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Abstract

Temporal Knowledge Graph Forecasting
(TKGF) aims to harness historical KG se-
quences to predict future facts. However, ex-
isting representation-based approaches indis-
criminately incorporate all relevant historical
facts as the temporal context of candidate enti-
ties for prediction, which may lead to serious
information loss or homogeneous prediction,
owing to neglecting candidate-specific tempo-
ral context. That is, each candidate entity is
related to a unique temporal context, rather
than an identical one. To address this issue, we
propose a novel representation learning model
for TKGF, namely CRAFT, which models the
candidate-specific temporal context from two
aspects: historiCal Relevant context and locAl
Frequency contexT. Specifically, we design a
Historical Relevant Context Encoder with the
dual-attention mechanism to encode historical
relevant paths of candidates and employ a Lo-
cal Frequency Context Encoder to capture local
frequency features in repetitive facts. Then, we
apply a Context-Enhanced Decoder to facili-
tate more accurate predictions via the derived
information. Experiments on six benchmark
datasets validate the effectiveness of our model
and further analysis proves that CRAFT can
leverage temporal contextual information to
achieve differential predictions.

1 Introduction

Temporal Knowledge Graphs (TKGs) (Boschee
et al., 2015; Gottschalk and Demidova, 2018; Zhao,
2020) are constituted by a sequence of knowledge
graphs partitioned according to timestamps and
contain a vast amount of entity and relation infor-
mation (Ding et al., 2024; Fan et al., 2024), gar-
nering widespread attention in recent years. In
these graphs, facts can be represented in the form
of quadruples (subject, relation, object, timestamp).

* Corresponding author.

However, real-world TKGs often contain substan-
tial unexplored information. Consequently, Tem-
poral Knowledge Graph Reasoning (TKGR) (Jiang
et al., 2016; Leblay and Chekol, 2018; Jin et al.,
2019; Li et al., 2021b; Huang et al., 2024a) was
proposed, which employs link prediction to infer
hidden facts within the graphs. Based on the tem-
poral scope of available historical facts, TKGR is
categorized into two settings: interpolation and ex-
trapolation. The latter, also known as Temporal
Knowledge Graph Forecasting (TKGF) (Li et al.,
2021b, 2022a; Liu et al., 2022; Li et al., 2023;
Huang et al., 2024b), aims to predict facts at future
timestamps and plays a significant role in various
intelligent applications, such as disaster relief (Sig-
norini et al., 2011), financial analysis (Bollen et al.,
2011), and even in foreseeing the future trends of
artificial intelligence (Krenn et al., 2023).

TKGF is achieved by answering temporal
queries about future timestamps. Aligning with
human cognition, people need to rely on specific
historical facts to answer temporal queries accu-
rately, that is, for different responses, they depend
on the particular temporal context. Therefore, it
is crucial to model the candidate-specific temporal
context for the TKGF task. Existing representation-
based methods learn semantically rich embeddings
and aggregate historical information into the single
query representation to accomplish link prediction.
However, they overlook the modeling of candidate-
specific temporal context, which can easily result
in information loss and homogeneous predictions.

We take the temporal query (Iran, Express intent
to cooperate, ?, 2014-12-01) for illustration. As
depicted in Figure 1a, previous models excessively
compress all historically related information into
one query representation, inevitably leading to the
loss of contextual information. Meanwhile, these
approaches employ the same temporal context for
predicting different candidate entities, making it
difficult to achieve differential predictions, espe-
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Figure 1: Different modeling paradigms of temporal
context for query (Iran, Express intent to cooperate, ?,
2014-12-01). q and h denote query representation and
entity representation, respectively.

cially when the temporal semantics of candidate
entities are similar. These factors collectively con-
tribute to imprecise prediction results. We believe
that leveraging candidate-specific temporal context
rather than all historical facts will provide more
convincing and differential reasoning evidence for
different candidates, as illustrated in Figure 1b.

To this end, we propose a novel model, namely
CRAFT, which models the candidate-specific
temporal context from two aspects: historiCal
Relevant context and locAl Frequency contexT.
Specifically, for the historical relevant context,
we first utilize a rule-based method to generate
historical relevant paths that link the query with
the candidates. Then, we design a Historical Rele-
vant Context Encoder (HRCE) to encode the mined
paths, thereby enhancing the contextual awareness
capability of the model. We employ semantic align-
ment attention and time awareness attention to fur-
ther enhance HRCE’s ability to model paths in both
semantic and temporal aspects. For the local fre-
quency context, we employ a Local Frequency
Context Encoder to encode local frequency fea-
tures to capture contextual information in histor-
ical repetitive facts. These two modules jointly
model the temporal context of queries. Ultimately,

we apply a Context-Enhanced Decoder to facili-
tate more accurate predictions utilizing candidate-
specific temporal contextual information.

