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Abstract

Low-Rank Adaptation (LoRA), as a represen-
tative Parameter-Efficient Fine-Tuning (PEFT)
method, significantly enhances the training effi-
ciency by updating only a small portion of the
weights in Large Language Models (LLMs).
Recently, weight-only quantization techniques
have also been applied to LoRA methods to re-
duce the memory footprint of fine-tuning. How-
ever, applying weight-activation quantization
to the LoRA pipeline is under-explored, and
we observe substantial performance degrada-
tion primarily due to the presence of activation
outliers. In this work, we propose RoLoRA,
the first LoRA-based scheme for effective
weight-activation quantization. RoLoRA uti-
lizes rotation for outlier elimination and pro-
poses rotation-aware fine-tuning to preserve
the outlier-free characteristics in rotated LLMs.
Experimental results show RoLoRA consis-
tently improves low-bit LoRA convergence and
post-training quantization robustness in weight-
activation settings. We evaluate RoLoRA
across LLaMA2-7B/13B, LLaMA3-8B models,
achieving up to 29.5% absolute accuracy gain
of 4-bit weight-activation quantized LLaMA2-
13B on commonsense reasoning tasks com-
pared to LoRA baseline. We further demon-
strate its effectiveness on Large Multimodal
Models (LLaVA-1.5-7B). Codes are available
at https://github.com/HuangOwen/RoLoRA

1 Introduction

While we have witnessed the success of Large Lan-
guage Models (LLMs) such as GPT-4 (Achiam
et al., 2023) and LLaMA (Touvron et al., 2023)
across various tasks in recent years, the massive
model size and expanding training cost for LLMs
have necessitated the design of model compression
and Parameter-Efficient Fine-Tuning (PEFT) meth-
ods. Low-rank Adaption (LoRA) (Hu et al., 2021),

*All the work was done within HKUST and Zechun Liu
served an advisory role.

as the most favored PEFT method, significantly
enhances the fine-tuning efficiency of LLMs.

Recently, quantization techniques, which con-
vert high-precision parameters into lower-bit for-
mats such as INT4, have been integrated with
LoRA methods (Dettmers et al., 2024; Li et al.,
2024; Xu et al., 2024; Qin et al., 2024). Exist-
ing quantization-LoRA schemes can save memory
costs during fine-tuning, and some schemes (Li
et al., 2024; Xu et al., 2024) can also reduce infer-
ence costs by producing quantized LLMs directly.
However, these methods only perform weight-only
quantization, while LoRA weight-activation quanti-
zation is under-explored. Quantizing both weights
and activations in low-bit further saves run-time
GPU memory and accelerates compute-intensive
matrix-multiplication operations. We observe that
4-bit or 6-bit weight-activation quantization with
LoRA finetuning still incurs a high accuracy degra-
dation in LLMs, attributing to the outliers in weight
and activation distribution, which stretch the quan-
tization range and increase the quantization error.

Existing methods in the post-training quantiza-
tion research community have endeavored to tackle
the outlier challenge by mixed-precision subgroup-
ing (Zhao et al., 2024; Chee et al., 2024) or shifting
outliers from activation to weight (Xiao et al., 2023;
Shao et al., 2024). More recently, applying rota-
tion (Ashkboos et al., 2024; Liu et al., 2024c) to
the weight matrices of LLMs has demonstrated ef-
fectiveness in eliminating activation outliers and
keeping computational invariance (Ashkboos et al.,
2023a). However, all these methods solve the prob-
lems from a post-training perspective, ignoring that
outliers will emerge and change distribution dur-
ing pre-training and fine-tuning (Bondarenko et al.,
2021). In this work, we take a step further to uti-
lize the rotation for outliers-removal in LoRA fine-
tuning setting and investigate the optimal solution
for dynamically integrating rotation with LoRA
to preserve the outlier-free characteristics and im-
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prove weight-activation quantization. Motivated
by this target, we propose Rotated outlier-free Low-
Rank Adaptation (RoLoRA), which initially ap-
ply in-block and between-block rotation to the pre-
trained LLMs, and then utilize rotation-aware fine-
tuning to produce outlier-free fine-tuned LLMs as
shown in Figure 1. We explore the optimal rotation-
aware fine-tuning scheme based on approximation
error analysis.

Extensive experimental results prove the effec-
tiveness of RoLoRA across diverse LLMs, tasks,
and quantization settings. RoLoRA improves
the 4-bit quantization for weights and activations
(W4A4) performance up to 14.6 points on the
MMLU benchmark compared to LoRA. Compared
with existing low-bit LoRA methods, RoLoRA out-
performs previous SOTA IR-QLoRA (Qin et al.,
2024) with up to 6.0 points on the MMLU bench-
mark. The proposed RoLoRA is highly efficient
with negligible fine-tuning overhead compared to
LoRA in the same setting. RoLoRA can also im-
prove the quantization robustness of Large Multi-
modal Models (LMMs) such as LLaVA (Liu et al.,
2024a), and we observe the multimodal understand-
ing is largely retained even after W4A4 quantiza-
tion as shown in Table 1.

In summary, our work contributes as follows:

• We propose RoLoRA, the first method that
explores the feasibility of integrating rotation
in LoRA with quantization settings.

• RoLoRA enables robust weight-activation
quantization of fine-tuned LLMs, especially
in low-bit settings such as W4A4 and W6A6.

