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Abstract

Multimodal Large Language Models (MLLMs)
demonstrate a strong understanding of the
real world and can even handle complex
tasks. However, they still fail on some
straightforward visual question-answering
(VQA) problems. This paper dives deeper into
this issue, revealing that models tend to err
when answering easy questions (e.g., Yes/No
questions) about an image, even though they
can correctly describe it. We refer to this
model behavior discrepancy between difficult
and simple questions as model laziness. To
systematically investigate model laziness, we
manually construct LazyBench, a benchmark
that includes Yes/No, multiple choice, short
answer questions, and image description tasks
that are related to the same subjects in the
images. Based on LazyBench, we observe that
laziness widely exists in current advanced
MLLMs (e.g., GPT-4o, Gemini-1.5-pro,
Claude 3, LLaVA-1.5, LLaVA-1.6, and
QWen-VL). We also analyzed the failure
cases of LLaVA-1.5-13B on the VQA-v2
benchmark and discovered that about half of
these failures are due to the model’s laziness.
This further highlights the importance of
ensuring that the model fully utilizes its capa-
bility. To this end, we conduct a preliminary
exploration of how to mitigate laziness and
find that chain of thought can effectively
avoid this issue. The data can be accessed at
https://github.com/Akutagawa1998/LazyBench.

1 Introduction

Multimodal Large Language Models (MLLMs)
(Liu et al., 2023c) integrate multimodal content
such as images into large language models (LLMs)
(Touvron et al., 2023). Represented by OpenAI’s
GPT-4 (OpenAI, 2023b), MLLMs have demon-
strated impressive capabilities across various com-
plex multimodal tasks (OpenAI, 2023a; Yang et al.,

†Pinjia He is the corresponding author.

2023). However, existing research indicates that
even state-of-the-art MLLMs still suffer from some
straightforward visual questions (e.g., “Is the door
of the truck cab open?” for an image of a truck.)
(Tong et al., 2024). A natural question arises:

Why do MLLMs struggle with these easy
questions?

In this work, we dive deeper to explore this ques-
tion and find that MLLMs often struggle with sim-
ple questions (like Yes/No questions) about an im-
age, even though they can accurately describe the
image itself. For example, as present in Figure 1,
when we asked GPT-4V, “Is this man wearing
a beige cap?” GPT-4V answered “Yes”, which
is incorrect. In contrast, when we asked it a simi-
lar but more difficult question, “Please describe
the cap that the man is wearing”, GPT-4V
correctly described its color. In this paper, we de-
scribe this phenomenon where MLLMs perform
well on the description tasks but make mistakes on
simpler tasks as model laziness1.

To systematically study model laziness, we man-
ually construct a benchmark called LazyBench.
We found image pairs encoded as “similar images”
by the pretrained Contrastive Language-Image Pre-
Training (CLIP) (Radford et al., 2021) model and
designed simple Yes/No questions on their visual
differences. We collected images from where GPT-
4V (website version) fails in the above-mentioned
questions. Then for each image, we handcraft
three different types of questions about the same
subject of the Yes/No question: multiple choice,
short answer question, and a description task. We
use LazyBench to evaluate advanced closed-source
models like GPT-4o, GPT-4V (OpenAI, 2023a),
Gemini-1.5-pro (Reid et al., 2024), and Claude 3
(Anthropic, 2024), and open-source models like

1The explanation of why we define description tasks as the
harder tasks can be found in Appendix A.1
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Figure 1: MLLMs sometimes fail to correctly answer straightforward Yes/No or multiple-choice questions based on
images. However, they often manage to avoid these errors when describing the images. We refer to this phenomenon
as “model laziness.”

LLaVA-1.5 (Liu et al., 2023c), LLaVA-1.6 (Liu
et al., 2024) and QWen-VL (Bai et al., 2023). The
results show that these state-of-the-art MLLMs sig-
nificantly suffer from laziness: they show a low ac-
curacy on Yes/No questions (e.g., GPT-4V: 28.72%,
Claude 3: 34.66%), and multiple choice ques-
tions (e.g., GPT-4V: 54.45%, Claude 3: 55.45%),
while performing significantly better on the corre-
sponding description tasks (e.g., GPT-4V: 71.28%,
Claude 3: 57.43%).

