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Abstract

Hierarchical topic models nowadays tend to
capture the relationship between words and top-
ics, often ignoring the role of anchor words that
guide text generation. For the first time, we
detect and add anchor words to the text gener-
ation process in an unsupervised way. Firstly,
we adopt a clustering algorithm to adaptively
detect anchor words that are highly consis-
tent with every topic, which forms the path
of topic→anchor word. Secondly, we add the
causal path of anchor word→word to the popu-
lar Variational Auto-Encoder (VAE) framework
via implicitly using word co-occurrence graphs.
We develop the causal path of topic+anchor
word→higher-layer topic that aids the expres-
sion of topic concepts with anchor words to cap-
ture a more semantically tight hierarchical topic
structure. Finally, we enhance the model’s rep-
resentation of the anchor words through a novel
contrastive learning. After jointly training the
aforementioned constraint objectives, we can
produce more coherent and diverse topics with
a better hierarchical structure. Extensive exper-
iments on three datasets show that our model
outperforms state-of-the-art methods.

1 Introduction

Topic models, which can automatically discover
coherent and meaningful topics from text corpora,
have been widely used for text analysis (Rubin
et al., 2012; Wang et al., 2018; Jelodar et al., 2020).
In such methods, each topic is interpreted as rele-
vant words to represent a semantic concept. Differ-
ent from traditional flat topic models, Hierarchical
Topic Models (HTMs) aim to leverage the hier-
archical nature of topics to build a rational topic
structure (Zhang et al., 2022). HTMs have been
successfully applied to tasks such as hierarchical
classification of web pages (Ming et al., 2010) and
the discovery of hierarchical relationships in aca-
demic repositories (Paisley et al., 2014).

* The corresponding author.

Existing HTMs can be divided into two cate-
gories. The first category is conventional models
like hLDA (Griffiths et al., 2003) and its variants
(Kim et al., 2012). They infer parameters through
Gibbs sampling or Variational Inference, which re-
quire high computational costs or complex deriva-
tion (Chen et al., 2021b, 2023). The second cat-
egory is neural hierarchical topic models, includ-
ing HNTM (Chen et al., 2021a), HyperMiner (Xu
et al., 2022), and so forth (Isonuma et al., 2020;
Chen et al., 2021b, 2023; Duan et al., 2021; Wu
et al., 2024b). These methods generally follow
the VAE framework and employ back-propagation
for faster parameter inferences (Wu et al., 2024a).
However, the generation process of most previous
methods overlooks the role of anchor words and
directly generates words through topics, resulting
in insufficient mining of fine-grained topic-word
information. In this study, we adopt the framework
of the second category and attempt to alleviate the
above issue by exploiting anchor words.

The anchor word guided method (Arora et al.,
2012) is based on the separability assumption
(Donoho and Stodden, 2003), which assumes that
each topic contains at least one highly relevant an-
chor word that uniquely identifies the topic. For
example, while "resurrection", "pray", "sin", and
"christ" are associated with a topic about christian-
ity, only "christ" is unambiguous, so it could serve
as this topic’s anchor word. Based on this assump-
tion, there are two types of anchor word guided
topic models. The first type detects anchor words
by an interactive process, and uses these words to
identify topics in the context of non-negative ma-
trix factorization (Arora et al., 2012; Mimno and
Lee, 2014; Arora et al., 2013). These works require
intensive matrix calculations, making them unsta-
ble and noisy (Arora et al., 2013). The second type
obtains anchor words through label information (Ja-
garlamudi et al., 2012; Gallagher et al., 2017; Lin
et al., 2023). These works can be seen as a semi-
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supervised anchor word detection fashion, which
is unachievable without any external information.

Although aforementioned works demonstrate the
important role of anchor words in guiding topic-
word relationships, they have their own shortcom-
ings and the application of anchor words in unsu-
pervised hierarchical topic mining is scarce. So
there are two key issues here: First, how to detect
anchor words unsupervisedly on a neural hierar-
chical topic model; Second, how anchor words can
help model fine-grained topic-word relationships
and hierarchical topic structures.

In our proposed Anchor Word Clustering
and Path Guided framework for unsupervised
Hierarchical Topic Modeling (AP-HTM), we de-
tect anchor words and introduce four causal paths
to constrain the text generation process. Fig. 1(a)
and Fig. 1(b) show the text generation processes
of our AP-HTM and other HTMs (Chen et al.,
2021b; Li et al., 2022; Chen et al., 2023), re-
spectively. First, we unsupervisedly detect the
anchor words of each topic by a clustering algo-
rithm (Meng et al., 2022; Xie et al., 2016), which
forms the path of topic→anchor word, as shown
in Fig. 1(c). Second, two causal paths related
to the anchor words are added to the text gener-
ation process. In order to obtain a semantically
tight final embedding space, the causal path of an-
chor word→word (Fig. 1(d)) is introduced in each
layer. We use the word co-occurrence graph to im-
plicitly capture the relationships between anchor
words and other words, e.g., "christ"→"scriptures",
"bible". Then, the topic generation structure of
topic+anchor word→higher-layer topic (Fig. 1(e))
is adopted between layers to capture the topic hi-
erarchical relationships, utilizing anchor words as
auxiliary information to enrich the conceptual rel-
evance between topics. Further, for decoupling of
anchor words and other words in causal diagram,
we employ a novel contrastive learning (Fig. 1(f)),
masking anchor words during inference that makes
the encoder pay more attention to the vital informa-
tion of anchor words.