• We verify the effectiveness of RoLoRA
on the LLaMA series (2-7B, 2-13B, 3-
8B) across quantizers (RTN/GPTQ), bitwidth
(W4A4/W6A6), and benchmarks (Zero-shot
commonsense, MMLU). We also demonstrate
that RoLoRA can be applied to LMMs.

2 Related Work

Quantization Quantization methods are power-
ful tools for improving training and inference effi-
ciency. The core insight is replacing full-precision
weights and activations with lower-precision rep-
resentation. Most existing LLM quantization tech-
niques fall in the category of post-training quan-
tization (PTQ) (Liu et al., 2023b; Frantar et al.,
2023; Lin et al., 2024; Shang et al., 2024; Chee
et al., 2024) that directly quantize the model with-

Question: User: Explain the visual content of the
image in great detail. (category: “detail”)

GPT-4 Response: The image displays three open
pizza boxes with pizzas inside. The first pizza
box, situated to the left, contains a smaller pizza.
The second pizza box, positioned in the middle,
features a larger pizza topped with tortilla chips.
The third pizza box, located to the right, contains
another smaller pizza. Beside the large pizza, there
are two side orders of sauce in bowls, accompa-
nying the delicious meal. The arrangement show-
cases a delicious spread of pizzas, inviting every-
one to enjoy their different flavors and sizes.

LoRA GPTQ−−−→W4A4: The image shows a pizza.

RoLoRA GPTQ−−−→W4A4: The image features a
pizza with a variety of toppings, including cheese,
pepperonies, and chicken. There are three piz-
zas in total, with one of them being a pizza with
chicken. The pizzas are placed in a cardboard box,
which is open and ready for the pizzas. The pizzas
are served in a box, making it a convenient and
portable meal option.

Table 1: LLaVA-1.5-7B W4A4 quantization evaluation
on the example from LLaVA-Bench.

out extensive training. Among these LLM PTQ
methods, most of them apply weight-only quantiza-
tion while few methods explore weight-activation
quantization (Xiao et al., 2023; Shao et al., 2024;
Zhao et al., 2024; Ashkboos et al., 2024). Com-
pared to the weight-only quantization, quantizing
both weights and activations enables low-precision
multiply-accumulation (MAC) units. The core chal-
lenge is that outliers in activations cause high quan-
tization errors. This work focuses on the weight-
activation quantization in the LoRA pipeline.
LoRA Considering that full parameter fine-tuning
becomes computationally impractical as the scale
of LLM continues to grow, Parameter-Efficient
Fine-Tuning (PEFT) methods (Li and Liang, 2021;
Hu et al., 2023; Zhang et al., 2023) are designed to
reduce the cost by training a relatively small subset
of parameters. Low-Rank Adaptation (LoRA) (Hu
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Figure 1: Activation distribution before and after rota-
tion. The visualized input activations are selected from
layers.1.self_attn.q_proj in LLaMA2-7B.

et al., 2021) is the most adopted PEFT method, con-
sidering its flexibility and efficiency. More recently,
LoRA variants (Kopiczko et al., 2024; Liu et al.,
2024b; Hayou et al., 2024) emerged to improve the
effectiveness and efficiency of LoRA. Combining
LoRA and quantization (Dettmers et al., 2024) has
also been a promising direction as quantization can
further save the GPU memory in LoRA finetuning.
To further reduce the information distortion of low-
bit finetuning, various improvements of QLoRA
have been proposed (Xu et al., 2024; Li et al., 2024;
Qin et al., 2024). However, these methods only ap-
ply quantization to the weight during fine-tuning
to reduce memory consumption. This work is the
first quantized LoRA scheme that considers the
robustness to weight-activation quantization.

3 Preliminary and Motivation

3.1 Low-Rank Adaptation (LoRA)

For a pre-trained weight matrix W0 ∈ Rd×k, LoRA
models the weight update ∆W ∈ Rd×k utilizing a
low-rank decomposition, expressed as AB, where
A ∈ Rd×r and B ∈ Rr×k represent two low-rank
matrices, with r ≪ min(d, k). Consequently, the
fine-tuned weight W ′ can be represented as:

W ′ = W0 +∆W = W0 +AB, (1)

where W0 remains static during the fine-tuning
process, and the underlined parameters are being
trained. Additionally, based on Eq. (1), we can
merge the learned ∆W with the pre-trained weight
W0 and obtain W ′ in advance of deployment, and
given that both W ′ and W0 both fall within the
dimensionality of Rd×k, LoRA and its related vari-
ants do not introduce any extra latency during the
inference compared to the original model.

3.2 Outlier in Transformer

Starting from small-scale transformer models such
as BERT and ViT, researchers have revealed that
outliers exist within the weight and activation distri-
bution (Huang et al., 2023; Wei et al., 2022). Their
existence in LLMs is also observed in various stud-
ies. As shown in the left side of Figure. 1, acti-
vation outliers are distributed per channel. While
these outliers improve the representative capacity
of the transformers (Sun et al., 2024), they bring
non-trivial challenges for quantization (Xiao et al.,
2023; Liu et al., 2023b).

