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Abstract

Hate speech (HS) is a widely acknowledged
societal problem with potentially grave effects
on vulnerable individuals and minority groups.
Developing counter-narratives (CNs) that con-
front biases and stereotypes driving hateful nar-
ratives is considered an impactful strategy. Cur-
rent automatic methods focus on isolated ut-
terances to detect and react to hateful content
online, often omitting the conversational con-
text where HS naturally occurs. In this work,
we explore strategies for the incorporation of
conversational history for CN generation, com-
paring text and graphical representations with
varying degrees of context. Overall, automatic
and human evaluations show that 1) contextu-
alized representations are comparable to those
of isolated utterances, and 2) models based on
graph representations outperform text represen-
tations, thus opening new research directions
for future work.

Offensive Content Warning: This paper contains
offensive language that some readers may find dis-
tressing.

1 Introduction

Hate speech (HS) is a widespread problem in so-
ciety with severe repercussions at both personal
and societal levels. At the individual level, it can
lead to severe psychological and emotional impacts
on individuals who are targeted, e.g., fear of be-
coming the target of physical violence (Saresma
et al., 2021) or increased suicide rates (Hinduja and
Patchin, 2010). At a systemic level, it can create a
feedback loop between offline violence and online
HS (Siegel, 2020), e.g., encouraging school vio-
lence (Hinduja and Patchin, 2007). The pervasive-
ness of HS in the digital age makes its countering
a pressing issue (Gagliardone et al., 2015).

Several approaches exist to counter online
HS, including legal sanctions, content regulation,

and counter-speech (Donzelli, 2021). The lat-
ter consists in responding to HS through counter-
narratives (CNs), which are non-negative responses
to HS, targeting extreme statements through fact-
bound arguments or alternative perspectives (Be-
nesch, 2014). CNs aim to promote understand-
ing between individuals and are regarded as an
approach that does not pose normative or censoring
issues (Donzelli, 2021). Furthermore, CNs can play
a social role in educating those exposed to biased
narratives, providing evidence-based responses and
exposing misinformation (Pariser, 2011).

CNs naturally appear online and are typically
authored by community members addressing the
phenomenon of hate speech or carefully curated by
a mediating party like NGO operators. Significant
cognitive effort and time investment are needed to
create CNs manually, which is not feasible at large
scale (Schieb and Preuss, 2016). This became the
primary motivation for exploring automatic meth-
ods for CN generation, a task initially proposed
by Qian et al. (2019). As some of these automatic
methods rely on data-hungry approaches, research
efforts have been directed at providing high-quality
datasets containing manually created CNs. Their
provenance ranges from mined instances on social
media platforms like Twitter (Mathew et al., 2018),
Gab or Reddit (Qian et al., 2019), or instances man-
ually created by trained NGO operators (Chung
et al., 2019).

Currently, automatically generated counter-
narratives tend to be generic and often fail to
engage users effectively (Zheng et al., 2023).
As Doğanç and Markov (2023) observe, current
automatic CN generation methods are ineffective
in persuading authors against their expressed biases
due to a lack of personalization and contextualiza-
tion. This is partially because authority is insuf-
ficient to change the course of the conversation;
instead, establishing psychological and epistemic
common ground is required (McGowan, 2018).
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Input text
HS: In the West, women have legal equality, equal rights, and are protected 
from discrimination: they should stop busting our balls and whining.

Dialogue history:
S1: Women should stop whining: there are no professions barred to 

them in Western Society.
S2: Not according to the law, but many fields are still not welcoming to 

women, especially STEM.
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Counter-narrative: Are 
you sure? Women truck 
drivers, for example, earn 
about 76% the wages of 
male truck drivers. It's still 
a long way to equality.

Figure 1: System architecture. From left to right: 1) The text representation is translated into a graph representation.
2) The graph and text inputs get encoded in parallel to generate vector representations. 3) The encoded represen-
tations are aligned using a feature fusion mechanism. 4) These aligned features are passed to a text decoder to
generate output text.

