nor-
malized Euclidean Distance (NED) scores (refer to
Table 5) for all models using these sentence pairs.
Note that Criterion 4 is a specialized case of para-
phrasing with the added complexity of negation.

As we can see, the SBERT model outperformed
all other models by big margins, including LLMs,
followed by USE and SimCSE (0.757 vs. 0.693
and 0.58, respectively). As expected, the outcomes
are very similar to criteria 1 and 2 for both met-
rics, as this criterion is essentially a special case
of semantically similar sentence pairs. Observing
closely reveals that Bloom struggles significantly
in this criterion, and the remaining models were
sub-optimal. Similar outcomes were observed with
the NED metric (refer to Table 9). Surprisingly,
classical encoders like LASER and InferSent have
comparable performance with other LLMs despite
far fewer parameters, smaller size, and architec-
ture. However, it should be noted that LASER and
InferSent yield poor alignment with other criteria,
and strong alignment with only one criterion does
not mean much.

Criterion-5 (Paraphrase Vs. Sentence Jum-
bling): In this criterion, we expect that when some
words are swapped in a sentence, the meaning
of the original sentence should be completely de-
stroyed, and the perturbed jumbled sentence S′

J

should no longer convey the same meaning as the
original sentence S, and thus, it should not be
placed close to the original sentence S in the latent
semantic space. In contrast, a semantically sim-
ilar sentence S′

P should be closer to the original
sentence S in the same latent space.

To investigate this criterion, an equation similar
to Criterion-3 is used for both cosine and NED, ex-
cept the similarity score of antonym Sim(S, S′

A) is
replaced with the similarity of a jumbled sentence,
i.e., (Sim(S, S′

P ) − Sim(S, S′
J) > ϵC5,S). ϵC5,S

represents the expected minimum margin for this
criterion. Next, we plot a histogram of the num-
ber of sentences that fall into different ϵC5,S ranges.
We show the results for the QQP dataset in Figure 2
and 3 (other results are in Appendix A.5.5).

As we notice in Figure 2a, where only one pair
of words are swapped (n = 1), the classical sen-
tence encoders fail to capture the impact of jum-
bled words on the sentence similarity task. The
majority of the samples lie between the threshold
of -0.3 and 0, and only a few samples showed posi-
tive differences, suggesting that classical sentence

(a) Classical Models- Sentence Jumb. on QQP for n = 1

(b) Classical Models- Sentence Jumb. on QQP for n = 3

Figure 2: Criterion-5: The figures demonstrate
the cosine similarity difference for classical mod-
els. The score are calculated based on Sim(S, S′

P ) −
Sim(S, S′

J) > ϵC5,S . On the x-axis, the data is grouped
into bins, and each bin represents the samples that fall
within that ϵC5,S . Appendix A.5.5 presents the fig-
ure for the remaining QQP, MRPC, and PAWS-WIKI
dataset. Note: We intentionally remove the Bloom model
from the figure for better visibility and interpretability.

encoders pay little attention to word order. A simi-
lar outcome is observed for the other two datasets
(MRPC and PAWS) and NED as well (refer to Ap-
pendix A.5.5, Figure 19).

In contrast, Figure 3a, which depicts n = 1 word
pair swapping results for LLMs, reveals that few of
these models are notably more adept at capturing
the nuances introduced by word order alterations,
particularly the LLaMA2,3 and OLMo model. Ex-
cept for Bloom5, all LLMs were somewhat able
to distinguish between paraphrasing and sentence
jumbling. This indicates a marked improvement in
the LLMs over the classical models in capturing
word order.

Interestingly, LLaMA2’s superiority became
even more pronounced as n increases (Figure 3b
and 3c). A plausible explanation for LLaMA2/3’s

5Bloom visual represented in Figures 17 and 18
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(a) LLMs- Sentence Jumb. on QQP for n = 1

(b) LLMs- Sentence Jumb. on QQP for n = 2

(c) LLMs- Sentence Jumb. on QQP for n = 3

Figure 3: Criterion-5: The figures demonstrate the co-
sine similarity difference for LLMs. The score are cal-
culated based on Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S .

On the x-axis, the data is grouped into bins, and each
bin represents the samples that fall within that ϵC5,S .
Appendix A.5.5 presents the figure for the remaining
QQP, MRPC, and PAWS-WIKI dataset. Note: We inten-
tionally remove the Bloom model from the figure for better
visibility and interpretability.

and other LLMs’ standout performance over classi-
cal could be their auto-regressive training process.
Indeed, they were trained on a large corpus to pre-
dict the next word in the sequence, which may
result in better capturing the sensitivity of word
orders. A similar outcome was observed with the
NED metric (refer to appendix A.5.5).