In summary, our contributions are as follows:
• We propose a new framework AP-HTM, which

introduces anchor words as important components
into text generation. And we adopt a clustering
algorithm to adaptively detect anchor words in the
anchor space.
• We add four causual path constraints to the

VAE framework that can guide to identify high-
quality hierarchical topics.

• We introduce a novel anchor-based contrastive
learning approach that updates the negative sample
during the training process, which enhance model
representation of fine-grained anchor words.
• Extensive experiments are conducted on three

datasets to evaluate our model. The results show
that the performance of AP-HTM is significantly
better than the state-of-the-art baselines.

2 Related works

2.1 Hierarchical Topic Models

As an alternative to flat topics models like La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
hLDA (Griffiths et al., 2003) was porposed to gener-
ate topic hierarchies with a nested Chinese Restau-
rant Process (nCRP). More variants based on tra-
ditional Bayesian probabilistic methods have been
explored in early research (Mimno et al., 2007;
Blei et al., 2010; Perotte et al., 2011; Kim et al.,
2012). Later, CluHTM (Viegas et al., 2020) used
Nonnegative Matrix Factorization (NMF) (D. Lee
and Seung, 2000) with cluster of words embed-
dings, HyHTM (Shahid et al., 2023) extended it
with hierarchical information from hyperbolic ge-
ometrys. But they cannot infer topic distributions
of documents.

Recently, Neural Hierarchical Topic Models
(NHTMs) have emerged in the framework of VAE
(Kingma and Welling, 2013). Some works are
based on traditional non-parametric models (Zhang
et al., 2022). Isonuma et al. (2020) first proposed
a tree-structure topic model with two simplified
doubly-recurrent neural networks. Chen et al.
(2021b) proposed nTSNTM with a stick-breaking
process prior. Parameter settings that specify the
number of topics at each level of the hierarchy are
also gaining attention. SawETM (Duan et al., 2021)
exploited a sawtooth connection module to mitigate
the problem of posterior collapse. HyperMiner (Xu
et al., 2022) modeled topic and word embeddings
in the hyperbolic space. NG-HTM (Chen et al.,
2023) used a Gaussian mixture prior and nonlinear
structural equations to model dependencies. TraCo
(Wu et al., 2024b) leveraged a transport plan depen-
dency method to regularize topic hierarchy.

2.2 Anchor Word Guided Topic Models

Introducing anchor words into topic models has
been a widely adopted way to improve topic qual-
ity and interpretability (Mimno and Lee, 2014).
Initially, a series of works based on NMF were
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Figure 1: The text generation process of (a) our AP-HTM and (b) other HTMs, where Θ is the set of parameters for the
generation process, T (l) is the topic embedding at layer l, and z is document-topic distribution, Nd is the number of words in
document d, WA and W ∗ are the word embedding in anchor space and final space. (c) pclus, (d) pintra, and (e) pinter show the
decomposition of the three causal paths, and (f) pcontra demonstrates the effect of applying anchor perturbation (grey variable) to
WA (details in Section 4.3). The solid line represents the generation model, and the dotted line represents the inference process.

proposed, and Arora et al. (2012) proposed the
concept of anchor word in topic modeling, distin-
guishing the different roles of anchor words from
other words. There is also a series of work that im-
proved the method of automatically finding anchor
words. FastAnchorWords (Arora et al., 2013) is
proposed to select anchor words, which provided
efficiency and practicality in practical applications.
Mimno and Lee (2014) proposed a greedy anchor
method to find exact convex hulls in the low di-
mensional space. Nguyen et al. (2014) proposed a
new regularization priori in the anchor method to
improve the interpretability and flexibility of the
model.

Parallel to this, there is another thread of works
that use mutual information between labels and
words to semi-supervisedly extract anchor words.
SeedLDA (Jagarlamudi et al., 2012) paired each
topic with a seed topic and biased documents to
topics if they have corresponding anchor words.
Anchored CorEx (Gallagher et al., 2017) provided
guidance on topic modeling by flexibly integrating
word-level domain knowledge into the model via
anchor words. SeededNTM (Lin et al., 2023) used
label information to extract anchor words for multi-
level supervisions.

3 Background

We define the basic hierarchical topic modeling
process in the following parts.

Encoder: Given a collection of documents, we
process each document d into a Bag-of-Words
(BoW) vector xbow ∈ RV , where V is the vocabu-
lary size. The Gaussian mixture encoder network
can be described as follows:

he = f(xbow), (1)

c = Gumbel Softmax(he), (2)

h(1)e = Reparameter(he, c), (3)

h(l+1)
e = tanh(h(l)e Π(l)), (4)

z(l) = softmax(h(l)e ), (5)

where he is the initial hidden representation in en-
coder, and h

(l)
e is the hidden document represen-

tation at layer l, Π(l) is the topic hierarchy matrix
between layers l and l + 1, L is the total number
of topic layers, z(l) is the document-topic distri-
bution at layer l, f(·) stands for multilayer neural
networks, and the Gumbel Softmax layer produces
a c-dimensional label. Following Dilokthanakul
et al. (2016), the number of mixture components c
is set to 10.