In this work, we aim to automatically generate
counter-narratives contextualized in dialogue that
include conversational context and history for bet-
ter customization of CNs. To do so, we propose
an approach that leverages the use of graphical
models to depict the dialogue history as the con-
text in which HS arises, beyond relying on text
representations. These graphical representations
can make implicit aspects of HS explicit, fostering
a better understanding of the cognitive and social
mechanisms underlying hateful content.1

2 Related work

In this section, we begin by describing the research
on counter-narrative generation, with a particular
focus on the role of dialogue context. We then shift
our attention to the use of graph representations for
textual data.

2.1 Counter-narrative generation in dialogue

Extensive research has utilized conversa-
tional context for detecting the (fine-grained)
types (Pavlopoulos et al., 2020; Menini et al.,
2021) and targets (Markov and Daelemans, 2022)
of HS, some focusing on the usage of social
networks (Mishra et al., 2018) and other graph
representations (Mishra et al., 2019). However,
these techniques have not been well studied
for CN generation (Qian et al., 2019). Some
efforts have focused on creating datasets with
discourse annotations from Reddit (Hassan and
Alikhani, 2023) and Youtube (Mathew et al., 2019),
yet these datasets still consist only of HS-CN
pairs. Closer work involves intervening during
conversation (de los Riscos and D’Haro, 2021),

1All code and data available at: https://github.com/
selBaez/graph-based-hs-cn

however these systems require a HS classification
model and thus do not tackle the task of CN
generation in an isolated manner. All and all,
when the dialogue history is taken into account, it
is usually represented as text, which is typically
encoded as a vector (Bonaldi et al., 2024). To
the best of our knowledge, there is no work that
explores alternative representations of the dialogue
context, such as graph representations, for CN
generation.

2.2 Graph representations

Several methods for representing text as graphs
focus on either syntax or semantics. Syntactic pars-
ing techniques, such as dependency parsing, con-
stituency parsing, and syntactic integrated graphs
(Gómez-Adorno et al., 2016), capture structural
and hierarchical aspects of language. In contrast,
semantic techniques like Frame Semantics (Fill-
more, 1976) and Abstract Meaning Representations
(AMR) (Fillmore, 1976) describe events or situa-
tions conceptually, relying on catalogues of possi-
ble frames or abstract representations. While this
is effective for parsing individual pieces of factual
text, they may fall short in handling discourse-level
information, especially in subjective contexts such
as detecting and withstanding HS, where open-
world graph constructions are potentially better
suited.

As an example, Yao et al. (2023) propose a
Chain-Of-Thought representation (GoT) to approx-
imate the non-linear reasoning process that humans
are capable of. They test their framework on a
Question Answering task, both with text only and
in multimodal scenarios, using a two-stage frame-
work to generate in-between rationales followed by
the final answer.
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Alternatively, Baez Santamaria et al. (2021) pro-
pose to use episodic Knowledge Graphs (eKGs) to
represent the content, form and context of dyadic
dialogues. Using RDF technologies, these graphs
contain subgraphs relating to: (i) Ontology: the
world model, (ii) Claims: the atomic pieces of
knowledge, (iii) Instances: the individual enti-
ties in claims and their inter-claim connections,
(iv) Perspectives: the viewpoint of the source
regarding a claim, (v) Interactions: the con-
versational provenance of each claim. As such,
these graphs also serve as a model for the Theory
of Mind, as the information incoming from each
speaker is maintained and interpreted separately.

3 Research framework

The research questions guiding this work are:

• What is the role of discourse context in
counter-narrative generation?

• To what extent can graph representations
aid in generating contextualized counter-
narratives in a conversational context?

To answer the stated research questions, we gen-
erate CNs under several conditions. We first com-
pare the generated CNs utilizing only the targeted
HS utterance against the ones utilizing the previous
dialogue history. Then, we compare the generated
CNs using only text against the ones relying on
graph representations.

3.1 Methodology

In this paper, we transform a text-based dialogue
dataset into different graph representations, result-
ing in data structures that include dialogue context
information. We employ a graph-based text gen-
eration architecture (Yao et al., 2023), originally
tailored to produce rationales in a reasoning task
but here adapted to the CN generation task. The
system’s pipeline, as shown in Figure 1, primarily
consists of four steps:

1. Graph construction from text;

2. Encoding of the text and graph modalities;

3. Alignment of embeddings across modalities;

4. Text decoder for language generation.

.