Most previous solutions to this outlier problem
in quantization can be categorized into three types:
(1) isolating these outlier values in a sub-group with
higher precision, such as LLM.int8 (Dettmers et al.,
2022), Atom (Zhao et al., 2024), QuiK (Ashkboos
et al., 2023b), and AdaDim (Heo et al., 2024). How-
ever, there is non-trivial overhead for the grouping
and mixed-precision. (2) shifting the challenge
of quantization from activations to weights, such
as SmoothQuant (Xiao et al., 2023) and Omni-
Quant (Shao et al., 2024). However, these meth-
ods negatively influence the weight quantization
robustness and fail at W4A4 scenarios. (3) rotat-
ing activation or weight matrices to remove out-
liers, such as QuaRot (Ashkboos et al., 2024) and
SpinQuant (Liu et al., 2024c). Among these meth-
ods, recent rotation-based solutions demonstrate
superior effectiveness. However, previous rotation-
based methods tackle the outlier challenge from
a post-training perspective and have not been ex-
plored under PEFT settings.

Thus, it leads to a question: Can we preserve
the outlier-free characteristics of rotated LLMs and
benefit from them during PEFT? We show in this
work that we can achieve such a target and step
further to investigate the most promising rotation-
based fine-tuning solutions in this work.

3.3 Eliminating Outlier with Rotation

A rotation matrix R is defined as an orthogonal ma-
trix with |R| = 1, where R also follows the char-
acteristics of the orthogonal matrix that RR⊤ = I.
If the entries of R are either +1 or -1, it becomes a
Hadamard matrix H . Based on the definition, we
can efficiently generate H with 2k entries1 based
on the Hadamard transform (also known as the
Walsh–Hadamard transform (Ritter, 1996) as an ex-

1For the n ̸= 2k entries, we can also decompose it into
n = 2km and construct Hn = Hm ⊗H2k efficiently.
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Figure 2: Overview of the proposed Rotated outlier-free LoRA (RoLoRA)

ample of a generalized class of Fourier transforms):

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
= H2 ⊗H2k−1 ,

(2)
where ⊗ denotes the Kronecker product. The ro-
tation is highly efficient as the matrix-vector prod-
uct with a d× d Hadamard matrix HdX requires
O(d log2(d)) operations. Previous research (Ashk-
boos et al., 2023a) has revealed that applying rota-
tion on the weights of pre-norm transformers can re-
tain its computational consistency and further lead
to fewer outliers in the weight and activation dis-
tribution (Ashkboos et al., 2024; Liu et al., 2024c).
Concretely, the multiplication of weight matrices
with a rotation matrix statistically blends weights
with large and small magnitudes together into a
more Gaussian-like distribution, thus producing ac-
tivations with fewer outliers and easier to quantize.
The outlier elimination effect of rotation is also
theoretically proved in Chee et al. (2024).

4 Method

Motivated by existing challenges of activation
outliers and the success of rotation-based solu-
tions (Ashkboos et al., 2024; Liu et al., 2024c),
we introduce Rotated outlier-free Low-Rank
Adaptation (RoLoRA). RoLoRA initially apply in-
block and between-block rotation to the pre-trained
LLMs, and rotation-aware fine-tuning on the ro-
tated LLMs will retain the optimal outlier-free char-
acteristic, producing fine-tuned LLMs highly ro-
bust to weight-activation quantization.

4.1 Applying Rotation

Before starting fine-tuning with rotation, we first
modify the model to keep computational invariance
before and after rotation. First, we need to ensure
no scaling operation in the normalization module.
For the LLaMA series, this can be implemented

by absorbing the RMSNorm scale parameters α
into the weight matrix right after the RMSNorm
layer (Elhage et al., 2023).

Then, we perform between-block rotation to
make sure that the outliers in between-block ac-
tivation are eliminated. As shown in Figure 2,
we classify the weight matrices in LLMs into two
groups: left-side weights, including Wq,Wk,Wv

in self-attention modules, and Wup,Wgate in feed-
forward network modules (which corresponds to
the Wu,Wg in Figure 2). right-side weights, in-
cluding Wo in self-attention modules and Wdown

in feed-forward network modules. For the weights
of these two groups, we adopt different rotation
strategies with

WR
left ← RWleft,W

R
right ←WrightR

−1, (3)

where the rotation R is randomly generated
Hadamard matrix. As we also rotated the input
X before embedding layer with X ← XR−1 and
output Y after lm_head with Y ← RY , the final
output of the model will be identical to the original
model. To avoid overflow issues in the rotation pro-
cess, we converted the FP16 weights to FP64 and
converted them back after the multiplication. The
conversion of weight precision is only conducted
once at the beginning of the rotation merging and
the precision of the rotated weights will keep FP16
during the fine-tuning and inference. There will
be no overhead for conversion in the actual infer-
ence because the precision during inference is al-
ways low-bit (W4A4/W6A6). These rotations are
applied before any training and inference, which
indicates that there will be no overhead after the
merging to original weights.

The rotation that directly applies to weights ef-
fectively reduces the outlier in between-block acti-
vation, and we refer to the operation as Between-
Block Rotation (BBR). Figure. 1 demonstrates the
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effect of applying BBR as the activation distribu-
tion is smoother and de-centralized. However, an-
other challenge remains that the activation in these
modules still suffers from outliers, especially preva-
lent in FFN as discussed in previous research (Bon-
darenko et al., 2024). We cannot directly apply
rotation similar to BBR because of the non-linear
operations such as SwiGLU (Shazeer, 2020) in
FFN. To solve this, we adopt the online rotation
node before inputting the activation input to Wdown.
This online rotation is implemented following the
fast Hadamard kernel (Chee et al., 2024; Ashk-
boos et al., 2024), which can be seen as a layer
dynamically rotating the activation. This online
rotation operation is highly efficient as we use the
fast Hadamard kernel on CUDA 2, and the over-
head is negligible during training and inference. It
is referred to as In-Block Rotation (IBR). Note that
IBR can also be applied to the self-attention mod-
ule, but we observe in the experiments of Table 7
that there is no performance improvement with this
rotation.