In general, our work makes the following contri-
butions:

• We proposed a representation learning model
for TKGF, which models historical relevant
and local frequency context of candidates. To
our best of knowledge, this is the first time to
consider candidate-specific temporal context
in-dpeth in representation-based approaches.

• We design a Historical Relevant Context En-
coder and a Local Frequency Context Encoder
to capture the contextual information in his-
torical relevant paths and repetitive facts re-
spectively. The encoded features are fed into
a Context-Enhanced Decoder to achieve more
precise predictions.

• Experiments on six widely-used TKG bench-
marks validate the effectiveness of our pro-
posed model. Further experimental analysis
demonstrates that our model can efficiently
capture the candidate-specific temporal con-
text, thereby enabling differential predictions.

2 Related Work

In this section, we will introduce the related work
of TKG Forecasting and how they utilize historical
contextual information.

2.1 Representation-based TKG Forecasting
Representation-based approaches exploit historical
KG sequences to learn semantically rich represen-
tations for TKG elements and integrate such rep-
resentations with scoring functions to implement
link prediction. RE-NET (Jin et al., 2019) and RE-
GCN (Li et al., 2021b) employ RNNs and GCNs to
capture temporal and structural dependencies in his-
torical KG sequences. TANGO (Han et al., 2021)
uses neural ordinary differential equations to model
TKG in the continuous time domain. CEN (Li
et al., 2022b) designs a length-aware convolutional
neural network to handle the length diversity of
evolutional patterns. TiRGN (Li et al., 2022a) si-
multaneously considers the sequential, repetitive,
and cyclical modes to fully learn the characteris-
tics of historical facts. HisMatch (Li et al., 2022c)
regards query prediction as a matching task and uti-
lizes query-related and candidate-related historical
facts to enhance the representations. Nevertheless,
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they incorporate excessive information while ne-
glecting the contextual differentiation of specific
candidates.

2.2 Path-based TKG Forecasting

Path-based methods generate connection paths that
link the query and candidates to accomplish predic-
tion. xERTE (Han et al., 2020) employs a subgraph
sampling strategy to generate interpretable reason-
ing subgraphs. CluSTeR (Li et al., 2021a) and
TITer (Sun et al., 2021) both use reinforcement
learning to travel interpretable reasoning paths.
However, they are all based on expansion meth-
ods, thus only considering the context of the query
subject entity while neglecting the context of can-
didates. TECHS (Lin et al., 2023) incorporates
structural dependencies, temporal dynamics, and
hidden logical rules to learn differentiable logical
rules for reasoning. TLogic (Liu et al., 2022) is a
purely rule-based model that uses available rules
of the query as context for probabilistic reason-
ing. Although these methods can generate con-
nection paths to construct differential contextual
representations for candidates, they all neglect non-
connected information in the KG sequence, which
may limit the model’s reasoning performance (Li
et al., 2023). In our work, we employ path-based
methods to extract differential contextual informa-
tion for query candidates and incorporate it into an
enhanced representation-based model. This allows
us to fully utilize specific contexts to achieve more
accurate predictions.

3 Problem Formulation

Definition 1 (TKG & TKGF). A TKG can be
modeled as a sequence of timestamped KGs, de-
noted as G = {G1,G2, . . . ,Gt}. Each KG can be
represented by Gt = (E ,R,Ft), where E denotes
the set of entities,R represents the set of relations,
and Ft signifies the collection of facts at timestamp
t. A fact in Ft can be expressed as a quadruple
(s, r, o, t) ∈ Ft, and we follow (Li et al., 2021b)
to generate a reverse quadruple (o, r−1, s, t) for
each quadruple. Given a query (s, r, ?, tq) at future
timestamp tq, TKGF aims to utilize historical KG
sequences {Gi}tq−1

i=1 to predict the missing entity.

Definition 2 (Query-specific temporal context).
Given a temporal query (s, r, ?, tq) , the relevant
historical fact information that can serve as ev-
idence for answering q constitutes the Query-
specific temporal context of q.