6 Discussions and Conclusion

In this paper, we introduced a novel semantic align-
ment test bed, ALIGN-SIM, for evaluating and inter-
preting sentence embeddings in task-free settings.
Our framework, grounded on five semantic align-
ment criteria - semantic distinction, synonym, and
antonym replacement, paraphrasing without nega-
tion, and sentence jumbling - provides a new way
of analyzing and comparing the latent semantic
spaces of different sentence embedding models.

Our extensive experiments with 13 different sen-
tence encoders, including both classical models and
LLM-induced embeddings, revealed a significant
contrast between their performance on traditional
task-specific benchmarks and their alignment with
the proposed five evaluation criteria. Surprisingly,
none of the examined sentence embedding mod-
els could fulfill all five semantic alignment criteria
despite many of them achieving high performance
on the SentEval dataset. This discrepancy demon-
strates a significant limitation of the current prac-
tice in sentence embedding evaluation and associ-
ated popular benchmarks, a critical issue that needs
careful attention and reassessment by the NLP com-
munity. It also raises a concern about which sen-
tence encoder should be used when extensive fine-
tuning is unrealistic due to the unavailability of
task-specific training data. How should one pri-
oritize between benchmark-specific accuracy and
alignment with human expectations when it comes
to selecting a particular sentence embedding? More
importantly, this work highlights the fact that most
works on sentence encoders to date have focused
primarily on optimizing accuracy numbers on task-
specific benchmarks while ignoring their intrinsic
alignment with human’s natural expectations.

Nevertheless, this paper demonstrates the util-
ity of our proposed ALIGN-SIM test bed as a
new paradigm for evaluating sentence embedding
models in a task-free setting, complementing task-
specific assessments. The test bed, along with the
5 semantic alignment criteria in itself, is a novel
contribution, while the curated datasets and ex-
tensive experiments that establish an initial task-
independent benchmark are also valuable contri-
butions. Our test-bed analysis also reveals that
further research is needed to improve sentence en-
coders that excel in both task-specific benchmarks
and alignment with essential linguistic properties
expected by humans.
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7 Limitation

Our findings are specific to the English language,
and our experiments primarily target unsupervised
semantic similarity assessments where no training
data or prior task-specific knowledge is available.
As a result, these findings may not be directly ap-
plicable to all downstream NLP tasks. However, in
scenarios where training data is unavailable for a
particular problem, our results can still serve as a
useful guide for selecting an appropriate sentence
encoder and designing preliminary experiments.

We focused on three widely used paraphrasing
datasets, utilizing only the positive pairs (label 1)
for our experiments. However, we observed that a
small number of these positive pairs were not true
paraphrases, potentially introducing minor noise
into our results. Additionally, while the evalua-
tion metrics we employed—Cosine Similarity and
NED—offer valuable insights into the semantic
alignment of sentence encoders, they may not fully
capture all aspects of sentence similarity, such as
syntactic structure or deeper semantic meaning.

Finally, our study concentrates on the input-
output behavior of sentence encoders and does not
explore the internal mechanisms that contribute to
their semantic alignment capabilities. Investigating
these internal processes could offer further insights
into how these models achieve or fail to achieve
semantic alignment.
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A Appendix

A.1 Hyper-parameter Search
1. The exact number of training and evalua-

tion runs : In this work, our aim was to eval-
uate each model in a zero-shot setting. Hence,
we used pre-trained models and performed
our experiments.

A.2 Datasets used
1. Relevant details such as languages, and

number of examples and label distribu-
tions: In this work, we experimented with

pairs of English language sentences. All three
datasets used in these works are of different
sizes, so we randomly sampled each dataset
to create a balance between all three datasets.
The MRPC dataset consists of a total of 3668
sentence pairs, out of which 1194 pairs of sen-
tences have been labeled 0 and the other 2474
pairs of sentences have been labeled 1. So,
to create the balanced dataset, we randomly
sampled 1194 pairs of sentences from the
dataset having label 1. Subsequently, the QQP
and Paws-WIki dataset has 404290 and 49401
pairs of paraphrased and non-paraphrased sen-
tences. So, we randomly sampled nearly 1.2K
pair of sentences for each label from each
dataset i.e. ( 2.4 pair of sentences collected
from each dataset) for paraphrasing hypothe-
sis testing. For other hypothesis testing (Syn-
onym and Antonym replacement, Sentence
Jumbling), we sampled 3.5K sentences (only
single sentences, no sentence pairs) from all
three datasets. Next, we create the perturbed
sentences using the WordNet toolkit for fur-
ther experiments.