We further explore to what extent MLLM lazi-
ness is prevalent in the widely used visual question-
answering (VQA) benchmarks. To this end, we
propose a simple LLM-based framework that au-
tomatically evaluates the extent of laziness in their
failure cases.

We find that 41.15% failure cases of LLaVA-1.5-
13B on VQA-v2 are caused by model laziness. We
believe this provides valuable insights into the way
to improve the capability of MLLMs: in addition
to allowing MLLMs to learn more knowledge, it is
equally important to ensure that MLLMs are fully
utilizing the knowledge learned.

To mitigate the influence caused by model lazi-
ness in simple tasks, we implemented a chain of
thought (CoT) (Wei et al., 2022) based method to

make the task “harder”. We require MLLMs to
handle the description task first before answering a
Yes/No or a multiple-choice question. The results
show that our method fixed around 40% cases of
laziness and effectively improved MLLMs’ perfor-
mance in those tasks.

In summary, our contributions are listed below:

• We conduct an in-depth study on the phe-
nomenon of MLLMs making errors on easy
questions, discovering that current advanced
MLLMs exhibit significant laziness.

• We manually construct a dataset called Lazy-
Bench to investigate the laziness phenomenon
in MLLMs.

• We provide a CoT-based method that can ef-
fectively prevent models from being lazy.

2 Related Work

2.1 Visual Question and Answering

With the success of LLMs, increasing attention
has been given to integrating visual embeddings
into language models. Initially, researchers ap-
plied transformers to connect visual encoders with
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Figure 2: The green box represents a correct, brief statement about the “question subject” in the image. The blue
box contains four different types of questions about this subject (Yes/No, multiple-choice, short-answer questions,
and descriptive requests). They are used to evaluate the model’s laziness, and the construction of these questions is
described in Section 3.2.

LLMs, pretraining them on image-text matching
datasets (Lin et al., 2014; Krishna et al., 2017;
Changpinyo et al., 2021) and fine-tuning them on
specific datasets (e.g., VQA (Antol et al., 2015),
VQA-v2 (Goyal et al., 2017)). Then, to improve
MLLMs’ performances and generalization abili-
ties, researchers began using VQA format data
for instruction tuning (Liu et al., 2023c). Despite
MLLMs showing considerable capabilities in some
complex VQA tasks (Fu et al., 2022; Hu et al.,
2022, 2023b; Fu et al., 2023a,b), these studies seem
to focus primarily on the textual reasoning abili-
ties of MLLMs (Wei et al., 2022), rather than on
whether MLLMs are truly extracting information
from the images. Our work bridges this gap by
studying the model laziness.

2.2 Benchmarks for Visual Perceptions

Increasing attention is being given to the evaluation
of MLLMs’ visual perception. Tong et al., 2024
suggest that due to encoding flaws in the CLIP pre-
trained model, CLIP-based MLLMs might make
mistakes on some simple questions. POPE (Li
et al., 2023) and NOPE (Lovenia et al., 2023) de-
signed questions about the presence or absence of
objects in images to measure MLLM hallucination;
however, these consist solely of Yes/No questions.
Hallusibench (Liu et al., 2023a) provides a bench-
mark for evaluating MLLMs’ hallucinations across
different tasks. MathVerse (Zhang et al., 2024)
is a benchmark for visual problems in mathemat-
ical domains such as tables and charts. It reveals
that MLLMs may not be thoroughly reading these
charts, but they lack analysis of simpler and more
straightforward VQA tasks. LazyBench is the first

benchmark to focus on the consistency of MLLMs’
answers to the same question about the same sub-
ject in the same image when asked in different
forms.