Decoder: The document decoder can be ex-
pressed as follows:

Φ(l) = softmax
(
T (l) ×W T

)
, (6)

x̂ =
L∑

l=1

x̂(l) =
L∑

l=1

z(l)Φ(l), (7)

where Φ(l) is the topic-word distribution at layer l,
and x̂ is the document reconstructed from decoder.
The symbol description is detailed in Table 1.

4 Method

After introducing the basic hierarchical topic mod-
eling process in Section 3, we briefly describe
four paths that extend the basic VAE framework
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Figure 2: The architecture of the proposed AP-HTM model.

Symbols Descriptions
W the word embedding from pre-trained model
WA,W ∗ the word embedding in anchor and final space
d the document in a corpus
Π the topic hierarchy
T, T ∗ the embedding of topic and fusion topic
A topN anchor words
θ set of parameters for the generation process
z document-topic distribution
ΦA,Φ∗ topic-word distribution in anchor and final space
Φ

(l)
k kth topic-word distribution at layer l

M the number of documents
Nd the number of words in document d
L the number of layers
K(l) the topic number at layer l
r embedding dimension of the latent space
Âadj modified adjacency matrix
SA, SP anchor word set and the least relevant word set

Table 1: Symbol description.

in Section 4.1, which are introduced to model fine-
grained topic-word relationships and the hierarchi-
cal structure. In Section 4.2 and Section 4.3, we
present the specifics of how our model works in the
form of two modules (Fig. 2). Section 4.4 shows
the training details of our AP-HTM.

4.1 Enhancing VAE via Four Causal Paths

In response to the two issues, we enhance the basic
VAE framework in Section 3 through the following
four causal paths.

(I) pclus: In order to obtain a sharpened an-
chor space WA ∈ RV×r with K(l) topics in each
layer, we conduct clustering on the pre-trained
word space W ∈ RV×r, where r is the embed-

ding dimension. And we adaptively extract TopN
anchor words A(l) in WA.

(II) pintra: In order to obtain a semantically con-
sistent and diverse word embedding W ∗ ∈ RV×r

in the final space, we use the word co-occurrence
graph G to guide anchor space WA.

(III) pinter: In order to obtain a reasonable hier-
archical structure Π(l), we fuse anchor words A(l)

and topic embeddings t(l) as new topic embeddings
t∗(l) to guide the generation of hierarchical relation-
ships between t∗(l) and t(l+1).

(IV) pcontra: In order to obtain an encoder that
accurately captures the relationship between an-
chor words and topics, we dynamically update the
anchor word set SA =

⋃
l∈LA(l), by masking the

original document d as negative samples for con-
trastive learning.

4.2 Latent Space Generative Module

4.2.1 Anchor Space Clustering
In this part, we aim to obtain anchor words for
each topic through a clustering algorithm, e.g., Xie
et al. (2016), thereby introducing anchor space WA

with K(l) well separated clusters, which realizes
the path of topic→anchor word (Fig. 1(c)).

Following a previous work (Meng et al., 2022),
we use the expectation–maximization (EM) algo-
rithm to gradually sharpen the posterior topic-word
distribution. In the E-Step, we estimate a new
soft cluster assignment of each word based on the
current parameters; in the M-step, we update the
model parameters given the cluster assignments.

E-Step. To estimate the cluster assignment of
each word, we compute the posterior topic distri-
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bution of the kth topic at lth layer t(l)k and ith word
wi obtained via the Bayes rule:

p
(
t
(l)
k |wi

)
=

p
(
wi|t(l)k

)
p
(
t
(l)
k

)

∑K(l)

k′=1 p
(
wi|t(l)k′

)
p
(
t
(l)
k′

) . (8)

According to Eq. (6), p
(
wi|t(l)k

)
= ϕ

(l)
k,i =

exp(t
(l)
k · wi

T ). And we assume that a topic t
(l)
k

is sampled from a uniform distribution over the
K(l) topics, so p

(
t
(l)
k

)
= 1

K(l) . The posterior is

simplified as p
(
t
(l)
k |wi

)
=

exp
(
t
(l)
k ·wi

T )
∑K

k′=1 exp
(
t
(l)
k ·wi

T
) .

Then we compute a new estimate of the cluster
assignments q(tk|wA

i ) to be used for updating the
model in the M-Step following (Xie et al., 2016):

q
(
t
(l)
k |wi

A
)
=

p
(
t
(l)
k |wi

)2
/s

(l)
k

K(l)∑
k′=1

p
(
t
(l)
k′ |wi

)2
/s

(l)
k′

,

s
(l)
k =

V∑

i=1

p
(
t
(l)
k |wi

)
.

(9)

M-Step. We update the model parameters to max-
imize the expected log-probability of the current
cluster assignment under the new cluster assign-
ment estimate Eq[log p], which is equivalent to
minimizing the following cross entropy loss:

Lclus = −
L∑

l=1

V∑

i=1

K(l)∑

k=1

q
(
t
(l)
k |wi

A
)

× log p
(
t
(l)
k |wi

)
.

(10)

As shown in Fig. 1(a), we here obtain the anchor
space, where the words are embedded as WA =
[wA

1 , w
A
2 , . . . , w

A
V ] mentioned in pclus.

4.2.2 Generating Anchor Words
Similar to Eq. (6), we get the topic-word distribu-
tion ΦA(l) at layer l in anchor space WA by:

ΦA(l)
= softmax

(
T (l) × (WA)T

)
. (11)

We then obtain the anchor words A(l) as follows:

A(l) = TopN(ΦA(l)
) ∈ RK(l)×Nw

, (12)

where TopN (·) returns a vector that retains top Nw

words of each row in ΦA. Here we set Nw as 1 and
get top 1 anchor words A(l) of layer l.