(a) QQP: This publicly available dataset
is a collection of question pairs from
Quora (Chen et al., 2018) with labels
1 and 0 annotated by humans. Label
1 is assigned when questions in a pair
essentially have the same meaning (i.e.
paraphrases), and otherwise 0 (i.e. non-
paraphrases). In this work, we randomly
choose 2.5K samples with label 1 and
another randomly shuffled 2.5k samples
from label 0 (in total 5k samples).

(b) PAWS-WIKI: This publicly available
dataset is a collection of sentence pairs
from Wikipedia with high lexical overlap-
ping (Zhang et al., 2019). In this work,
we randomly sampled 5K pairs of sen-
tences out of which 2.5K pairs have label
1 and the rest randomly shuffled samples
from label 0.

(c) MRPC: This data-set is a collection of
sentence pairs collected from newswire
articles (Dolan and Brockett, 2005). In
total, there are 3.5K sentence pairs out
of which 1.1K random pairs from label 0
and the rest are labeled 1 by humans. In
this work, we utilize the complete dataset

7405

https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14


and performed the experiments.

(d) Afin: The Affirmative Interpretation of
Negation is a dataset comprising approx-
imately 150K sentence pairs, as curated
by (Hossain and Blanco, 2022). This
dataset features pairs where one sentence
contains negation and the other offers an
affirmative interpretation of the negated
statement (i.e. a paraphrase without nega-
tion). It serves as a valuable resource for
assessing encoder models’ ability to es-
timate the similarity between such sen-
tences.

A.3 SentEval Toolkit
SentEval (Conneau and Kiela, 2018) is a widely
used framework for evaluating the efficacy of sen-
tence embeddings. Here, sentence embeddings are
used to perform various classification tasks. Specif-
ically, the SentEval toolkit uses a logistic regres-
sion classifier for the datasets we evaluated which
deploys a 10-fold cross-validation methodology
across a range of classification tasks. The testing
fold is then utilized to compute the prediction ac-
curacy of the classifiers.

In this work, we assess the effectiveness of ten
distinct sentence encoders on seven datasets from
the SentEval benchmark to identify the best one.

1. MR: Movie review dataset for binary sentiment
classification (Pang and Lee, 2005).

2. CR: Sentiment prediction on Product review
dataset with binary labels (Hu and Liu, 2004).

3. MPQA: An opinion polarity dataset with binary
labels (Wiebe et al., 2005).

4. SSTb: Stanford Sentiment Treebank dataset
with binary labels (Socher et al., 2013).

5. SUBJ: Subjective prediction from movie re-
views and plot summaries (Pang and Lee, 2004).

6. TREC: Fine-grained question-type classifica-
tion task from TREC (Li and Roth, 2002a).

7. MRPC: Mircosoft Paraphrase Corpus from par-
allel news sources (Li and Roth, 2002b).

A.4 Models Setting
All evaluation criteria and models were loaded and
run on NVIDIA Quadro RTX 5000 and NVIDIA
RTX A4500 GPUs. The reported results and val-
ues were produced on a Linux server. We evaluated
various types of encoder-decoder models. Follow-
ing standard practice in the literature, both encoder
and decoder models generate sentence embeddings

from the final transformer layers, which consist of
contextualized embeddings for each token in the
sentence. For both types of models, we averaged
the embeddings from the final layer to obtain the
sentence embedding. This sentence embedding
was used for all our inference tasks. We aim to
evaluate open-source models, excluding GPT-3.

1. USE (Cer et al., 2018): Universal Sentence
Encoder (USE) is a transformer-based encoder
only model that encodes the text to a high
fixed 512-dimensional fixed-sized vector. The
TF2.0 Saved Model (v4) was loaded from
(TensorFlow-Hub, 2018) (thumb). The model
has been trained to classify: text classifica-
tion, sentence similarity, and clustering. To
encode the sentence we simply use standard
TensorFlow USE module.

2. SBERT (Reimers and Gurevych, 2019a):
Sentence-BERT is a BERT(Devlin et al.,
2019) based encoder only model which pro-
duces semantically meaningful sentence em-
beddings. In this work, we used Sentence-
Transformer library to load the pre-trained
model and used (all-MiniLM-L6-v2) pre-
trained SBERT model for evaluating all crite-
ria. The model has been trained on Wikipedia
and Book corpus data to align similar pair
sentences, and further fine-tuned on the NLI
dataset.