3 MLLMs Are Being Lazy

To thoroughly understand and analyze the lazy phe-
nomenon, where MLLMs perform well on descrip-
tive tasks but fail on simple tasks, we construct the
LazyBench benchmark. Therefore, in this section,
we first introduce the methods and steps for con-
structing LazyBench. Subsequently, we measure
the extent of the lazy phenomenon of current state-
of-the-art MLLMs on LazyBench. Finally, we use
a CoT-based method to mitigate the MLLMs lazi-
ness.

3.1 Samples of LazyBench

Each item in LazyBench consists of an image, a
ground truth statement, and 4 different questions
(i.e., Yes/No, multiple-choice, short answer, de-
scription) together with their ground truth answers.
For instance, in Figure 2, for the image, there are:

• One Yes/No question: “Is this motorcycle
racer wearing a long-sleeved motorcycle rac-
ing suit?” and its ground truth answer is “No”.

• One multiple-choice question has 3 options:
“sleeveless motorcycle racing suit”, “Long-
sleeved motorcycle racing suit”, “Nothing, he
is naked” and the first one as its ground truth.

• One short answer question: “What is the mo-
torcycle racer wearing on their upper body?”
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Figure 3: The Process of constructing LazyBench: we utilize CLIP (Radford et al., 2021) to identify images that the
model considers “similar” and analyze the differences between them to pinpoint instances where MLLMs provide
incorrect answers. Based on these errors, we construct a series of related questions.

• One description question: “Please describe
the motorcycle racer’s outfit on his upper
body.” which is an open-ended question and
should be related to the statement.

In total, we have 101 images and 404 questions
together with their ground truth labels and distract
options.

3.2 Constructing LazyBench

Inspired by Tong et al., 2024, we designed a series
of questions targeting the visually obvious differ-
ences between image pairs that were encoded as
similar by CLIP (Radford et al., 2021). Intuitively,
if two images are encoded as similar vectors by
CLIP but have clear visual differences, it indicates
that at least one of the images had certain features
incorrectly encoded or neglected. This step helps
us quickly construct a set of visual questions that
MLLMs are likely to get wrong. We collected im-
ages from ImageNet (Russakovsky et al., 2015) and
MMVP (Tong et al., 2024). The specific steps are
listed below:

Image Selection We encoded each image using
CLIP and compared their cosine similarities. Fol-
lowed by Tong et al., 2024 and our observation,
here we focused on “similar image pairs” with a
cosine similarity greater than 0.96 but smaller than
0.99. This similarity ensures that the images in the
pair are considered “very similar” by CLIP yet also
easy to find obvious visual differences between

the image pairs. We then identified images that
appeared significantly different in human view.

Question Construction Based on images from
the previous step, we formulated Yes/No questions
targeting their differences. We collected the images
and questions that might be answered incorrectly2

and designed ground truth statements, multiple-
choice questions, short answer questions, and de-
scriptive request questions around the error points.
The process is shown in Figure 3. The ground
truth of Yes/No questions will always be “no” and
the correct option for multiple-choice questions is
shuffled randomly in A, B, and C.

When designing the description request, we di-
rectly asked the model to describe the subject of our
focus (e.g., in Figure 2, we requested the model to
describe the motorcycle racer’s outfit on his upper
body). This means that the subject of the Yes/No
questions and multiple-choice questions was equiv-
alently addressed in the description request. So the
description request does not include any additional
information or prompt any CoT guidance.

3.3 Experimental Result

Setup For evaluating model laziness, we as-
sessed the LazyBench questions on SOTA close-
source MLLMs such as GPT-4o, GPT-4-Vision-
preview (OpenAI, 2023a), Gemini-1.5-pro (Reid
et al., 2024), Claude-3-Opus-20240229 (Anthropic,

2We use the web version GPT-4V as the filter.
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Table 1: Evaluation result for MLLMs on LazyBench. Underline indicates in which task this model performs best
and bold denotes the model that gives the best performance in this task.