4.2.3 Intra-topic Path
After sharpening the pre-train space W via clus-
tering, we obtain the anchor space WA with good
clustering structure, in which each topic maintains
the most representative words as anchor words A.
Next, we will constrain the anchor word→word
path (Fig. 1(d)) to get the final space W ∗.

Inspired by a previous work (Arora et al., 2012),
we construct a word co-occurrence graph G =
(V, E), where V (words as nodes) and E (counts
of corresponding biterms) are sets of nodes and
edges, respectively. we compute the modified adja-
cency matrix Âadj by:

Âadj = (D+IN )−1/2(Aadj+IN )(D+IN )−1/2.
(13)

In the above, Aadj ∈ RV×V is the adjacency ma-
trix, D is the degree matrix of Aadj, and IN is the
unit matrix. Unlike a previous work using GCNs
(Zhu et al., 2018) for learning the graph structure
data, we achieve graph-guided embeddings through
a simple and effective traction formulation as fol-
lows:

W ∗ = WA + bÂadj ×WA, (14)

where b is a hyperparameter that controls the degree
of graph guidance. Intuitively, two word nodes that
are similar in G are considered semantically related,
which are therefore drawn closer to each other.

We then adjust the model parameters by link
prediction, as follows:

Lintra =
1

V 2

V∑

i=1

V∑

j=1

[
cos(w∗

i , w
∗
j )− Âadj

]2
.

(15)

This path implicitly utilizes WA and G to form
the final space W ∗ = [w∗

1, w
∗
2, . . . , w

∗
V ] mentioned

in pintra.

4.2.4 Inter-topic Path
In order to leverage the guiding role of anchor
words in the hierarchical structure between top-
ics, we fuse each topic embedding and its anchor
word embedding in a simple way to form a new
fused topic embedding, which is used to constrain
the path of topic+anchor word→higher-layer topic
(Fig. 1(e)). The fusion topic embedding t∗i

(l) of ith

topic at layer l can be achieved by:

t∗i
(l) = σ(w[t

(l)
i ;A

(l)
i ] + b), (16)

where w ∈ R2r×r and b ∈ Rr are the weights
vector and bias, respectively, and [·;·] represents
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the concatenation. The size of embedding vector
remains unchanged after the fusion.

Similar to the Section 4.2.1, we use the EM al-
gorithm to constrain hierarchical relationships be-
tween topics.

E-Step. We have the relationship between ith

topic of layer l + 1 and jth topic of layer l as:

p(t
(l+1)
j |t(l)i ) = Π

(l)
i,j , i ∈ K(l), j ∈ K(l+1), (17)

where Π(l) ∈ RK(l)×K(l+1)
is the matrix of

learnable parameters that represents the topic
hierarchy between layers l and l + 1. Then we
compute a posteriori estimation under pinter as:

q(t
(l+1)
j |t∗i (l)) =

exp
(
t∗i

(l)·t(l+1)
j

T
)

∑K(l+1)

j′ exp
(
t∗i

(l)·t(l+1)

j′
T
) .(18)

M-Step. We update the model parameters to
encourage the topic hierarchy to utilize fine-grained
anchor word information, which is equivalent to
minimizing the following cross-entropy loss:

Linter = −
L−1∑

l=1

K(l+1)∑

j=1

K(l)∑

i=1

q
(
t
(l+1)
j

∣∣∣t∗i (l)
)

× log p
(
t
(l+1)
j

∣∣∣ti(l)
)
.

(19)

In the same way as pinter, we can obtain a rea-
sonable hierarchy Π through the EM algorithm.

4.3 Anchor-based Contrastive Learning
In this section, in order to accurately detect an-
chor words, we perform mask operations on anchor
words in WA during inference as negative sam-
pling, as shown in Fig. 1(f). We introduce this
anchor-based contrastive learning to improve the
embedding capability of the encoder.

4.3.1 Sampling Strategy
Negative Sampling We first obtain anchor words
A(l) in Section 4.2.2, and then update the anchor
word set by SA =

⋃
l∈LA(l). We believe that the

anchor words are highly relevant to the semantics
of the topic. Then, the mask operation is defined as
removing words from SA in the original document
d to obtain a negative sample d−. We enforce d−

to decouple the anchor word factor from d.
Positive Sampling Similar to the negative sam-
pling strategy mentioned above, we obtain a set SP

of words with minimal relevance to all topics based
on ΦA. By removing the words in this set SP from
the original document d, we obtain d+ as a positive
sample of d. We believe that d+ retains the salient
topics from d.

4.3.2 Contrastive Learning
Let the document-topic distribution in layer l ob-
tained from d, d− and d+ be z(l), z(l)

−
and z(l)

+
.

We then calculate the contrastive loss as follows:

Lcl =
L∑

l=1

log(1 +
β cos(z(l), z(l)

−
)

cos(z(l), z(l)+)
), (20)

where β controls the weight of negative samples.
It is worth noting that under our generative

framework, we adaptively update the negative and
positive sampling during training, which is differ-
ent from previous static contrastive learning.

4.4 Joint Training
By introducing the constraints of the aforemen-
tioned four paths, the path loss function is:

Lpath = Lclus + γLintra + Linter + Lcl, (21)

where γ is a hyperparameter that controls the con-
nectivity about the nodes in the graph.