3. SimCSE (Gao et al., 2021):SimCSE, which
stands for Simple Contrastive Learning of Sen-
tence Embedding, is a encoder only model
designed to improve sentence embeddings
through a contrastive learning framework. By
leveraging contrastive loss, SimCSE aims to
enhance the semantic representation of sen-
tences, facilitating better performance in vari-
ous natural language processing tasks.

4. InferSent (Conneau et al., 2017a): The en-
coder based model produces sentence embed-
dings having semantic representations of En-
glish sentences. In this work, our model used
pre-trained GloVe word embeddings (Stan-
ford, 2014) with 840B tokens, 2.2M vocabu-
lary, 300-dimensional vector, and, InferSent
version 1 encoder. We have also set the batch
size to 64, word embedding dimension size to
300d, and LSTM encoder size to 2048 with
max-pooling layers enabled. Additionally, the
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model has been trained on the NLI dataset
to classify into three categories: entailment,
contradiction, and neutral.

5. LASER (Facebook, 2019): Language-
Agnostic-SEntence Representation (LASER)
is a encoder-decoder model built to perform
multilingual sentence embedding tasks and
trained in 93 different languages. The model
used five BI-LSTM layers in the encoder with
max-pooling on the last layer to produce em-
beddings of a sentence. In this study, we used
a pre-trained LASER model with its default
settings to produce a sentence embedding for
a given English sentence.

6. Bloom: BLOOM (Scao et al., 2022) is an de-
coder based autoregressive Large Language
Model (LLM) designed to extend text from
a given prompt. It has been trained on exten-
sive textual data utilizing substantial compu-
tational resources typical of industrial-scale
operations. Bloom has 176B parameter. To
fetch the embedding from the model we use
Huggingface framework (Huggingface, 2023)
and fetch the last hidden layer of the model
as sentence representation which later gets
averaged and then finally served as sentence
embedding.

7. GPTNeo: The GPTNeo model was released
in the EleutherAI/gpt-neo (EleutherAI, 2023).
It is a GPT2 like causal language model
trained on the Pile dataset. To get a sentence
representation, we used hugging face frame-
work (Huggingface, 2023). After loading a
model, we utilized last hidden layer to fetch
sentence representation. Next, we averaged
the embedding which server as sentence em-
bedding.

8. GPT3-Ada: We used GPT3 (OpenAI, 2022)
text-embedding-ada-002 model which is
trained for text search, text similarity, and
code search. We generate embedding using
OpenAI API (OpenAI, 2023). The output di-
mension produced by the model is 1536.

9. LLaMA2: The LLaMA2 (Touvron et al.,
2023) model is a collection of pre-trained
and fine-tuned large language models (LLMs)
ranging in scale from 7 billion to 70 billion pa-
rameters. In this work, we used the 7B param-
eter for encoding text. We utilized the Huggig-

Face framework with LLaMA2 weights and
generated the encodings. To generate an em-
bedding vector, the decoder processes input
tokens (embeddings) to generate correspond-
ing output embeddings, and we computed the
mean of these output embeddings to serve as
the sentence embedding, following standard
practice. The final output dimension vector
was 4096.

10. LLaMA-3: The LLaMA-3 (AI@Meta, 2024)
is a decoder model, which is a pre-trained
and instructed fine-tuned language model re-
leased in 8B and 70B sizes. In this work, we
used the 8B pre-trained model, and the Hug-
gingFace framework was utilized to load the
model. We performed inference testing on
our proposed criteria using this model. To en-
code a sentence, we used a similar approach
as mentioned in the LLaMA-2 model. The
model generates a 4096-dimensional embed-
ding vector.

11. Mistral: Mistral (Jiang et al., 2023) is an open
source model multilingual model available
in various sizes. In this work, we used the
Mistral-7B-v0.3 model which we loaded us-
ing the HuggingFace Framework. The model
produced an embedding size of 4096.

12. OLMo: Open Language Model by Allen In-
stitute of AI (AI2) is an open-source model.
OLMo released different sizes and we use the
7B model. We used the Huggingface frame-
work to load the model. We use the same
process as above to generate the embedding.
The model produces a 4096 embedding di-
mension.

13. OpenELM: The Open Efficient Language
Model was released by Apple in various sizes.
In this work, we use the openELM-3b model
which is their biggest model. We use a simi-
lar setup as other decoder-only models. The
output embedding size is 3072 dimensions.