3.1.1 Graph construction

Various types of graph representations can be used
with the proposed architecture. In this work, we use
two graph representations: 1) Graph of Thought
(GoT) and 2) Episodic Knowledge Graph (eKG).
GoT captures the content of a dialogue, while the
eKG additionally captures the dialogue’s structure,
including speaker identity and utterance sequence.
Hereby, we describe how these graph representa-
tions are constructed. For a grounded example with
corresponding graph visualizations of the represen-
tations used in this work, see Appendix A.

Graph of Thought We create Graph of Thought
(GoT) representations using the code provided by
Yao et al. (2023)2, keeping the maximum number
of nodes to 100. Following Yao et al. (2023), we
extract triples using Stanford Open Information Ex-
traction (OpenIE) framework (Angeli et al., 2015)
and cluster the nodes referring to the same men-
tions utilizing the Extract-Clustering Coreference
(ECC) mechanism. As a result, these graphs repre-
sent the joint information in the communications
between HS and CN authors.

Episodic Knowledge Graphs We create
Episodic Knowledge Graph (eKG) representations
using the RDF graph generation package3, with
OIE as the base triple extractor. These graphs
are usually bigger, but as computational reasons
require us to keep the maximum number of nodes
comparable to GoT4, we only keep the Claims,
Perspectives, and Interactions subgraphs.
We further remove triples stating rdf:type and
rdfs:label. Consequently, eKGs represent
the exchange of subjective information in the
communication between HS and CN authors.

3.1.2 Encoders

The input text gets encoded by extracting the hid-
den states of the last layer of the T5 model (Raffel
et al., 2020), specifically the FLAN-Alpaca check-
point5. As shown in Figure 1, the prompt is format-
ted with the HS to be addressed, preceded by the
dialogue history.

2https://github.com/Zoeyyao27/
Graph-of-Thought

3https://github.com/leolani/
cltl-knowledgerepresentation

4The adjacency matrix used as input for the encoder has to
have fixed dimensions.

5https://huggingface.co/declare-lab/
flan-alpaca-base
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Table 1: Results from automatic evaluation. Models: txt (NC) - text only without context, txt - text only with
context, GoT (NC) - text and GoT graph without context, GoT - text and GoT graph with context, eKG - text and
eKG graph with context. For all metrics, higher is better, except for Repetition Rate and Toxicity where lower is
better. Underlined denotes the best scores across all metrics, while ∗ denotes the best scores per modality (text vs
graph).
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txt (NC) 13.57∗ 0.51 17.10 20.59∗ 6.62 22.63 50.72∗ 51.77 -52.64 41.68 35.38∗ 52.95 66.45∗

txt 13.54 0.87∗ 17.20∗ 20.24 6.71∗ 22.47∗ 49.71 52.11∗ -52.00∗ 46.99∗ 36.14 57.31∗ 66.10

GoT (NC) 14.34∗ 1.03 17.64 20.58 6.99∗ 22.40∗ 50.44 51.08 -50.09∗ 51.72∗ 33.31∗ 53.99 66.58∗

GoT 13.60 1.10∗ 17.58 20.98 6.96 23.76 53.45∗ 53.68 -52.67 41.98 40.09 55.53 66.16
eKG 13.82 0.80 17.65∗ 21.97∗ 6.93 24.38 53.15 54.10∗ -50.60 42.91 40.95 57.29∗ 67.38

In parallel, the graph gets encoded using the
Graph Attention Network (Veličković et al., 2018;
Chen and Yang, 2021). The node embeddings are
encoded by the same T5 text encoder, where the
text representation of the graph consists of the con-
catenated triples, having each triple element sepa-
rated by special <s> </s> tokens.

3.1.3 CN generation
The encoded representations are aligned using a
crossed attention layer followed by a gated fusion
attention layer. The output of this is fed into the T5
text decoder to generate CNs.