4.2 Rotation-aware Fine-tuning
After performing both BBR and IBR, the between-
block and in-block activation outliers are elimi-
nated. This characteristic can lower the quanti-
zation error during QLoRA training, enabling a
more accurate gradient estimation and smoother
optimization for fine-tuning. However, existing re-
search (Bondarenko et al., 2021; Kovaleva et al.,
2021) revealed that outliers will change distribu-
tion or emerge during fine-tuning and pre-training.
This poses a new challenge of dynamically inte-
grating rotation into LoRA to effectively maintain
outlier-free characteristics. To design the optimal
rotation-aware fine-tuning scheme, we first ana-
lyze the approximation difficulty when rotation is
applied. We assume that the optimal weight distri-
bution for specific downstream tasks is W ∗, and we
approximate it with the LoRA weights AB merged
with pre-trained weights W0. The optimization of
LoRA fine-tuning could be indicated as

min
A,B
∥W ∗ − (W0 +AB)∥F , (4)

where the ∥ · ∥F denotes the Frobenious norm. To
insert the LoRA module in the rotated models, we
propose two rotation-aware fine-tuning schemes,
namely LoRA After Rotation (LAR) and LoRA
Before Rotation (LBR), as shown in Figure 3.

2https://github.com/Dao-AILab/fast-hadamard-transform

(a) LoRA After Roatation (b) LoRA Before Roatation
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Figure 3: Two schemes for performing rotation-aware
fine-tuning: (a) LAR and (b) LBR.
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Figure 4: SVD approximation error of optimization tar-
gets with different LoRA-rotation integration schemes.

In LAR, we first merge the rotation matrix with
pre-trained weights and then use R1W0 + AB to
approximate W ∗. For LBR, we first merge the
LoRA weights and rotate them to be R1(W0+AB).
We assume the optimal weights to be the full-fine-
tuning results WFT , and the optimization for these
two schemes becomes:

LAR: min
A,B

∥AB −OLAR∥F , OLAR = WFT −R1W0

LBR: min
A,B

∥AB −OLBR∥F , OLBR = R−1
1 WFT −W0

(5)

the final optimization is very different. We apply
SVD of the approximation target OLAR, OLBR ∈
Rd×k by O = USV T . The principal singular val-
ues and vectors in the first r dimensions are uti-
lized to initialize the LoRA weights with rank r as
A ∈ Rm×r and B ∈ Rr×n:

A = U[:,:r] S
1/2

[:r,:r] ∈ Rd×r, B = S
1/2

[:r,:r] V
T
[:,:r] ∈ Rr×k.

(6)

We verify the approximation error of different rank
choices r to simulate the LoRA on two rotation
schemes. We use a pre-trained LLaMA2-7B as
W0 and a full-parameter fine-tuned model on the
Alpaca dataset (Taori et al., 2023) as WFT for the
experiments. which is shown in Figure. 4. Based
on the results, LAR outperforms LBR in low-rank
settings with lower approximation error, suggesting
LAR is the better design for rotation-aware fine-
tuning. The better approximation indicates that
after the two-stage merging with rotation matrices
and LoRA weights, the final weights can still retain
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the outlier-free property, which is further validated
by ablation experiments in Section 5.5.

As a result of the optimal rotation-aware fine-
tuning scheme under the LAR setting, we can ef-
fectively retain the outlier-free characteristic during
LLM fine-tuning, as shown in Figure 5.

5 Experiments

5.1 Settings

Model, LoRA, Quantizer The models for our
experiments include LLaMA2-7B/13B (Touvron
et al., 2023) and LLaMA3-8B (AI@Meta, 2024).
We follow the settings in LLaMA-Factory (Zheng
et al., 2024) to implement the training pipeline. The
dataset for fine-tuning is Alpaca (Taori et al., 2023)
with 52K samples. The weight PTQ methods are
the baseline Round-To-Nearest (RTN) and widely
used GPTQ (Frantar et al., 2023), and the activation
quantizer is RTN across all experiments. We use
per-channel symmetric quantization for weights
and per-tensor activation quantization.
Tasks Our RoLoRA was verified on seven
zero-shot commonsense reasoning tasks using
EleutherAI evaluation harness (Gao et al., 2021).
These tasks include BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-
easy and ARC-challenge (Clark et al., 2018), and
OBQA (Mihaylov et al., 2018). Additionally,
we also report the accuracy of Massively Mul-
titask Language Understanding (MMLU) bench-
mark (Hendrycks et al., 2020) for our evaluation.
Baselines We consider two settings for experi-
ments. The first is conducting FP16 fine-tuning
with RoLoRA, where we compare the W4A4 and
W6A6 quantization results with LoRA. The sec-
ond is conducting RoLoRA fine-tuning with 4-
bit weight quantization, which we refer to as
QRoLoRA, and comparing the W4A4 perfor-
mance with other low-bit LoRA methods including
QLoRA (Dettmers et al., 2024), LoftQ (Li et al.,
2024), and IR-LoRA (Qin et al., 2024).