A.5 Results

A.5.1 Criterion-1: Semantic Distinction
This criterion tests whether a sentence encoder can
properly distinguish between a highly semantically
related sentence vs. a distinct one. In Table 6, pos
represent the similarity of paraphrase sentences,
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Metric QQP WIKI MRPC

Pos RND Diff Pos RND Diff Pos RND Diff

USE 0.831 0.125 0.707 0.956 0.079 0.878 0.788 0.075 0.713
SBERT 0.866 0.042 0.823 0.974 0.041 0.933 0.835 0.063 0.772
SimCSE 0.873 0.373 0.500 0.975 0.264 0.711 0.873 0.318 0.555

Infer-Sent 0.891 0.636 0.255 0.974 0.679 0.295 0.923 0.698 0.225
LASER 0.839 0.505 0.333 0.970 0.616 0.355 0.874 0.574 0.300

Bloom 0.999 0.995 0.004 1.000 0.994 0.005 0.999 0.996 0.003
GPTNeo 0.951 0.762 0.189 0.985 0.665 0.320 0.963 0.727 0.236

GPT3-Ada 0.950 0.739 0.211 0.989 0.724 0.266 0.958 0.739 0.219
LLaMA-2 0.882 0.549 0.333 0.958 0.441 0.517 0.916 0.557 0.359
LLaMA-3 0.890 0.530 0.360 0.965 0.472 0.493 0.912 0.495 0.417

Mistral 0.918 0.651 0.267 0.968 0.524 0.444 0.921 0.528 0.394
OpenELM 0.954 0.790 0.164 0.989 0.767 0.221 0.958 0.772 0.186

OLMo 0.870 0.487 0.383 0.956 0.385 0.571 0.893 0.427 0.466

Table 6: Criterion-1-Semantic Distinction: Average Cosine Similarity for . Here, Positive (Pos.) is semantically
high overlap pairs and RND is random pairs. Diff is the difference of "Pos" and "RND". Blue and Violetindicate
best and second-best performer respectively.

Metric QQP WIKI MRPC

Pos Neg Diff Pos Neg Diff Pos Neg Diff

USE 0.0842 0.4377 -0.3534 0.0218 0.4606 -0.4387 0.1059 0.4624 -0.3565
SBERT 0.0672 0.4789 -0.4117 0.0130 0.4796 -0.4666 0.0827 0.4687 -0.3860
SimCSE 0.0638 0.3141 -0.2503 0.0125 0.368 -0.3555 0.0638 0.341 -0.277

Infer-Sent 0.0919 0.3165 -0.2245 0.0258 0.3137 -0.2879 0.0794 0.3053 -0.2259
LASER 0.1172 0.3672 -0.2500 0.0254 0.3296 -0.3041 0.1086 0.3627 -0.2541

Bloom 0.0008 0.0031 -0.0023 0.0003 0.0035 -0.0032 0.0006 0.0024 -0.0018
GPTNeo 0.0253 0.1213 -0.0960 0.0076 0.1701 -0.1625 0.0190 0.1390 -0.1199

GPT3-Ada 0.0252 0.1307 -0.1055 0.0053 0.1383 -0.1330 0.0212 0.1307 -0.1095
LLaMA-2 0.0602 0.2281 -0.1679 0.0214 0.2822 -0.2608 0.0431 0.2241 -0.1810
LLaMA-3 0.0555 0.2359 -0.1804 0.0181 0.2654 -0.2474 0.0444 0.2532 -0.2088

Mistral 0.0249 0.1791 -0.1363 0.0164 0.2412 -0.2248 0.0407 0.2394 -0.1987
OpenELM 0.0256 0.1129 -0.0874 0.0063 0.1245 -0.1182 0.0223 0.1203 -0.0980

OLMo 0.0658 0.2579 -0.1921 0.0221 0.3090 -0.2869 0.0542 0.2880 -0.2338

Table 7: Criterion-1: We expect the difference of NED score between semantically similar pairs and random pairs
should be negative. Higher the Negative score better the models is as its a distance measure. The blue and purple
indicate the best and second-best performer.

and RND represents the similarity of random pairs.
A good sentence encoder should show a significant
difference, with pos being much higher than RND.

From the table, we observe that SBERT and
USE dominated all other models, especially LLMs.
Among LLMs, OLMo and the LLaMA family per-
formed well but were still far behind SBERT. Eval-
uating this criterion using the NED metric (refer to
Table 7), we found a similar trend: classical models
outperformed LLMs. We believe that this is be-
cause classical models are mostly trained to align
similar sentences, thus performing well on this task,

whereas LLMs are trained for text generation and
therefore produce more balanced embeddings.