3.2 Evaluation
To verify the method’s effectiveness, we carry out
standard Natural Language Generation (NLG) auto-
matic evaluation. Following Saha et al. (2024a), we
compute BLEU1 (Papineni et al., 2002), BLEU4,
ROUGEL (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), GLEU (Wu et al., 2016), Repetition
Rate (RR), and Flesch Reading Ease (FRE) (Farr
et al., 1951). We also use pre-trained models
specialized on NLG evaluation: Sentence Simi-
larity (SentSim)6, BLEURT (Sellam et al., 2020),
Counterspeech (CS) (Saha et al., 2024a), and Tox-
icity (Tox) (Mathew et al., 2021). Finally, we
compute metrics for novelty (Nov) and diversity
(Div) (Wang and Wan, 2018).

While human evaluation of CN remains difficult
due to the subjectivity of the task (Khurana et al.,
2022), in this work we follow the criteria from Ben-
goetxea et al. (2024a) and adapt it to a contextual-
ized setting. Five different aspects were annotated:
Relatedness, Specificity, Richness, Coherence, and
Grammaticality. We additionally include Effective-
ness since it is particularly important for efficient

6https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

CNs (Benesch, 2014). The scores range between 1-
5. Six annotators participated in the evaluation task
(see Appendix D), where the HS to be addressed
and the dialogue history were provided, followed
by 6 shuffled CNs, including those generated by
text-only models, graph-based models (with and
without context), and the ground data. 10% of the
test set was randomly selected for human evalua-
tion, resulting in 30 dialogue instances.

4 Experimental setup

Data We work with the DIALOCONAN
dataset (Bonaldi et al., 2022), consisting of 3,059
dialogues between a HS author and a CN author.
The average length of these dialogues is 5.43 turns.
We divide the data into 80/10/10 for train/dev/test,
resulting in 2,447/306/306 instances, respectively.
We consider the last CN as the ground truth
(avg. length=159.8), the last HS as the one to
be addressed (avg. length=91.1), and the rest as
discourse context (avg. length=393.4, 3.4 turns).

Models We train five models: two using only the
text representations (with and without context), and
three including also the graph representations (GoT
or eKG). For the ones including graph representa-
tions, we tested two models using the GoT graph
format (with and without context) and one model
using the eKG graph format (with context)7.

The training details are provided in Appendix B,
while an example of the responses produced by
each model is shown in Appendix C.

5 Results

We present automatic evaluation in Table 1. The
results are in line with recent papers on CN gen-

7Note that eKGs are inherently contextualized representa-
tions and thus cannot exclude the dialogue history.
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eration, with BLEU scores ranging from 11-16,
ROUGE-L scores ranging from 16-18, and GLEU
scores ranging from 5-12 (Bengoetxea et al.,
2024b; Saha et al., 2024b; Doğanç and Markov,
2023).

Table 2: Results from human evaluation. Abbreviations
are provided in the caption of Table 1. Scores range
from 1 (low quality) to 5 (high quality).
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gold 4.20 4.08 4.30 4.68 4.94 3.94

txt (NC) 3.62 3.30 3.28 3.60∗ 4.70∗ 2.54
txt 3.66∗ 3.44∗ 3.28 3.58 4.38 2.54

GoT (NC) 3.48 3.08 3.46 4.00∗ 4.72∗ 2.71
GoT 4.02∗ 3.70∗ 3.50∗ 3.96 4.32 2.82∗

eKG 3.66 3.40 3.36 3.64 4.32 2.58

Human evaluation was conducted according to
the guidelines provided in Appendix D, and the
results are reported in Table 2. The inter-annotator
agreement is 37.68% (Average Pairwise Percent
Agreement), indicating slight agreement and high-
lighting the inherent subjectivity of the task (Plank,
2022).

Firstly, regarding graph representations, we ob-
serve that models based on graphs outperform those
using only text representations, as evidenced by
both the automatic metrics and human evaluation.