Our framework can be viewed as the extensions
of VAE, thus we use LELBO to maximize the Ev-
idence Lower BOund (ELBO). The overall loss
function of our model is:

L = λLpath + LELBO, (22)

where λ is a hyperparameter that controls the
weighting of the original VAE and the paths we
introduce. More details of the inference of the
model parameters can be found in Appendix A.

5 Experiments

5.1 Experimental Settings
Datasets: Our experiments are conducted on three
widely-used benchmark text datasets, varying in
different sizes, including 20News (Miao et al.,
2017), NIPS (Tan et al., 2017), and Wikitext-103
(Nan et al., 2019). All datasets have been pro-
cessed to remove stop words and filter low fre-
quency words by following Chen et al. (2023). The
statistics of datasets are shown in Appendix B.
Baseline models: We compared our AP-HTM with
the following baselines: 1) SawETM (Duan et al.,
2021): The hierarchical topic model which intro-
duces a sawtooth connection module to mitigate
the problem of posterior collapse. 2) HyperMiner
(Xu et al., 2022): The hierarchical topic model
which exploits hyperbolic embeddings for topic
and word representations. 3) nTSNTM (Chen
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Dataset Metric SawETM HyperMiner nTSNTM nFNTM CluHTM TraCo NG-HTM AP-HTM

NIPS

NPMI↑ 0.133 0.135 0.100 0.113 0.137 0.112 0.147 0.162
CLNPMI↑ 0.034 0.048 0.022 0.025 0.027 0.054 0.028 0.053

TU↑ 0.431 0.662 0.373 0.765 0.554 0.672 0.719 0.786
TQ↑ 0.057 0.089 0.037 0.086 0.076 0.076 0.106 0.128

20News

NPMI↑ 0.264 0.263 0.284 0.246 0.219 0.241 0.307 0.329
CLNPMI↑ 0.138 0.153 0.156 0.150 0.164 0.129 0.146 0.174

TU↑ 0.716 0.486 0.757 0.844 0.577 0.617 0.811 0.857
TQ↑ 0.189 0.128 0.215 0.208 0.126 0.149 0.249 0.281

Wikitext-103

NPMI↑ 0.154 0.225 0.225 0.228 - 0.134 0.255 0.295
CLNPMI↑ 0.060 0.079 0.121 0.147 - 0.042 0.090 0.145

TU↑ 0.221 0.520 0.662 0.739 - 0.729 0.797 0.825
TQ↑ 0.034 0.117 0.149 0.168 - 0.098 0.203 0.243

Table 2: The performance of all hierarchical topic models, where - indicates that the model has not converged after
48 hours of training. The best results are in bold and the second best are underlined.

et al., 2021b): The tree-like topic model that in-
troduces non-parameterization in the determination
of topic numbers. 4) nFNTM (Zhang et al., 2022):
The forest topic model which employs the self-
attention mechanism to capture parent-child topic
relations. 5) CluHTM (Viegas et al., 2020): The
Directed Acyclic Graph (DAG)-structured topic
model based on non-negative matrix factorization.
6) NG-HTM (Chen et al., 2023): A deep topic
model with a Gaussian mixture prior distribution
and nonlinear structural equations to capture topic
relations. 7) TraCo (Wu et al., 2024b): A hierar-
chical topic model with transport plan dependency
method and context-aware disentangled decoder.
The training details of all methods can be found in
Appendix C.

5.2 Quantitative Analysis

Interpretability of Topics: The topic hierarchy
generated by the model should have the following
properties: 1) a high degree of semantic consis-
tency of individual topics, and 2) a certain degree
of semantic similarity between parent and child
topics. Therefore, we adopt the widely adopted
Normalized Pointwise Mutual Information (NPMI)
(Isonuma et al., 2020) to evaluate the interpretabil-
ity of the intra-topic, and Cross-Level Normalized
Point-wise Mutual Information (CLNPMI) (Chen
et al., 2021b) to evaluate the subordination between
parent and child topics.

As shown in Table 2, the proposed model per-
forms significantly better than previous NHTMs on
all datasets, achieving a better NPMI by a margin of
13.8%, 7.0% and 15.8% on three datasets. On the
other hand, our model achieves the best CLNPMI
score on Wikitext-103 as well as sub-optimal re-

sults on the other two datasets. And overall for the
CLNPMI metric, our model is much better than the
current optimal baseline model. It demonstrates
that the hierarchical generation process of adding
anchor words ensures the coherence between the
parent and child topics, proving the structural ratio-
nality of topic hierarchy.
Topic Diversity: The diversity of hierarchical top-
ics reflects the model’s ability to mine the rich-
ness of the corpus for information. We adopt topic
uniqueness (TU) (Nan et al., 2019) to evaluate
the diversity of hierarchical topics generated. As
shown in Table 2, it’s evident that our AP-HTM per-
forms the best for TU on all the datasets, which can
be attributed to pclus that clusters the anchor space
WA, while pcontra makes the encoder capture the
anchor word more accurately.
Topic Quality: Intuitively, higher NPMI scores im-
ply better correlation within topics, which may lead
to increased redundancy between topics and thus
lower TU scores. Conversely, most of topics with
higher TU scores are marginal topics (Wu et al.,
2020), which lead to lower NPMI. Therefore, in
order to provide a more comprehensive insightful
into overall topic quality, we use topic quality (TQ)
(Dieng et al., 2020) for evaluaion. As shown in Ta-
ble 2, our model is significantly higher in TQ than
all baselines, indicating high quality hierarchical
topics are detected.
Topic Structure Rationality: For a reasonable
hierarchy, the semantics of topics at higher levels
should be general, while the semantics of topics
near the bottom should be more specific. Topic
specialization (TS) (Kim et al., 2012) quantifies
this feature by the following formula: TS(Φ) =
1− cos(Φ,ΦNorm), where Φ and ΦNorm denote a
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topic-word distribution and the word distribution of
the entire corpus, respectively. A higher TS score
implies that the topic is more specialized.