A.5.2 Criterion-2: Synonym Replacement

We expected synonym-perturbed sentences to be
more semantically similar to the original sentences.
Tables 4 and 8 represent the cosine similarity and
NED distance between these pairs, showing a de-
crease in similarity and an increase in distance as
n increases. However, we observed that models
like BLOOM and others produced inflated similar-
ity scores before normalization. To address this
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QQP WIKI. MPRC
Models n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3

USE 0.024 0.043 0.043 0.011 0.022 0.022 0.011 0.023 0.023
SBERT 0.027 0.048 0.048 0.011 0.021 0.021 0.013 0.025 0.025
SimCSE 0.014 0.024 0.024 0.006 0.012 0.012 0.006 0.012 0.012
Infer-Sent 0.013 0.024 0.024 0.008 0.015 0.015 0.007 0.013 0.013
LASER 0.013 0.024 0.024 0.005 0.010 0.010 0.006 0.012 0.012
Bloom 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
GPTNeo 0.859 0.861 0.861 0.858 0.859 0.859 0.857 0.858 0.858
GPT3-Ada 0.869 0.871 0.871 0.868 0.868 0.868 0.868 0.868 0.868
LLaMA-2 0.766 0.779 0.779 0.761 0.769 0.769 0.761 0.769 0.769
LLaMA-3 0.757 0.765 0.765 0.753 0.759 0.759 0.754 0.761 0.761
Mistral 0.785 0.790 0.790 0.783 0.787 0.787 0.783 0.787 0.787
OpenELM 0.883 0.885 0.885 0.882 0.883 0.883 0.882 0.884 0.884
OLMo 0.726 0.735 0.735 0.720 0.726 0.726 0.721 0.727 0.727

Table 8: Criterion 2: Adjusted Normalized NED score between the Original and the Synonym Replaced Sentence
pairs. Columns are grouped by dataset and subdivided by the number of word replacements, n = {1, 2, 3}.

issue, we used adjustment factors α and β for co-
sine similarity and NED metrics, respectively. The
purpose of these adjustments is to penalize the in-
flated scores produced by the models and provide
a more accurate interpretation. To normalize the
values, we used the "RND" pair similarity score
from Criterion-1 (refer to Table 6 and )7 in the for-
mulation of α and β as shown below. We applied
α and β to normalize the similarity and distance
scores for Criterion-2 and Criterion-4 only.

Adjustment Factor (α) for cosine: To account
for the randomness between pairs in each dataset,
we first find the similarity score of random pairs,
denoted as "RND"(see table 6). For each model,
we calculate the similarity scores by shuffling the
"RND" pairs and then taking the average similarity
score (average randomness score) corresponding
to each dataset. Next, we adjusted the average
similarity score by multiplying it by (αmodel).

αmodel = 1− 1

n ∗ |D|
n=3∑

i=1

|D|∑

j=1

sim(RND-Pairs)

The average of randomness scores refers to the
average of average similarity scores across all three
datasets and all models for Neg pairs. This is
proven to eliminate the effect of model random-
ness. Finally, we report the results in Tables( 4, 5
and 6).

Adjustment Factor (β) for NED: To account
for the randomness between pairs in each dataset,
we first find the distance between random pairs,
denoted as "RND"(see table 7). For each model,

we calculate the distance metric by shuffling the
"RND" pairs and then taking the average similarity
score (average randomness score) corresponding to
each dataset The equation is defined as:

βmodel = 1− ((1− NEDscore)×
1− 1

n ∗ |D|
n∑

i=1

|D|∑

j=1

sim (RND-
Pairs )




)

(2)

Equation 2 components breakdown

1. (1 − NEDscore) score: This term measures
how far the model is from the maximum dis-
tance, i.e., how similar it is rather than how
dissimilar.

2. Average Distance calculation:
1

n∗|D|
∑n=3

i=1

∑|D|
j=1 sim(RND-Pairs), this

term calculates the average distance over
all datasets and all data points within those
datasets. It effectively normalizes the total
distance by the product of the number of
datasets and the size of each dataset.

3. In inner (1− above equation expression) takes
the complement of the normalized average dis-
tance, then takes the complement again, which
simplifies to just the normalized average dis-
tance.

