%0 Conference Proceedings %T Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration %A Yuan, Weikang %A Cao, Junjie %A Jiang, Zhuoren %A Kang, Yangyang %A Lin, Jun %A Song, Kaisong %A Lin, Tianqianjin %A Yan, Pengwei %A Sun, Changlong %A Liu, Xiaozhong %Y Al-Onaizan, Yaser %Y Bansal, Mohit %Y Chen, Yun-Nung %S Findings of the Association for Computational Linguistics: EMNLP 2024 %D 2024 %8 November %I Association for Computational Linguistics %C Miami, Florida, USA %F yuan-etal-2024-large %R 10.18653/v1/2024.findings-emnlp.445 %U https://aclanthology.org/2024.findings-emnlp.445/ %U https://doi.org/10.18653/v1/2024.findings-emnlp.445 %P 7577-7597