As shown in Fig. 6, AP-HTM achieves a reason-
able pattern of topic specialisation across different
datasets. Meanwhile, the relatively high TS val-
ues per layer illustrate the ability of our model to
capture more unique topics at each layer.

5.3 Qualitative Analysis
Examples of Anchor Word Guidance: Our model
introduces anchor words into text generation for
fine-grained word information. To show the effect
of anchor words in pintra, we show 5 examples of
top 5 topic words in Table 3 , where first and second
rows are in anchor space WA and the final embed-
ding W ∗. We also calculated the relative increase
in NPMI scores for each topic after guidance.

NPMI Increase Label Top 5 Words

103% topic:1_70
chastity scripture pray sin resurrection
christ jesus bible god scriptures

86% topic:1_65
yesterday sunday Canada friday Canadian
sunday saturday thursday yesterday friday

59% topic:1_14
interface toolkit unix compiler platforms
interface microsoft unix amiga linux

50% topic:1_111
father son woman pitt wife
father son mother woman daughter

36% topic:1_28
ordered recommended indicated initially plans
ordered announced plans announcement recommended

Table 3: Comparison of topic words before and after
anchor word guidance. We manually italicize and un-
derline words that are clearly unrelated to the topic.

From both quantitative and qualitative perspec-
tives, it can be explained that anchor word guidance
leads to more consistent topics. First, the NPMI
score significantly increases. Second, it can be
manually observed that some words with lower rele-
vance are replaced by more semantically consistent
words, for example, "Canada" and "Canadian" in
Topic:1_65, we believe that the topic of this word
cluster is time, which obviously does not match
the semantics of these two words. This may be
due to that pclus captures the high-frequency co-
occurrence of "Canada" and words about time.
However, with the guidance of pintra, we adopt
the synergy of anchor words and graph to ensure
semantic consistency.
Visualisation of Embedding Space: The top 5
words of the 5 topics in Table 3 are visualized in
Fig. 3 via t-SNE visualization (Van der Maaten
and Hinton, 2008). We can see that the topics are
embedded in the middle of related words, express-
ing certain semantic information. Besides, words
under the same topic are closer, while words un-
der different topics are farther apart. Additionally,

christ
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godbible
father

son

women

daughter

mother
Topic: 1_111

Topic: 1_70

Topic: 1_14

Topic: 1_28

recommended

plans

announcementannounced
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interface

toolkit
unix

compiler
platforms

saturday
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yesterday
thursday

sunday

Topic: 1_65

Figure 3: Visualization of word and topic embeddings, where
Topic: l_i denotes the ith topic at layer l.

related topics are closer in the embedding space,
such as Topic: 1_111 christianity and Topic:1_70
family. It is also worth noting that words with simi-
lar semantics under different topics will approach
each other, such as "god", "jesus" in Topic: 1_111
and "father", "son" in Topic:1_70. The comparison
of embedding spaces generated by AP-HTM and
baselines are shown in Appendex D.
Visualisation of Topic Structure: To demonstrate
intuitively the capability of our model in generat-
ing reasonable topic structures, we visualized sev-
eral topic structures extracted by AP-HTM from
20News. As shown in Fig. 4, each rectangle repre-
sents a topic and its top 10 words, with arrows from
sub-topics to the most relevant topics. Consistent
with the results of TS in Fig. 6, topics from root
to leaves show a gradual semantic change process
from general to specific. In addition, child topics
are related to parent topics, e.g., cancer is the child
of health, while disk is the child of use. These re-
sults mean that the semantic meaning of each topic
and the connections between the topics of adjacent
layers are highly interpretable, indicating that our
AP-HTM can learn a reasonable topic hierarchy.

5.4 Ablation Study

We perform ablation experiments on our model to
validate the effectiveness of each path. Table 4
shows the ablation results of our AP-HTM, where
“Ours w/o pclus, pintra and pinter” denotes remov-
ing the corresponding path constraints. “Ours w/o
pcontra” means that we use the sampling strategy
similar to CLNTM (Nguyen and Luu, 2021) rather
than our anchor-based method.

We can see from Table 4 that each path con-
tributes to solving two issues mentioned in Sec-
tion 1. Firstly, detecting the anchor space via
clustering is the first backbone in our framework.
After removing pclus, all metrics degrade largely.
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5th Topic at Layer3
government united president states rights political

congress policy state war

23th Topic at Layer2
 people said saying person
come live fact let says life

6th Topic at Layer2
health studies study science funding
development billion environmental

scientific research

116th topic:
community

society
social
groups

education
organizations

activities
culture

participate
cultural

3rd Topic
disease
patients
diseases
patient
cancer
clinical

medicine
treatment
medical

symptoms

25th Topic:
university

school
college

students
studies
student

sciences
professor
learning
graduate

119th topic:
majority
 senate

vote
 democratic
movement
democracy

parties
 leaders

party
representatives.