4. Combine all, the terms from the NED score
with the average distance measure, taking a
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Model USE SBERT SimCSE Infer-
sent LASER Bloom GPTNeo GPT3-

Ada LLaMA2 LLaMA-3 Mistral OpenELM OLMo

Adjusted Sim. score 0.053 0.049 0.026 0.032 0.034 0.997 0.86 0.87 0.771 0.764 0.791 0.885 0.734

Table 9: Criterion-4: Adjusted Normalized Euclidean Distance (using equations 2) of negation-affirmative sentence
pair sentences from the AFIN dataset. The blue and violet indicate the best and second-best performer.

product of these two terms. The outer 1 - term
is used to compute the final β scores.

A.5.3 Criterion-3:Paraphrase Vs Antonym
Replacement

Figures 5 and 6 elucidate the performance of
encoder models on the PAWS-WIKI and MRPC
datasets, respectively. A discernible observation is
the classical encoders’ struggle to differentiate be-
tween opposing sentence pairs, underscoring their
limitations in handling foundational linguistic tasks.
Contrarily, while LLMs also face challenges, the
LLaMA2, LLaMA3 and OLMo model evidences a
modest edge over its classical counterparts. On the
whole, our findings suggest that while LLMs have
achieved incremental advancements over classical
models in Criterion-3, substantial opportunities for
refinement remain.

A.5.4 Criterion-4: Paraphrase without
Negation

This case is a special type of paraphrasing data
where one sentence contains a negation and the
other is its affirmative paraphrase. We expect the
model to produce similar embeddings for these
pairs. Interestingly, in the NED metric, the Sim-
CSE model surpasses SBERT. This is likely due
to SimCSE’s training with a contrastive loss func-
tion, which aims to separate unlike pairs during
training. However, when comparing NED table 9
with cosine table 5, we observe some discrepan-
cies, while in NED, SimCSE leads. This indicates
that while the angle between the vectors is closer
for SBERT, the magnitude difference is lower for
SimCSE. This suggests that SimCSE effectively
captures magnitude differences and could be more
useful than cosine similarity for tasks involving
negation sentences.

A.5.5 Criterion-5: Paraphrase Vs Jumble
Sentence

The results of the cosine similarity and NED dif-
ference for the Jumble Sentence task are shown
in Figure [10 - 18] for cosine and for NED Fig-
ure [19 - 21]. All figures showcase the model’s abil-
ity to capture semantic meaning when the words
are swapped by order of ’n’ i.e. n = 1, 2, 3 across

all three datasets. The difference score is calcu-
lated as Sim(S, S′

P ) − Sim(S, S′
J) > ϵC5,S and

NED(S, S′
P )−NED(S, S′

J) < ϵC5,N for NED.
All sentence encoders were evaluated on three
datasets, and the results suggest that the classic
models struggle to capture the word order of sen-
tences whereas LLMs show some progress over
classic models. The figures display the number of
samples with a difference in cosine similarity score
greater than ϵC5,S/N .
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Figure 4: Criterion-3: LLM Model- Antonym Replacement Task. showcasing the difference in cosine similarity
score using the formula Sim(S, S′

P )− Sim(S, S′
A) > ϵC3,S , where ϵC3,S denotes the expected minimum margin

of differentiation on x-axis. This figure includes Bloom model.
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(a) Classical Model - Cosine Metric on Antonym Replacement Task on MRPC dataset

(b) LLMs - Cosine Metric on Antonym Replacement Task on MRPC dataset

Figure 5: Criterion-3: The figure of MRPC dataset showcasing the difference in cosine similarity score using the
formula Sim(S, S′

P )−Sim(S, S′
A) > ϵC3,S , where ϵC3,S denotes the expected minimum margin of differentiation.

Figure (a) Classical Encoders and (b) LLMs. It highlights their ability to distinguish between a sentence and its
antonym counterpart on MRPC.
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(a) Classical Model - Cosine Metric on Antonym Replacement Task on PAWS-WIKI dataset

(b) LLMs - Cosine Metric on Antonym Replacement Task on PAWS-WIKI dataset

Figure 6: Criterion-3: The figure of PAWS-WIKI dataset showcasing represent the difference in cosine similarity
score using the formula Sim(S, S′

P )− Sim(S, S′
A) > ϵC3,S , where ϵC3,S denotes the expected minimum margin

of differentiation. Figure (a) Classical Encoders and (b) LLMs. It highlights their ability to distinguish between a
sentence and its antonym counterpart on PAWS-WIKI.
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(a) Classical Model - NED Metric on Antonym Replacement Task on QQP dataset

(b) LLM - NED Metric on Antonym Replacement Task on QQP dataset

Figure 7: Criterion-3: The figure of QQP dataset showcasing represent the difference in NED distance using
the formula NED(S, S′