Definition 3 (Candidate-specific temporal con-
text). Given a temporal query (s, r, ?, tq) and a
candidate o, the relevant historical fact information
that can support o as the answer to q constitutes the
Candidate-specific temporal context for o.

4 Methodology

CRAFT utilizes three principal components to
model candidate-specific temporal context: His-
torical Relevant Context Encoder (Section 4.1),
Local Frequency Context Encoder (Section 4.2),
and Context-Enhanced Decoder (Section 4.3). The
overview of CRAFT is illustrated in Figure 2.

4.1 Historical Relevant Context Encoder
We employ the Historical Relevant Context En-
coder to capture contextual information in histor-
ical relevant paths of candidates. Specifically, we
first generate historical relevant paths during the
data preprocessing stage. Then, we derive the evo-
lutional representations of TKG elements by cap-
turing historical KGs’ structural dependencies and
sequential patterns. Subsequently, given a specific
query, we utilize the evolutional representations
to encode the relation-specific temporal rules ob-
tained from preprocessing. Lastly, we combine the
rule encodings of historical relevant paths with the
dual-attention mechanism to generate aggregated
path representations.

Data Preprocessing. We generate the historical
relevant paths of candidates through temporal logi-
cal rule mining and application (Liu et al., 2022).
The temporal logical rule is defined as follows:

(E1, rh,El+1, Tl+1)← ∧li=1(Ei, ri, Ei+1, Ti),

with T1 ≤ T2 ≤ ... ≤ Tl < Tl+1 (1)

where the left side of the arrow represents the rule
head, while the right side denotes the rule body.
Ei and Ti denote entity and timestamp variables
respectively.

For a given query relation r, we first obtain the
corresponding rule set TR through rule mining,
which will be utilized in temporal rule encoding.
Subsequently, for each temporal rule tr ∈ TR,
we apply it by grounding the rule body to search
for reachable object entities. After applying rules
individually, we obtain the set of rule-reachable
candidates O, where each candidate o ∈ O corre-
sponds to a set of applicable rules TRo, and the
groundings of applicable rules constitute historical

7677



Query q:
TKG

Input

Sum&Norm

...

Local Frequency Context Encoder

GRU

Temporal
decay

Temporal Rule Encoding

Spatial
Transformation

Multi-head
Attention

Dual-Attention Aggregation

TGR ...
RGCN

TGR

RGCN

Evolutional Representation Encoding

...

Rule Mining: Rule Application:

Data Preprocessing

...

Mining...

... Application

.

Historical Relevant Context Encoder

Local Frequency
Score

Association
Score

Aggregated Path
Score

Context-Enhanced Decoder

Entity Prediction:

Figure 2: Overview of CRAFT. The Historical Relevant Context Encoder utilizes evolutional representations and
historical relevant paths, combined with the dual-attention mechanism to generate aggregated path representations.
The Local Frequency Context Encoder encodes the local frequency features. The outputs of both encoders are fed
into the Context-Enhanced Decoder to calculate the decoding scores and accomplish entity prediction.

relevant paths of entities. More details about path
generation can be found in the Appendix A. More-
over, we calculate a score for each relevant path
and candidate pair to facilitate path aggregation.

Evolutional Representation Encoding. For
queries at timestamp tq, We encode the historical
KG sequence {Gi}tq−1

i=tq−m of length m to obtain the
evolutional representations. The initial represen-
tations for entities and relations are designated as
H ∈ R|E|×d and R ∈ R|R|×d, respectively, where
d denotes the dimension of the embedding. Fol-
lowing (Li et al., 2022a), we evolve the KG in
chronological order, utilizing RGCNs to capture
intra-graph structural dependencies, and employ-
ing time gate recurrent (TGR) modules to capture
inter-graph sequential patterns:

RGCN
t = RGCNrel (Rt,Ht, Gt) (2)

Rt+1 = TGRrel

(
Rt,R

GCN
t

)
(3)

HGCN
t = RGCNent (Ht,Rt+1, Gt) (4)

Ht+1 = TGRent

(
Ht,H

GCN
t

)
(5)

where timestamp t ∈ [tq −m, tq − 1]. Rtq−m and
Htq−m are set to R and H, respectively.