5.2 Main Results

We first evaluate RoLoRA against LoRA in FP16
fine-tuning and then apply weight-activation PTQ
to the fine-tuned LLMs. To ensure a fair com-
parison, both RoLoRA and LoRA use the same
settings (rank, epoch, learning rate, etc.). As listed
in Table 2, RoLoRA enhances the quantization ro-
bustness of the LLaMA series across various quan-

tization settings on zero-shot commonsense reason-
ing and MMLU benchmarks. Specifically for the
W4A4 low-bit setting, RoLoRA outperforms LoRA
with an absolute up to 29.5% and 14.6% on ZCSR
and MMLU, respectively. Although MMLU con-
tains multiple-choice questions with four options.
The relative accuracy below 25% is still meaning-
ful because we observe that some low-bit quantized
LLMs cannot even be instructed to give a choice
from four options. Our method can better preserve
the reasoning performance, thus ensuring most of
the time LLaMA is still following the instructions
to answer the question rather than generating mean-
ingless tokens. Furthermore, RoLoRA makes it
feasible for near-lossless W6A6 quantization of the
LLaMa series across multiple tasks.

We further evaluate RoLoRA against
QLoRA (Dettmers et al., 2024) and serval
baseline methods, including LoftQ (Li et al.,
2024), IR-QLoRA (Qin et al., 2024), on 4-bit
fine-tuning and then apply W4A4 PTQ to the
low-bit fine-tuned LLaMA2-7B. The performance
across seven commonsense reasoning tasks and
four MMLU subtasks is detailed in Table 3. We
can see that RoLoRA consistently improves the
performance of the quantized model using the
same quantizer. In particular, for W4A4 GPTQ,
RoLoRA exceeds QLoRA by 20.5% on the
average accuracy of commonsense reasoning
tasks. Across the experiments on both FP16
and 4-bit fine-tuning, we observe that RoLoRA
achieves higher performance improvement on the
LLMs quantized by GPTQ (Frantar et al., 2023)
in general. This observation supports our claim
that RoLoRA retains the outlier-free activation
in fine-tuning as GPTQ only helps lower the
quantization error of weights but not for activation.

5.3 Visual Instruction Tuning
We further verify the effectiveness of RoLoRA on
visual instruction tuning tasks with LLaVA-1.5-
7B (Liu et al., 2023a), which consists of a language
model, Vicuna-7B (Chiang et al., 2023), and a vi-
sion encoder CLIP ViT-L-336px (Radford et al.,
2021). We finetune the LLaVA-1.5-7B on LLaVA-
Instruct-150K3. We only perform quantization on
the language model and evaluate the LLaVA with
quantized Vicuna and full-precision vision encoder
on LLaVA-bench (COCO) (Liu et al., 2024a) with
GPT-4 (Achiam et al., 2023). The relative score

3https://huggingface.co/datasets/liuhaotian/LLaVA-
Instruct-150K
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Table 2: Comparison of the averaged accuracy on seven Zero-shot Common Sense Reasoning (ZCSR) tasks and
MMLU benchmark across LLaMA series. The detailed accuracy for each tasks are listed in Table 10 and Table 11.

#Bits Quantizer Method LLaMA-2 7B LLaMA-2 13B LLaMA-3 8B

ZCSR7 Avg. MMLU4 Avg. ZCSR7 Avg. MMLU4 Avg. ZCSR7 Avg. MMLU4 Avg.

FP16 - LoRA 68.4 43.5 70.5 52.4 70.0 62.7

W4A4
RTN

LoRA 35.8 23.5 34.4 24.2 36.7 23.3
RoLoRA 54.1 (↑18.3) 25.8 (↑2.3) 58.7 (↑24.3) 30.5 (↑6.3) 50.0 (↑13.3) 32.1 (↑8.8)

GPTQ
LoRA 37.0 23.5 34.4 24.4 36.6 23.9

RoLoRA 62.3 (↑25.3) 31.0 (↑7.5) 63.9 (↑29.5) 38.9 (↑14.5) 56.6 (↑20.0) 38.5 (↑14.6)

W6A6
RTN

LoRA 65.3 35.9 67.3 47.3 67.7 55.3
RoLoRA 66.8 (↑1.5) 40.5 (↑4.6) 68.4 (↑1.1) 47.7 (↑0.4) 67.8 (↑0.1) 59.4 (↑4.1)

GPTQ
LoRA 65.5 35.7 68.0 47.6 67.8 54.3

RoLoRA 67.1 (↑1.6) 40.8 (↑5.1) 68.8 (↑0.8) 47.9 (↑0.3) 68.1 (↑0.3) 59.4 (↑5.1)

Table 3: Comparison of the averaged accuracy of different Low-bit LoRA methods on Zero-shot Common Sense
Reasoning tasks and MMLU benchmark on LLaMA2-7B.

#Bits Quantizer Method BoolQ PIQA HellaS. WinoG. Arc-e Arc-c OBQA Avg. Hums. STEM Social Other Avg.

RTN

QLoRA (Dettmers et al., 2024) 47.1 51.5 27.5 49.1 28.4 24.6 25.4 36.2 24.1 24.7 22.9 21.8 23.5
LoftQ (Li et al., 2024) 51.5 50.8 26.6 50.4 27.5 26.0 25.0 36.8 23.9 24.0 22.2 22.2 23.2

W4A16
IR-QLoRA (Qin et al., 2024) 45.5 49.7 26.7 50.6 25.7 26.8 26.8 36.0 24.3 24.6 23.9 21.9 23.7

↓ RoLoRA 59.9 60.5 43.5 51.8 43.7 28.6 28.8 45.3 (↑8.5) 24.7 25.3 23.6 24.3 24.5 (↑0.8)