A) − NED(S, S′
P ) > ϵC3,N , where ϵC3,N denotes the expected minimum margin of

differentiation. Note, that positive side represent better model.
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(a) Classical Model - NED Metric on Antonym Replacement Task on MRPC dataset

(b) LLMs - NED Metric on Antonym Replacement Task on MRPC dataset

Figure 8: Criterion-3: The figure of MRPC dataset showcasing represent the difference in NED distance using
the formula NED(S, S′

A) − NED(S, S′
P ) > ϵC3,N , where ϵC3,N denotes the expected minimum margin of

differentiation. Note, that positive side represent better model.
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(a) Classical Model - NED Metric on Antonym Replacement Task on PAW-WIKI dataset

(b) LLM - NED Metric on Antonym Replacement Task on PAW-WIKI dataset

Figure 9: Criterion-3: The figure of PAWS-WIKI dataset showcasing represent the difference in NED distance
using the formula NED(S, S′

A)−NED(S, S′
P ) > ϵC3,N , where ϵC3,N denotes the expected minimum margin

of differentiation. Note, that positive side represent better model. Figure (a) Classical Encoders and (b) LLMs. It
highlights their ability to distinguish between a sentence and its antonym counterpart on PAWS-WIKI.
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(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=1.

(b) LLMs - Sentence Jumbling Task on MRPC dataset with n=1.

Figure 10: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for MRPC
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.

7417



(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=2.

(b) LLMs - Sentence Jumbling Task on MRPC dataset with n=2.

Figure 11: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for the
MRPC dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability
to distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=2 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=3.

(b) LLMs - Sentence Jumbling Task on MRPC dataset with n=3.

Figure 12: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for MRPC
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=3 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=1.

(b) LLMs - Sentence Jumbling Task on PAWS-WIKI dataset with n=1.

Figure 13: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for PAW-
WIKI dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=2.

(b) LLMs - Sentence Jumbling Task on PAWS-WIKI dataset with n=2.

Figure 14: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for PAW-
WIKI dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=2 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=3.

(b) LLMs - Sentence Jumbling Task on PAWS-WIKI dataset with n=3.

Figure 15: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for the PAW-
WIKI dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=3 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=1.

(b) LLMs - Sentence Jumbling Task on QQP dataset with n=1.

Figure 16: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for QQP
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on QQP. The scores
are computed using the formula Sim(S, S′

P ) − Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin of

differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=2.

(b) LLMs - Sentence Jumbling Task on QQP dataset with n=2.

Figure 17: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for QQP
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=2 on QQP. The scores
are computed using the formula Sim(S, S′

P ) − Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin of

differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=3.

(b) LLMs - Sentence Jumbling Task on QQP dataset with n=3.

Figure 18: Criterion-5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for QQP
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=3 on QQP. The scores
are computed using the formula Sim(S, S′

P ) − Sim(S, S′
J) > ϵC5,S denotes the expected minimum margin of

differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=1.

(b) LLMs - Sentence Jumbling Task on MRPC dataset with n=1.

Figure 19: Criterion-5 The presented figures illustrate the results for the Jumble Sentence Criterion-5 for MRPC
dataset. Figures (a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on MRPC. The scores
are computed using the formula NED(S, S′

J)−NED(S, S′
P ) > ϵC5,N denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=2.

(b) LLMs - Sentence Jumbling Task on QQP dataset with n=2

Figure 20: Criterion-5: The presented figures illustrate the results for the Jumble Sentence for QQP dataset. Figures
(a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to distinguish between a
sentence and its jumbled counterpart when the order of jumbling is n=2 on QQP. The scores are computed using
the formula NED(S, S′

J)−NED(S, S′
P ) > ϵC5,N denotes the expected minimum margin of differentiation. The

x-axis quantifies the range of scores, with each bin signifying the aggregate of data points falling within that specific
range. Conversely, the y-axis enumerates the number of samples populating each bin.
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(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=3.

(b) LLMs - Sentence Jumbling Task on QQP dataset with n=3.

Figure 21: Criterion-5:The presented figures illustrate the results for the Jumble Sentence for QQP dataset. Figures
(a) and (b) depict histograms for classical and llms, respectively, highlighting their ability to distinguish between a
sentence and its jumbled counterpart when the order of jumbling is n=3 on QQP. The scores are computed using
the formula NED(S, S′

J)−NED(S, S′
P ) > ϵC5,N denotes the expected minimum margin of differentiation. The

x-axis quantifies the range of scores, with each bin signifying the aggregate of data points falling within that specific
range. Conversely, the y-axis enumerates the number of samples populating each bin.
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