The benefits of encoding contextual information
are less pronounced. In the text modality, auto-
matic metrics hint at better performance for the
contextualized models (9 out of 13 metrics); yet
this is not reflected in the human evaluation. In
the graph modalities, the contextualized representa-
tions outperform the non-contextualized ones in the
majority of automatic (7 out of 13) and human met-
rics (4 out of 6). Furthermore, we observe a slight
preference for GoT over eKG, which is not a graph
model specifically tailored to represent dialogue
discourse.

Finally, we note that the non-contextualized GoT
model increases the counterspeech strength and re-
duces the average toxicity of the generated CNs.
This improvement is not reflected in the effective-
ness score in human annotation. The discrepancy
may indicate a mismatch between automatic and
human evaluation in contextualized settings. Anno-
tators were explicitly asked to consider the previous
dialogue history in their judgments, however the

automatic metrics only evaluate a given CN inde-
pendently of its context (see Limitations).

6 Conclusion

In this work, we explored the usage of graphs for
encoding discourse contextual information for CN
generation, providing initial evidence of the bene-
fits of contextualized graph representations for this
task. Further research could investigate the impact
of specific graph representation models (i.e., other
syntactic or semantic types of graphs) for captur-
ing context in the task of CN generation. Further-
more, future work could involve the intersection
with knowledge-grounded CN generation, using
knowledge graph repositories like Wikidata for sup-
porting factually-enhanced CNs, potentially further
improving their effectiveness.

Limitations

In this study, we use the DIALOCONAN dataset,
which provides a dialogue context and a HS ut-
terance to respond to. It is assumed that the dia-
logues provided are coherent and fluent, thus giving
an opportunity to explore contextualized HS and
CNs. However, the dataset was created by grouping
HS-CN pairs targeting the same vulnerable group,
and then asking annotators to make the dialogue
more coherent. This artificial dialogue creation
may create a reality-gap with dialogues encoun-
tered in the wild. Hence, the dataset’s structure
could potentially limit the generalizability of this
work’s conclusions regarding the effectiveness of
contextualized models.

Ethics Statement

The models described in this research were devel-
oped with the purpose of combating online hate
speech. However, we acknowledge that their mis-
use in unintended contexts could cause the out-
puts to be inappropriate or even exacerbate harm.
Hence, the application of such technology should
be approached with caution in real-world contexts
and only deployed after a thorough testing, as it
may be misused for purposes like censorship.

We recognize that the proposed methodology
might inadvertently introduce or amplify biases.
Consequently, we strongly recommend manual re-
finement and analysis of the generated counter-
narratives to identify and correct biased outputs
before implementing fully automated methods in
real-world situations. For this reason, we included
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human oversight in the review process when manu-
ally evaluating the generated counter-narratives.

In our human evaluation, we included a diverse
group of people, aiming to represent a wide range
of perspectives. Regardless of the efforts for diver-
sity, we recognize that this annotator pool is not
exhaustive and some minorities, which are more ex-
posed to hateful content, might not be represented.

Furthermore, we acknowledge that the model’s
performance and output depend on the data it is
trained on. We use a publicly available dataset
developed by the scientific community relying on
counter-narratives created by trained NGO opera-
tors with the aim to mitigate and limit the spread
of hateful content online.
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A Graph examples

Listing 1 shows a randomly chosen example dia-
logue containing a HS utterance to be addressed.
Figure 2 shows the three graph representations in-
vestigated in this paper. Note that the Graph of
Thought (GoT) model focuses on the content of
the dialogue (with or without dialogue history),
while episodic Knowledge Graphs (eKG) also en-
code discourse information, such as the order of the
claims mentioned (blue nodes) and their speaker
provenance (purple nodes).
HS: "If you left 1000 men on an island

with 1000 women who were men but now
according to morons on twitter are

now women the islands would become
extinct in a generation .",

CN: "If you put 1000 men on an island
with 1000 cisgender women with
reproductive health conditions that
prevent them from getting pregnant ,
the population would still become
extinct in a generation. Are you
saying women who can 't have children
aren 't women?"

HS: "But they 've got a womb. What I mean
is if everyone woke up and decided

to be a different gender then we'd
all die out."

Listing 1: Example of dialogue containing hate speech.