W4A4
GPTQ

QLoRA (Dettmers et al., 2024) 51.4 51.6 27.7 51.9 29.6 25.3 26.4 37.7 24.9 24.0 22.2 22.5 23.6
LoftQ (Li et al., 2024) 55.9 49.2 27.2 49.1 26.6 26.1 24 36.9 24.1 23.8 23.3 22.7 23.6

IR-QLoRA (Qin et al., 2024) 51.1 49.8 27.6 49.3 27.6 24.6 27.4 36.8 24.6 24.8 22.9 22.7 23.9
RoLoRA 68.7 73.1 66.8 61.3 61.2 37.8 38.2 58.2 (↑20.5) 28.3 32.7 32.3 27.2 29.9 (↑6.0)

across the conversation, detail description, and
complex reasoning are reported in Table. 4, where
we can observe from the results that RoLoRA help
improve the quantization robustness and keep the
multi-modal ability during PTQ to the better ex-
tent with an increase up to 18.9 overall scores. We
also provide an example of the detail description
task on a given image shown in Table. 1. While
the W4A4 LoRA model only gives a rough superfi-
cial description of the images, our W4A4 RoLoRA
model fully elaborates the details, such as the top-
pings and containers.

Table 4: Comparison of the W4A4 quantization perfor-
mance on LLaVA-Bench of LLaVA-1.5-7B.

#Bits Quantizer Method Conv. Detail Reas. Overall

W4A4
RTN

LoRA 43.2 29.6 31.6 34.9
RoLoRA 68.8 40.5 51.9 53.8 (↑18.9)

GPTQ
LoRA 70.6 41.8 47.9 53.5

RoLoRA 67.5 48.3 66.2 60.8 (↑7.3)

5.4 Compatibility with other LoRA variants

We further verify our method on a representative
LoRA variant, DoRA (Liu et al., 2024b). DoRA
decomposes the pre-trained weight into magnitude
and directional components and finetunes both. We
also follow this scheme in our rotation-aware fine-

tuning stage and refer to this scheme as RoDoRA.
As shown in Table 5, RoDoRA achieves 18.3%
and 26.7% higher accuracy on W4A4 LLaMA2-7B
using RTN and GPTQ as quantizers. The results
of RoDoRA also outperform RoLoRA, showing
the compatibility of our methods with cutting-edge
LoRA variants and potential to further enhance the
performance of weight-activation quantization.

Table 5: Compatibility of with DoRA on LLaMA2-7B.

#Bits Quantizer Method ZCSR7 Avg.

W4A4
RTN

DoRA (Liu et al., 2024b) 36.4
RoDoRA 54.7 (↑18.3)

GPTQ
DoRA (Liu et al., 2024b) 36.6

RoDoRA 63.3 (↑26.7)

5.5 Ablation Study and Analysis
When to Apply Rotation? Different from the
Rotation-Aware Fine-tuning (RAF) scheme that
rotates the LLMs before LoRA fine-tuning, we
can also directly apply rotation on an already-
finetuned LoRA model. This possible paradigm
of LoRA→Rotate→PTQ is referred to as post-
training rotation. We evaluate post-training rotation
using the same training setting as RoLoRA across
the LLaMA series. The W4A4 GPTQ performance
on seven zero-shot commonsense reasoning tasks
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Figure 5: Left: The training dynamics of the average Kurtosis of activations, Middle: The distribution of Kurtosis of
activations across all layers in the final model after fine-tuning with LoRA and RoLoRA, Right: The accumulative
quantization error of W4A4 GPTQ across all layers in the final model after fine-tuning with LoRA and RoLoRA.

are listed in Table 6. The results indicate that apply-
ing rotation before LoRA can consistently enhance
the quantization robustness of the fine-tuned LLMs.

Table 6: Ablation on when to apply rotation.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B

RoLoRA 62.3 63.9 56.6
Post-Training Rotation 58.7 (↓3.6) 61.3 (↓2.6) 55.2 (↓1.4)

Where to Apply Rotation? In Figure 2, we intro-
duce two types of rotation in our pipeline, namely
Between-Block Rotation applied on all weight ma-
trices and In-Block Rotation applied on down_proj
in FFN. As discussed in Section 4.1, we can also
apply a similar head-wise IBR R3 for self-attention.
The R3 rotates the Wv and Wo in Figure 2 by
WR

v ← WvR3,W
R
o ← R−1

3 Wo. These choices
for rotation targets are verified on LLaMA2-7B
W4A4 PTQ shown in Table 7. The results suggest
that applying and only applying both R1 and R2 is
the best option to eliminate outliers.

Table 7: Ablation on where to apply rotation.

Method Rotation ZCSR7 Avg.

RoLoRA R1, R2 54.1

(−) FFN In-Block Rotation R1 40.4 (↓13.7)
(−) Between-Block Rotation R2 49.7 (↓4.4)
(+) Attention In-Block Rotation R1, R2, R3 53.8 (↓0.3)

How to Apply LoRA? In Section 4.2, we propose
two rotation-aware fine-tuning schemes LoRA Af-
ter Rotation (LAR) and LoRA Before Rotation
(LBR) shown in Figure 3. We prove that LAR is the
better paradigm based on the approximation error
analysis compared with full-finetuning. In Table 8,
we quantitatively compare the W4A4 quantization
performance of two schemes on the fine-tuning of
the LLaMA2-7B. The LAR scheme demonstrates
better effectiveness, which corresponds to the ap-

proximation analysis shown in Figure 4.

Table 8: Ablation on how to apply LoRA.

#Bits-Quantizer Method ZCSR7 Avg. MMLU4 Avg.