6th Topic at Layer3
 use bit standard size mode uses input

output run work

28th Topic at Layer2:
important approach cases prevent
effect possibility consistent likely

process certain

11th Topic at Layer2
disk memory ram pc mac video

port hardware drivers vga

91th topic:
effective

necessary
proper

consistent
require
 ensure

 safe
relatively
readily

appropriate

109th topic:
software
hardware

 user
documentation

users
access
 tools
data

implementation
virtual

120th topic:
example
particular

avoid
generally

event
 typical
events
 result
form

certain

15th topic:
interface

toolkit
unix

compiler
platforms
vendor

workstation
widgets

workstations
amiga

Figure 4: An example of hierarchical topics learned from 20News by AP-HTM.

Secondly, the intra-topic and inter-topic path
constraints also lead to semantically consistent
topic words and reasonable hierarchical structures.
After removing pintra, although TU increases on
20News and NIPS, it will lead to a significant de-
cline in NPMI, thereby affecting the overall topic
quality TQ. Besides, removing pinter leads to a de-
crease in all metrics on 20News and NIPS. While
TU and TQ increase slightly on Wikitext-103, both
CLNPMI and NPMI are affected and decrease. Fi-
nally, all metrics for “Ours w/o pcontra” declined
to some extent, indicating that our anchor-based
contrastive learning method can effectively en-
hance the embedding ability of encoder and fully
utilize the fine-grained information brought by an-
chor words. In summary, all causal paths of the
AP-HTM framework are reasonable and effective.

Datasets Model NPMI↑ TU↑ CLNPMI↑ TQ↑

NIPS

Ours 0.162 0.786 0.053 0.128
Ours w/o pclus 0.160 0.733 0.048 0.117
Ours w/o pintra 0.139 0.803 0.045 0.104
Ours w/o pinter 0.158 0.773 0.049 0.122
Ours w/o pcontra 0.150 0.738 0.050 0.110

20News

Ours 0.329 0.858 0.175 0.281
Ours w/o pclus 0.320 0.781 0.155 0.250
Ours w/o pintra 0.278 0.904 0.159 0.251
Ours w/o pinter 0.302 0.873 0.165 0.263
Ours w/o pcontra 0.325 0.848 0.158 0.276

Wikitext-103

Ours 0.295 0.825 0.145 0.243
Ours w/o pclus 0.293 0.817 0.118 0.239
Ours w/o pintra 0.244 0.824 0.116 0.201
Ours w/o pinter 0.289 0.849 0.139 0.245
Ours w/o pcontra 0.294 0.819 0.134 0.241

Table 4: Results of ablation evaluation on all datasets.

6 Conclusion

In this paper, we propose a neural hierarchical topic
model AP-HTM based on anchor words. Unlike

the popular prior models, our approach adds the
concept of anchor words to the text generation pro-
cess. We obtain the anchor space by clustering and
propose three causal paths guided by anchor words
to extend the VAE framework. In addition, we in-
troduce a novel anchor-based contrastive learning
to decouple the roles of anchor words in the paths,
thus endowing the model with stronger anchor
word and topic representation. Extensive exper-
iments show that our framework outperforms state-
of-the-art baselines in extracting coherent, unique,
and rationally structured topics.
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Limitations

Our framework is only a small step towards mining
a comprehensive and high-quality topic hierarchy,
and there are two limitations to be explored for fu-
ture works: 1) After obtaining anchor words about
the topic, some external prior information, such as
ConceptNet (Speer et al., 2017), can be introduced
to further guide the topic model incorporating hu-
man knowledge. 2) Metadata (e.g., author, tags,
and sentiment) from documents in a corpus can
be combined with anchor words of topics to assist
in document relations modeling and analyze the
relationships between topics in the document.
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A Parameter Inference Algorithm

We apply NVI to network parameters, which is ef-
ficient and flexibility (Srivastava and Sutton, 2017).
Similar to VAEs, one of the training obective of
our model is to maximize the ELBO, and the corre-
sponding loss LELBO is given below:

LELBO =
L∑

i=1

Eq(zi,Φi,c|x)
[
log p

(
x̂|zi,Φi

)]
+

−DKL

[
q
(
zL, c | x

)
∥p

(
zL, c

)]
. (23)

Algorithm 1: Parameter Inference Algo-
rithm

Input: The word embedding W from a pre-trained model;
Output: Topic-word distribution Φ∗, topic hierarchy Π.
1: Initialize Π and topic embeddings T ;
2: Construct the word co-occurrence graph G and compute

Âadj by Eq. (13);
3: repeat
4: Estimate z using Enc;
5: ΦA,WA,Lclus ←W,T by Eqs. (10) and (11);
6: Obtain A by Eq. (12);
7: Φ∗,W ∗,Lintra ←WA, R̂ by Eq. (15);
8: Π, T ∗,Linter ← Π, A, T by Eq. (19);
9: Mask words in SP , SA and estimate z+, z− using

Enc;
10: Lcl ← z, z+, z− by Eq. (20) ;
11: x̂← z,ΦA using Dec;
12: Compute ELBO by Eq. (23);
13: Φ∗ ←W ∗, T by Eq. (6);
14: Update Π, T, T ∗, A, SP , SA,WA,W

∗,ΦA,Φ∗

and Enc,Dec by Eq. (22) ;
15: until Convergence

The parameter inference method for AP-HTM is
presented in Algorithm 1. We use the variational
lower-bound to calculate gradients and apply RM-
Sprop to update parameters.