Model
Yes/No Multiple Choice Short Answer Description

Accuracy Lazy Rate Accuracy Lazy Rate Accuracy Lazy Rate Accuracy
GPT-4o 60.40 75.00 78.22 37.50 69.37 58.06 84.16
GPT-4V 28.72 70.83 54.45 37.50 55.33 48.89 69.77
Gemini-1.5-pro 50.50 70.00 62.38 46.00 58.42 50.00 76.24
Claude 3 34.65 62.12 54.45 42.42 48.51 38.09 59.34
LLaVA-1.513B 34.65 53.03 52.48 25.75 45.54 54.46 48.51
LLaVA-1.6-Mistral7B 35.64 66.15 57.43 36.92 47.52 47.17 67.33
LLaVA-1.6-Vicuna7B 32.67 55.88 49.50 35.29 46.53 43.40 55.54
LLaVA-1.6-Vicuna13B 35.64 73.85 57.43 43.08 46.53 62.26 70.30
LLaVA-1.6-Vicuna34B 56.44 59.90 66.34 25.00 55.43 34.15 65.35
Qwen-VL-Plus 49.50 58.82 59.41 37.25 53.47 44.68 66.34
Qwen-VL-Max 47.52 58.49 64.36 28.30 60.40 49.90 69.31

2024) and the open-source model LLaVA-1.53 (Liu
et al., 2023c), LLaVA-1.6-Mistral-7B, LLaVA-1.6-
Vicuna (7B, 13B, 34B) (Liu et al., 2024), QWen-
VL-Plus and QWen-VL-Max (Bai et al., 2023). We
set the temperature to 0 to make our results repro-
ducible.

Evaluation We classified instances where mod-
els made errors on Yes/No, multiple-choice or short
answer questions but provided accurate descrip-
tions of the related image as instances of “being
lazy”. We defined “lazy rate” as the number of
lazy cases divided by the number of total failure
cases on the simpler questions. We used a binary
classification to score the descriptions provided by
MLLMs as either correct (1) or incorrect (0). the
detailed evaluation criterion can be found in Ap-
pendix A.4.

MLLMs are being lazy on over 50% failures
in Yes/No questions. As the result shown in Ta-
ble 1, most of the MLLMs perform their best on
description tasks and have the worst responses on
Yes/No questions. Specifically, on GPT-4V, the
accuracy for Yes/No questions is less than 30%,
while the accuracy improves for multiple-choice
and short-answer questions. In description tasks,
GPT-4V achieves an accuracy of 69.77%, which is
41.05% higher than Yes/No questions and 15.32%
higher than multiple-choice questions. This indi-
cates that GPT-4V indeed exhibits laziness when
facing “simple tasks.” Similar results can also be
observed with Claude 3, where the accuracy for

3We found LLaVA-1.5-7B tends to answer “yes” for all
Yes/No questions, therefore, we used the 13B version only.
The detailed evaluation can be found in Appendix 4.4.

Yes/No questions was only 34.66%, while the ac-
curacy for descriptions reached 59.34% and other
MLLMs in the table.

Strong closed-source models tend to exhibit
high lazy rates: We found that all closed-source
models exhibit an over 60% lazy rate on Yes/No
questions. For multiple-choice questions, the “lazy
rate” for all closed-source models exceeds 35%.
The top two best-performing models in our eval-
uation are GPT-4o and Gemini-1.5-pro. They
achieved 60.4% and 50.5% accuracy on Yes/No
questions. GPT-4o attained a multiple-choice ac-
curacy of 78.22% and a description accuracy of
84.16%, while Gemini-1.5-pro reached 62.35%
and 76.24%. However, they also exhibit the most
severe lazy rate on these tasks (GPT-4o: 75%
in Yes/No questions, Gemini-1.5-pro: 46% in
multiple choice questions.) This indicates that
despite improvements in model capabilities, the
phenomenon of MLLMs laziness persists, even
stronger.