W4A4-GPTQ
LAR 62.3 31.0
LBR 61.1 (↓1.2) 30.4 (↓0.6)

Outliers Retaining the outlier-free characteristic
during LLM fine-tuning is the most important mo-
tivation for RoLoRA. To quantitatively validate
the effect of outlier elimination, we use kurtosis
κ =

∑k
i (xi−µ)4

σ4+ϵ
of the activation to measure the

outlier presence, where µ and σ are respectively
the empirical mean and standard deviation of ac-
tivation distribution. Generally, a large kurtosis
value indicates an activation distribution with heavy
tails and a higher likelihood of outliers. We visu-
alize the kurtosis dynamic during fine-tuning with
LoRA and RoLoRA in Figure 5. In the early train-
ing epochs, the rotation effectively suppresses the
activation outliers. The rotation-aware fine-tuning
can retain this optimal property. After fine-tuning
with RoLoRA, as shown in Figure 5, the kurtosis
κ across all layers is significantly reduced, which
further gives rise to the low quantization error com-
pared to the LoRA baseline. We also compare the
activation distribution of RoLoRA against LoRA
across layers in Figure 7 in the Appendix.
LoRA rank settings We explore the robustness of
LoRA and RoLoRA towards various rank settings
r ∈ {4, 8, 16, 32, 64} when fine-tuning LLaMA2-
7B and evaluated on zero-shot commonsense rea-
soning tasks. The optimal rank setting for RoLoRA
and LoRA are 16 and 32, respectively. The lower
optimal rank indicates the potential of our RoLoRA
to save trainable parameters. Overall, RoLoRA
consistently outperforms LoRA regardless of the
rank setting, demonstrating its robustness.
Efficiency For the fine-tuning efficiency of
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Figure 6: Average accuracy of W4A4 LLaMA2-7B fine-
tuned with RoLoRA for varying ranks r.

RoLoRA, the additional training time is only in-
curred by the online rotation operation (R2 in Fig-
ure 2) as the other rotation (R1 in Figure 2) can be
directly merged into the original weights. There is
only one additional matrix multiplication, and the
increased rotation parameter can theoretically be
considered negligible. We reported the fine-tuning
cost of RoLoRA compared to LoRA in the same set-
tings (rank r = 16, batch size as 8, 3 total epochs)
in Table 9, where RoLoRA significantly improve
W4A4 quantized LLaMA2-7B performance with
extremely low additional overhead.

Table 9: The fine-tuning costs comparison on LLaMA2-
7B with batch size as 8 on NVIDIA H800 80G GPUs.

Method Training Time GPU Memory ZCSR7 Avg.

LoRA 3.55 h 23.0 GB 37.0 (GPTQ)
RoLoRA 3.65 h 23.1 GB 62.3 (GPTQ)

6 Conclusion

This paper presents RoLoRA, the first work to ex-
plore the feasibility of weight-activation quantiza-
tion in LoRA. RoLoRA applies rotation for elim-
inating outliers in activation distribution and per-
forms rotation-aware fine-tuning to preserve the
outlier-free characteristics. We theoretically and
empirically investigate how to integrate rotation
into LoRA. RoLoRA improves the performance of
W4A4 and W6A6 LLMs by a great margin across
various tasks with the same training cost. Moreover,
RoLoRA can also help visual instruction tuning.

Limitation

In this work, we propose a rotation-based fine-
tuning method that can effectively improve quanti-
zation robustness to low-bit weight-activation PTQ
via retaining the outlier-free characteristics. The
fine-tuning is conducted on NVIDIA H800 GPUs,

while the recent NVIDIA Blackwell-architecture
GPUs with 4-bit floating point support may further
improve the efficiency. We will take the limitations
into account and improve in future work.
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A Detailed Evaluation Results

Table 10 and Table 11 listed the full evaluation results on zero-shot commonsense reasoning tasks and
MMLU benchmarks, respectively. We use the ‘acc_norm’ in the evaluation report given by EleutherAI
evaluation harness (Gao et al., 2021) as the accuracy if there are such metrics. Otherwise, we use ‘acc’.

Table 10: Full accuracy comparison on zero-shot commonsense reasoning tasks of LLaMA series.

#Bits Quantizer Method BoolQ PIQA HellaS. WinoG. Arc-e Arc-c OBQA Avg.

LLaMA2-7B

FP16 - LoRA 81.2 79.8 78.6 70.6 73.9 47.7 46.8 68.4

W4A4
RTN LoRA 46.0 49.5 27.0 49.6 27.8 24.2 26.8 35.8

RoLoRA 67.1 67.7 59.7 56.9 58.3 35.0 34.2 54.1

GPTQ LoRA 52.3 52.5 26.9 50.4 28.6 25.3 22.8 37.0
RoLoRA 73.5 76.2 71.8 64.1 67.7 42.2 40.4 62.3

W6A6
RTN LoRA 76.3 78.0 75.3 69.2 71.2 45.7 41.6 65.3

RoLoRA 77.9 79.1 76.3 68.5 74.8 47.3 43.6 66.8

GPTQ LoRA 76.3 78.2 75.4 69.5 72.1 46.1 40.8 65.5
RoLoRA 77.4 79.1 76.5 70.4 75.2 47.2 44.0 67.1