B Datasets

Statistics about the datasets employed in this paper
are shown in Table 5.

Dataset Docs(Train) Docs(Test) Vocabulary size
20News 11314 7531 3997
NIPS 1350 149 3531
Wikitext-103 28472 120 20000

Table 5: Basic dataset statistics.

C Training Details & Hyperparameters

AP-HTM is implemented via PyTorch. For
the embedding-based topic models including
SawETM, nTSNTM, nFNTM, CluHTM, Hyper-
Miner, NG-HTM, TraCo, and AP-HTM, we lever-
age the pre-trained GloVe model (Pennington et al.,
2014) to obtain the initialization for word embed-
dings W . All experiments were conducted with
model codes available in public, trained for a single
run, and on a workstation equipped with an Nvidia
RTX 1080-Ti GPU and a Python environment with
128G memory.

For all these models, the max-depth of topic hier-
archy is set to 3 by following (Isonuma et al., 2020).
To better compare parametric and nonparametric
topic models, we follow (Chen et al., 2021b) to use
the best hyperparameters reported in the original
papers. For nonparametric models (i.e. CluHTM,
nTSNTM, and nFNTM), we set the number of top-
ics to 200. For the parametric hierarchical topic
models (i.e., SawETM, HyperMiner, NG-HTM,
TraCo, and AP-HTM), the topic numbers of dif-
ferent layers k(1), k(2), and k(3) are set as 8, 32,
and 128. For AP-HTM, we set the weight param-
eter b to 0.02, 0.05, 0.006 for NIPS, 20News and
Wikitext-103, λ and γ are set to 10 and 0.1, 10 and
1, 10 and 1 for NIPS, 20News, and Wikitext-103.
β is set to 0.5. The optimisation of AP-HTM is
achieved by RMSprop with a learning rate of 5e-3
and batch size of 512. It is worth mentioning that
for all the metrics except topic specialization (Kim
et al., 2012), we calculate the average score for the
5, 10, and 15 top words.

D Comparison of Embedding Spaces

By comparing the strong baselines of TraCo, hy-
perMiner, NG-HTM, and AP-HTM, we can clearly
conclude the superiority of AP-HTM in obtaining
a reasonable word embedding space. The above
four models are embedded by different types of
embedding assumptions. TraCo learns the relation-
ship between topics and words through Euclidean
space, HyperMiner embeds in hyperbolic space,
NG-HTM and our model obtain topic-word distri-
bution Φ through inner product (The visual distance
metric obtained by inner product s set to the cosine
distance).

As shown in Fig. 5, it is evident that in the space
obtained by our AP-HTM, words are more tightly
embedded within the topic, and the distance be-
tween topics is also more reasonable. In summary,
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(a) TraCo (b) HyperMiner (c) NG-HTM (d) AP-HTM

Figure 5: Visualization of the embedding space for (a) TraCo, (b) HyperMiner, (c) NG-HTM, and (d) AP-HTM. We randomly
select 50 topics from 3rd layer from 20News, each consisting of top 10 words assigned different colors.

it is well illustrated that the final space W ∗ supports
coherent and diverse topics.
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Figure 6: Topic specialization of different topic structures
generated on all datasets.

E Intrusion Task Evaluation

We manually conduct an intrusion task for topic
word coherency on 20News for three strong base-
lines and our AP-HTM, and the results are shown
in Table 6.

Metric HyperMiner TraCo NGHTM AP-HTM
coherency 56.9% 58.7% 65.5% 79.1%

Table 6: The intrusion task on 20News.

The experimental results on the topic word co-
herency appear similar to those on the NPMI met-
ric, i.e., our model is much stronger than the most
recent strong baselines and 20.7% higher than the
suboptimal model (i.e., NGHTM). This experiment
with manual metric combined with the experiment
with automated metric lead to the conclusion that
our model outperforms the existing baseline in
terms of extracting topics that are coherent, dis-
tinctive, and rationally structured.

Details of our intrusion task are given below:
We randomly select 10 students as volunteers to

participate in the experiment, where the model gen-
erates top k words for all topics in 20News as two
parts. The first part is top 5 words and the second
part is top 1 words. Besides, the second part is ran-
domly mixed into the first part as intrusive words.
We randomly select the topic words after intrusion
in each layer according to the ratio of 1/8 (the num-
ber of each evaluation is (8+32+128)/8=21). We
then ask the human evaluators to identify the least
relevant words as intrusion words and calculate the
correct recognition rate of the intrusion instances
as the final intrusion metric.

F Runtime and Parameter Size

The runtime and parameter size of different models
on 20News are shown in Table 7.

Metric SawETM nFNTM nTSNTM HyperMiner TraCo NGHTM AP-HTM
Runtime 5.2s 3.3s 38.6s 4.4s 87.3s 3.8s 15.4s
#Params 1.9M 1.2M 0.5M 2.2M 2.2M 1.5M 2.8M

Table 7: Runtime and parameter size on 20News.

Due to the addition of several causal paths on an-
chor words, the number of parameters and runtime
increased. However, the overall computation time
and parameter size are still acceptable.
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