4 Discussion

4.1 Laziness in Existing Benchmarks

To explore the impact of laziness on the evaluation
of MLLMs in existing benchmarks for visual per-
ceptions, we conducted case studies on several pop-
ular benchmarks (e.g., VQA-v2 (Goyal et al., 2017)
and Hallusionbench (Liu et al., 2023a)). We evalu-
ate LLaVA-1.5-13B on 1000 Yes/No questions in
the VQA-v2 validation set. To automate this pro-
cess, we design and propose Don’t be lazy (Doby).
Doby is a framework based on GPT-4o which can
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Figure 4: Examples of LLaVA-1.5-13B being lazy in VQA-v2. The first line of boxes below each image contains
the original labels and questions in VQA-v2, as well as the initial responses from LLaVA-1.5-13B. The second line
of boxes contains the statement and description request automatically generated by Doby. The last line contains the
responses of LLaVA-1.5-13B to Doby’s questions. Subsequently, by comparing these responses to the statement, it
is determined whether the model is being lazy in these cases.

generate the ground truth statements and descrip-
tion requests like LazyBench from the Yes/No or
multiple choice questions-answering pairs in the
existing datasets, thereby expanding the original
datasets. After the MLLMs respond to the descrip-
tive tasks, Doby compares the generated statements
with the model’s descriptions to determine if the
tested MLLMs’ descriptions accurately convey the
relevant information. This process allows for au-
tomatic monitoring and statistical analysis of the
MLLMs’ laziness phenomenon among the datasets.

Using Doby, we found that LLaVA-1.5-13B is
lazy in 79 of 192 failure cases. Some examples are
given in Figure 4. This indicates that the model’s
inability to sufficiently utilize internal knowledge
under simple tasks is also an important reason for
the model’s insufficient accuracy. Namely, how to
prevent the model from being lazy is an important
part of improving the model’s capabilities.

4.2 Mitigating Laziness

As the above experimental results show that
MLLMs are lazy in the simpler tasks. We also
want to know:

Can we mitigate this phenomenon by
making the questions harder?

To answer this question, we used a CoT-based
method that let MLLMs answer the Yes/No and
multiple choice questions after letting them fin-
ish the description task. For example, we ask the
MLLMs about the image shown in Figure 2: Please
describe the motorcycle racer’s outfit on his upper
body, and then answer the question: Is this mo-
torcycle racer wearing a long-sleeved motorcycle
racing suit?

As Table 2 shows, after employing this CoT
method, MLLMs exhibit significant improvements
in both Yes/No and multiple-choice questions. The
enhancement is more pronounced for Yes/No ques-
tions. Among the models, GPT-4o, which had the
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Table 2: The performance improvement of MLLMs on LazyBench after the CoT-based prompt. Bold donates
in which task this model performed best, Smaller numbers in the ‘Accuracy’ columns denote the improvement
compared to the accuracy that MLLMs directly answer the questions. (Fix Rate: the proportion of laziness cases
that have been fixed.)

Model
Yes/No Multiple Choice Description

Fix Rate Accuracy Fix Rate Accuracy Accuracy
GPT-4o 37.50 71.29(24.76) ↑ 43.48 84.16(5.94) ↑ 84.16
GPT-4V 41.67 52.48(23.76) ↑ 47.92 66.34(11.69) ↑ 71.28
Gemini-1.5-pro 44.00 64.36(13.86) ↑ 26.82 67.33(4.95) ↑ 76.24
Claude-3 40.91 52.48(19.81) ↑ 42.11 58.42(3.96) ↑ 57.43
LLaVA-1.513B 36.36 50.50(15.58) ↑ 54.55 53.47(0.99) ↑ 48.51

highest accuracy in description tasks, showed the
greatest improvement in Yes/No questions. Specif-
ically, GPT-4o’s accuracy in Yes/No questions in-
creases by 24.76%. There are 37.5% GPT-4o
laziness cases among the original Yes/No ques-
tions that have been repaired, while Gemini-1.5-
pro and LLaVA see the least improvements of
13.86% and 15.58%. Additionally, GPT-4o’s ac-
curacy in multiple-choice questions improves by
5.94%, matching its performance in description
tasks, while the accuracy for Claude 3 and LLaVA-
1.5-13B even slightly exceeds their performance in
description tasks.