LLaMA2-13B

FP16 - LoRA 83.9 81.2 80.9 74.2 74.4 51.3 47.6 70.5

W4A4
RTN LoRA 39.8 52.1 26.1 45.7 25.9 25.8 25.4 34.4

RoLoRA 70.6 73.9 67.2 59.6 66.8 38.7 34.2 58.7

GPTQ LoRA 38.0 50.2 26.0 49.0 25.9 26.4 25.4 34.4
RoLoRA 74.0 77.2 73.9 66.0 73.3 43.9 38.8 63.9

W6A6
RTN LoRA 80.8 78.1 77.8 70.3 73.0 49.2 42.2 67.3

RoLoRA 80.3 78.8 78.0 71.1 77.6 49.6 43.2 68.4

GPTQ LoRA 81.9 79.2 78.5 69.3 74.3 51.5 41.2 68.0
RoLoRA 80.6 79.3 78.1 72.5 77.4 49.4 44.0 68.8

LLaMA3-8B

FP16 - LoRA 64.6 82.4 81.4 75.1 81.8 56.5 48.0 70.0

W4A4
RTN LoRA 46.7 52.2 29.7 47.6 29.3 24.7 26.6 36.7

RoLoRA 58.0 67.3 57.7 56.0 49.0 30.2 31.8 50.0

GPTQ LoRA 42.5 54.4 29.4 49.0 31.1 22.5 27.0 36.6
RoLoRA 63.2 71.1 66.7 60.2 60.3 38.2 36.8 56.6

W6A6
RTN LoRA 75.5 78.3 77.4 70.8 76.4 51.2 44.0 67.7

RoLoRA 78.6 79.5 76.7 71.1 77.6 49.8 40.8 67.8

GPTQ LoRA 77.9 78.3 77.9 71.3 75.2 50.5 43.2 67.8
RoLoRA 78.1 79.3 76.8 71.9 76.7 50.9 42.8 68.1

B Hyper-parameters for Reproduction

In Table 12, we list the detailed hyper-parameters for reproducing RoLoRA and LoRA results. We do
not apply searches on any hyperparameters for better accuracy, all the settings for the LLaMA series and
LLaVA align with the default settings of Zheng et al. (2024) and Liu et al. (2024a).

C Activation Distribution Visualization

We visualize the magnitude of the activation of fine-tuned LLaMA2-7B using LoRA and RoLoRA in
Figure 7. The visualizations reveal a noticeable amount of outliers presented in the LoRA fine-tuned
model, but are highly eliminated in RoLoRA counterpart.
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Table 11: Full accuracy on MMLU Benchmark of LLaMA series.

#Bits Quantizer Method Hums. Other Social STEM Avg.

LLaMA2-7B

FP16 - LoRA 41.5 50.8 48.2 34.7 43.5

W4A4
RTN LoRA 24.2 24.8 22.7 21.7 23.5

RoLoRA 24.7 26.2 27.2 25.7 25.8

GPTQ LoRA 24.3 24.5 23.0 22.0 23.5
RoLoRA 30.1 33.0 32.0 29.4 31.0

W6A6
RTN LoRA 35.4 40.6 37.5 30.4 35.9

RoLoRA 38.2 45.4 44.7 35.2 40.5

GPTQ LoRA 34.2 39.4 39.4 30.6 35.7
RoLoRA 37.8 46.1 46.2 34.9 40.8

LLaMA2-13B

FP16 - LoRA 49.6 59.2 59.9 42.8 52.4

W4A4
RTN LoRA 25.0 25.7 23.4 22.4 24.2

RoLoRA 28.9 32.5 33.2 28.4 30.5

GPTQ LoRA 25.5 24.2 24.1 23.4 24.4
RoLoRA 37.7 42.3 43.7 32.7 38.9

W6A6
RTN LoRA 44.3 52.8 55.0 38.6 47.3

RoLoRA 45.0 52.9 55.2 39.1 47.7

GPTQ LoRA 44.8 54.7 53.8 39.0 47.6
RoLoRA 45.6 53.7 55.2 38.7 47.9

LLaMA3-8B

FP16 - LoRA 57.4 70.7 72.8 52.7 62.7

W4A4
RTN LoRA 23.6 24.3 23.7 21.8 23.3

RoLoRA 30.8 34.5 33.5 30.5 32.1

GPTQ LoRA 24.6 23.0 23.4 24.3 23.9
RoLoRA 36.0 42.2 43.6 33.5 38.5

W6A6
RTN LoRA 49.7 63.0 64.4 47.2 55.3

RoLoRA 52.7 67.5 70.0 51.1 59.4

GPTQ LoRA 48.8 61.8 63.9 45.7 54.3
RoLoRA 52.9 68.3 69.6 50.4 59.4

Table 12: Detailed hyper-parameters for fine-tuning different LLMs and LMMs.

Model LLaMA2-7B LLaMA2-13B LLaMA3-8B LLaVA-1.5-7B

Epoch 3 3 3 1
Batch Size (Per GPU) 8 4 8 2

Gradient Accumulation 1 2 1 64
Warmup Ratio 0.01 0.01 0.01 0.03

Optimizer AdamW AdamW AdamW AdamW
LoRA Rank r 16 16 16 128
LoRA Dropout 0 0 0 0.05
LoRA Target Wq,Wv Wq,Wv Wq,Wv Wq,Wk,Wv,Wo,Wu,Wd,Wg

Learning Rate 1e−4 1e−4 1e−4 2e−4
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Figure 7: Final activation distribution of the fine-tuned model produced using RoLoRA and LoRA. We select the
output activation of q_proj across layers with the index of 0, 1, 6, 11, 16, 21, 26, 31.
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