B Training details

We restrict the input length to 512 tokens and the
output length to 256 tokens, based on the dataset
analysis. All models were trained for 50 epochs,
with a learning rate of 5e− 5 and a batch size of 8.
All experiments were run three times. We utilize
4 NVIDIA A100 GPUs with 25G of memory. The
experiments were performed on the Dutch National
Supercomputer Snellius.

C Counter-narrative examples

Hereby, we provide a randomly chosen example
of a dialogue in the DIALOCONAN dataset. The
dialogue history is shown in Listing 2 and the gen-
erated CNs are shown in Listing 3.
HS: "We need to eradicate all those

refugees coming to our land."

CN: "We should rather show compassion
and sympathy to people who are
fleeing persecution ."

HS: "They flee here only to destroy our
culture , we have to stop immigrants
."

CN: "Immigrants are part of our culture ,
so it wouldn 't exist like we know

it if we stopped accepting them."

HS: "We cannot keep letting in hundreds
of thousands of immigrants! This is
not what the American dream is about
."

Listing 2: Example of contextual dialogue history.

The generated counter-narrative responses per
model, along with the ground truth provided in the
dataset, are presented below.

# GOLD -
Well , I hate to break it to you but
this is EXACTLY what the American
dream is about: to strive to improve
your life.

# GoT -
The American dream is about the
integration of people from different
backgrounds , and the acceptance of

them is the key to the success of
our country.

# GoT (NC) -
The American dream is about a free
and open society , and the fact that
we are all in this together makes it
a reality.

# eKG -
The American dream is about the
opportunity to live our lives in a
safe and welcoming country. We
should not restrict the right of
immigrants to come to our country.

# txt (NC) -
The American dream is about equality
and inclusion , not discrimination

and violence.

# txt -
The American dream is about the
equality of the people , not the
letting in of people.

Listing 3: Examples of counter-narrative responses.

D Annotation details

D.1 Annotators pool

We recruited volunteer annotators from different ge-
ographical regions, including 2 European, 2 North
American (Mexican), 1 African, and 1 Middle East-
ern), genders (4 male, 2 female). All annotators
have native-level proficiency in English and are fa-
miliar with the task of annotating hate speech (HS)
and counter-narratives (CNs). We disclosed to all
annotators that they might be exposed to trigger-
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Figure 2: Graph visualization for the three specific representations explored: GoT (NC) - text and GoT graph
without context, GoT - text and GoT graph with context, eKG - text and eKG graph with context. In bright red
are the triple elements related to the target HS, in dark green are the triple elements related to the previous CN
utterances, in dark red are the triple elements related to the previous HS utterances, in blue are the triple elements
related to the discourse structure information, and in purple are the triple elements related to the speaker information.

Figure 3: Example dialogue annotation provided to annotators.

ing language and ensured they understood and felt
comfortable to stop the task at any point.

D.2 Annotation guidelines

The annotators were provided with instructions on
the annotation task and a description of the evalu-
ation criteria, as well as an example dialogue and
the reasoning behind the given scores. The exam-
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ple annotation is shown in Figure 3. The criteria
descriptions were as follows:

• Relatedness: It measures how relevant the
CN is for the HS that it is responding to, given
the dialogue context. Reduce points for top-
ics that are missing or for unrelated topics
brought up.

• Specificity: It states whether the CN is rather
generic or specific for the given dialogue/HS
it is responding to, thus replying to the ques-
tion “can it be used for another completely
different dialogue/HS or not?”

• Richness: In terms of language and vocab-
ulary, it measures whether the CNs are sim-
ple or rather complex. Maximum score for a
domain specific and versatile vocabulary. Re-
duce points for common/generic words.

• Coherence: It tells us whether the sentences
make sense together, and if all ideas are clear
and can be easily understood. Reduce points
for incoherence with the dialogue history.

• Gramaticality: It measures the grammatical
correctness of the CNs. Reduce points for
repetitions and redundancy within sentences,
across sentences and at the dialogue level.

• Effectiveness: It considers the persuasive-
ness of the CNs in combating the targeted HS,
given the dialogue history. Responds to the
question, how effective would this CN be in
responding to HS given the dialogue history?
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