We further hypothesize that fine-tuning MLLMs
to provide explanations before giving answers,
rather than answering first and then explaining
(Chu et al., 2024), could also reduce MLLMs’ lazi-
ness. Similarly, the method proposed by Yuan et al.,
2024 allows models to correct themselves while
generating unsafe outputs, which might also be
effective in this context: when MLLMs realize
that their first one or few tokens (e.g., “Yes”, “A”,
etc.) of their initial answer may have been incor-
rect while explaining, they can adjust and improve
their response. The automatic prompt may also be
useful (Pryzant et al., 2023).

4.3 Doby Helps Find Noise Sample

Furthermore, by checking the response to descrip-
tion request of Doby, we find that in addition to
instances of laziness (Figure 11 in Appendix B),
these datasets contain numerous issues like the tex-
tual information of the question is vague (Figure
11(d)), or the questions cannot be answered solely
based on the images (Figure 11(c)). Ignoring these
issues may lead to incorrect assessments of the
model’s capabilities. These issues are not apparent
when solely examining the results of MLLMs on

Yes/No questions and multiple choice questions,
which also suggests that future researchers should
take a deeper look into the description response.

4.4 Further Discussion

As previous studies (Hu et al., 2023a; Liu et al.,
2023b) have found imbalanced training data of-
ten causes many MLLMs to directly give affirma-
tive answers like “yes” to any question. To further
verify that MLLMs’ laziness is different from op-
tion bias, we construct the conversed statement by
another image in the “similar image pairs”, (e.g.,
“Statement for Image_1” in Step 2 of Figure 3).
The detailed information can be found in Appendix
A.2.

Table 3: Accuracy of Irrelevant Questions (All answers
are “No”) and Conversed Question (All answers are
“Yes”.)

Model Irrelevant Conversed

GPT-4o 96.04 81.19
GPT-4V 92.07 64.35
Gemini-1.5-pro 90.10 64.36
Claude 3 88.11 57.42
LLaVA-1.513B 67.32 80.20
LLaVA-1.6-Mistral7B 73.27 77.23
LLaVA-1.6-Vicuna7B 76.24 77.23
LLaVA-1.6-Vicuna13B 80.20 76.24
LLaVA-1.6-Vicuna34B 94.06 52.48
Qwen-VL-Plus 87.13 79.21
Qwen-VL-Max 89.11 68.32
LLaVA-1.5-7B 0.00 100.00

In the open-source model LLaVA-1.5-7B, the
laziness seems not as apparent as in the closed-
source models. We found LLaVA-1.5-7B exhibits
severe bias in Yes/No questions and answers “yes”
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Table 4: Evaluation Result for MLLMs on LazyBench (Rev Rate: the proportion that MLLMs give incorrect
responses to the description task but successfully give the correct answer to Yes/No.)

Model
Yes/No Description

Accuracy Lazy Rate Rev Rate Accuracy
GPT-4o 60.40 75.00 37.50 84.16
GPT-4V 28.72 70.83 25.00 69.77
Gemini-1.5-pro 50.50 70.00 37.50 76.24
Claude 3 34.65 62.12 30.55 59.34
LLaVA-1.513B 34.65 53.03 32.61 48.51
LLaVA-1.6-Mistral7B 35.64 66.15 33.33 67.33
LLaVA-1.6-Vicuna7B 32.67 55.88 33.33 55.54
LLaVA-1.6-Vicuna13B 35.64 73.85 43.33 70.30
LLaVA-1.6-Vicuna34B 56.44 59.90 48.57 65.35
Qwen-VL-Plus 49.50 58.82 28.24 66.34
Qwen-VL-Max 47.52 58.49 29.03 69.31

for all questions, as shown in Table 3. This explains
its performance (i.e., a random guessing accuracy
33.66%) in multiple-choice questions. So we do
not consider LLaVA-1.5-7B when analysing the
MLLMs’ laziness. As the model size increases,
the tendency of LLaVA-1.5-13B to “thoughtlessly”
answer “yes” to Yes/No questions is significantly
alleviated. The closed-source MLLMs also have
decent performances in these questions. The result
shows this option bias is different from MLLMs’
laziness.

In previous experiments, we mainly focused on
the lazy rate, which refers to cases where the model
answers Yes/No questions incorrectly but correctly
describes the scenarios. To further validate our
findings, we answer the question below: can we
also find a significant number of cases where the
model makes mistakes in descriptions but answers
Yes/No questions correctly?

It is intuitive and normal to make mistakes on
more difficult tasks and perform well on simpler
ones, the small label space of Yes/No tasks means
that even random guessing has a 50% chance of
being correct. In Table 4, we provide the results re-
garding Rev Rate (i.e., the proportion that MLLMs
give incorrect responses to the description but suc-
cessfully give the correct answer to Yes/No). The
results show that the rev rate is significantly lower
than the lazy rate. Considering that Yes/No ques-
tions are easy to guess while describing questions
are hard to answer through guessing, we believe
the experimental results answer the above question
well: The phenomenon of laziness truly exists.

4.5 Why the MLLMs are Lazy?

We have a hypothesis about the reason why
MLLMs are lazy: take Yes/No questions and de-
scriptions as examples. For the former, the answer
(MLLMs response) needs to be given within a few
tokens or even a single token (i.e., “Yes”, “No”, or
“A” etc.), which means the model can only “look
at the image a few times or even just once” while
decoding the answer. In contrast, when generat-
ing the description of a specific region in the im-
age, MLLMs may need to look at the image many
times throughout the decoding process. The “quick
glance” for simple tasks versus the “careful ob-
servation” for complex tasks might be the reason
behind laziness. We believe it is important to un-
derstand and explain laziness accurately with more
experiments. However, since we are in the early
stages of studying laziness, in this work we focus
more on measuring, understanding its impacts, and
finding solutions for laziness. We will leave the
in-depth exploration of laziness for the future.

5 Conclusion

This paper highlights the laziness in MLLMs: a
model can handle difficult tasks (e.g., describe the
subject) but fails on simple tasks (e.g., a corre-
sponding Yes/No question). We provide a bench-
mark LazyBench that systematically shows this dis-
crepancy in model performance across advanced
MLLMs. Our findings indicate that in addition to
allowing the model to learn more knowledge, it is
equally important to ensure that MLLM is fully
utilizing the knowledge learned.
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Limitations

This paper has the following limitations. First,
laziness mainly occurs in powerful closed-source
MLLMs where we cannot access their internals
for further analysis of the root causes. Second,
although our CoT-based method shows prelimi-
nary effectiveness, we regard the development and
evaluation of laziness mitigation mechanisms as
important future work. Third, the size of Lazy-
Bench is small. We will keep expanding it in
the future. The latest data will be available at
https://github.com/Akutagawa1998/LazyBench.
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A Experiement and Evaluation Details

We provide more details of our evaluations and
experiments in this section.

A.1 Why Description is a “More Difficult
Task”?

We categorize binary (Yes/No) and multiple-choice
questions as “simple questions” from the perspec-
tive of the probability of random guessing and the
size of the solution space. For a Yes/No question,
there is a 50% chance of guessing correctly, and
for a multiple-choice question with three options,
there is a 33% chance of guessing correctly. Con-
versely, an open-ended question such as “Describe
the man’s outfit of his upper body” requires the
model to generate a highly specific and correct re-
sponse from an infinite combination of characters,
such as “He is wearing a sleeveless tank top” or “a
vest,” to be considered “correct”. In this case, the
probability of a correctly random guess is nearly
zero. Therefore, intuitively, we believe that accu-
rately describing an object is more challenging than
selecting the correct answer from a limited set of
options. Since we do not focus on “reasoning diffi-
culty,” all our questions are specifically designed
to ensure that the “reasoning difficulty” of Yes/No
questions is comparable to that of descriptive ques-
tions. For example, in Figure 1(a), the descrip-
tive task “Please describe the cap that the man is
wearing” does not cover more information than the
Yes/No question “Is the man wearing a beige cap?”
and they are asking about the same thing. In a word,
the term “difficult task” here refers solely to the
type of question, not the specific question content.
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Figure 5: The statement is a brief statement about the
“question subject” in the image. The conversed state-
ment contradicts the “question subject”. The irrelevant
question is a Yes/No question unrelated to the image
content, and the conversed Yes/No question is derived
from the correct statement. They are used to ensure that
the model does not thoughtlessly respond with “yes.”

A.2 Conversed Irrelevant Question for
Ablation Studies

We use GPT-4-turbo to generate a conversed
Yes/No question and an irrelevant Yes/No question
for each image, based on the statements. As shown
in Figure 5, the irrelevant questions are about some-
thing unrelated to the images, and their ground
truth answers are all “No.” If a model always fails
in the irrelevant questions, we believe it tends to
give “yes” responses without hesitation. All the
ground truth answers to the conversed Yes/No ques-
tions are “yes”. They test if MLLMs can correctly
recognize the features which are indeed in this im-
age.

A.3 Swapping Options

We use the swapping option to ensure that the re-
sult in multiple choice is not influenced by option
bias of “A”, “B” and “C”. Empirically we find that
LLaVA-1.5-7B obtains 91.21% accuracy when the
correct answer is “A”, but 3.2% accuracy when
the correct answer is “B” on LazyBench. Other
MLLMs tend to have even performance while the
order of the options shifts.

A.4 Evaluation Criterion of the Description

We employ a binary classification method to score
the descriptions provided by the model as either
correct or incorrect. As shown in Figure 6, when
the MLLM gives a description identical to the state-
ment, we judge it as correct (e.g., if the MLLM’s
description: “This is a back view of a person” and

the statement: “back view of a person”). If the
MLLM provides a description different from the
statement, but we find it equivalent to the state-
ment or containing the statement when considering
the image, we also judge it as correct (e.g., GPT-
4o’s description: “The camera captures the person
from a low-angle, rear perspective, slightly to the
left,” which we consider a more detailed descrip-
tion based on the image). In all other cases, if the
MLLM’s description differs from the statement and
is neither equivalent nor contains the same infor-
mation, we judge it as incorrect (e.g., LLaVA-1.5-
13B’s description: “The camera perspective is a
side view of the person running”). Additionally, if
the model’s description is irrelevant to our question
or refuses to answer the relevant question, we also
consider it an incorrect description.

A.5 Prompts of Doby
In Doby, we first ask GPT-4-turbo to generate the
statement by Yes/No question and answer pairs,
here we use a few shot prompt strategy (Figure 7).
Then we use GPT-4-turbo to generate the descrip-
tion request (Figure 8). After asking the MLLMs
to answer the description request, Doby compared
the statements and the MLLMs’ descriptions (by
using GPT-4-turbo, with the same criterion in Fig-
ure 6) to check if MLLMs can correctly describe
the subject in the image.

B More Results of LazyBench and Doby

Here we display more results of MLLMs’ perfor-
mance on LazyBench (Figure 9, 10) and the find-
ings given by Doby.

Using Hallusionbench (Liu et al., 2023a) as an
example: In their work, the case in Figure 11(c)
will be a case of visual illusion (if the model cor-
rectly identifies the previous question about the
original NBA logo as a basketball player.) How-
ever, our Doby shows that in these cases, MLLMs
make mistakes for other reasons (i.e., in this case,
lack of related information. MLLMs can correctly
describe every element in the image and human be-
ings who do not know the character cannot tell this
person in the logo is a singer either.) We do not ex-
pect MLLMs to know everything knowledge so we
cannot sorely define the mistake as "Hallucination".
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Figure 6: Example of the evaluation criterion of the description.

Figure 7: Example of the few-shot prompt to generate the statement.
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Figure 8: Example of the few-shot prompt to generate the description question.

Figure 9: More examples of GPT-4V’s laziness in LazyBench (Multiple choice).
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Figure 10: More examples of GPT-4V’s laziness in LazyBench (Yes/No question).

Figure 11: The examples of GPT-4V’s failure cases in Hallusionbench (Liu et al., 2023a). (a)(b) GPT-4V is being
lazy when answering the original questions. (c) The original visual information is ambiguous. (d) The ambiguous
definition of the “engineer tool” in the original question causes the failure.
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