Temporal Rule Encoding. We utilize the de-
rived evolutional representations to encode tempo-
ral rules. Given the query (s, r, ?, tq), we obtain
the set of rules TR corresponding to the relation
r. For each rule tr ∈ TR, we extract the relation
chain {ri}li=1 in the rule body, where l denotes the
length of the relation chain. For all temporal rules,
we take the evolutional representations of the re-
lations in the embedding matrix Rtq to obtain the

relation chain tensor Cr,tq ∈ R|TR|×lmax×d, where
lmax represents the maximum length of the relation
chains. Chains with insufficient length are padded
to facilitate batch processing. Subsequently, we
utilize GRU to encode temporal rules and obtain
the rule representation matrix Ur,tq :

Ur,tq = GRU
(
Cr,tq ,Z

)
(6)

where Ur,tq ∈ R|TR|×d and Z denotes the zero
matrix. Notably, we adopt the output of the recur-
rent unit corresponding to the rule’s length as the
representation of the rule.

Dual-Attention Aggregation. We employ the
dual-attention mechanism to integrate historical
relevant paths and generate aggregated path rep-
resentations. For each rule-reachable candidate
o ∈ O and its applicable rule set TRo, we rank
the corresponding historical relevant paths in de-
scending order by their scores and select the top
n for path aggregation. We obtain the path matrix
Uo ∈ Rn×d for candidate o from the encoded tem-
poral rules Ur,tq . For each relevant path, we utilize
semantic alignment attention and time awareness
attention to capture important temporal contextual
information.

Semantic alignment attention aims to reinforce
contextual features relevant to query candidate enti-
ties, and we achieve it by capturing the association
between paths and candidate entities. Due to the
disparity between path representation and entity
representation, inspired by (Lin et al., 2015), we
employ a linear layer to transform the path rep-
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resentations into a shared space. The semantic
alignment attention is computed as follows:

asa = softmax((UoW1 + b1)ho,tq) (7)

where W1 ∈ Rd×d and b1 ∈ Rd are learnable
parameters, and ho,tq denotes the representation of
candidate o in the timestamp tq. Subsequently, we
weighted the path representations to obtain seman-
tic alignment aggregated representation:

usa
o =

n∑

i=1

αsa
i ui (8)

where ui denotes the ith path representation.
Contextual information is time-sensitive. Hence,

we employ time awareness attention to model the
temporal validity of context. For each candidate
o, we take the timestamp of the first edge of top
n historical relevant paths to obtain the timestamp
vector tear ∈ Rn. Intuitively, the time validity
of facts will decay over time, and we model this
decay using the exponential distribution. The time
awareness attention is calculated as follows:

ata = softmax(−eλ(tq−tear)) (9)

where λ > 0 represents the time decay coefficient.
Similarly, we weighted the path representations to
obtain time awareness aggregated representation:

uta
o =

n∑

i=1

αta
i ui (10)

After obtaining the two attention representations,
we employ multi-head attention (Vaswani et al.,
2017) to enable the model to focus on salient con-
textual features, and generate the final candidate-
specific aggregated path representation:

uagg
o = W2[u

sa
o ;uta

o ] + b2 (11)

where W2 ∈ Rd×2d and b2 ∈ Rd are learnable
parameters. [;] denotes the vector concatenation
operation.

4.2 Local Frequency Context Encoder
For specific query candidates, their occurrences
over history constitute a significant part of their con-
texts. Therefore, we designed a Local Frequency
Context Encoder to capture these features. For the
query (s, r, ?, tq), due to the time validity of facts,
we count the frequency of query candidates appear-
ing on the local rather than global historical KG

sequence {Gi}tq−1
i=tq−w with the window size of w,

and limit the subject entities and relations of facts
to be the same as the query. We obtain the query-
specific historical frequency representation fq by
cumulatively aggregating over timestamps:

fq = Norm(

tq−1∑

i=tq−w

fq,i) (12)

where fq,i ∈ R|E| denotes the historical frequency
of query q at timestamp i, and Norm represents
the normalization operation. During the decoding
phase, we leverage the frequency representation to
constrain the candidate entity space, thereby en-
hancing the contextual features of the query.

4.3 Context-Enhanced Decoder
We employ a Context-Enhanced Decoder to facili-
tate more accurate predictions via the derived en-
coded temporal contextual information. Specifi-
cally, we utilize the obtained representations to cal-
culate association, local frequency, and aggregated
path decoding scores for each candidate. These
scores are then aggregated to yield the final scores.

We employ ConvTransE (Shang et al., 2019) to
obtain the decoding scores. The association score
captures solely the relevance between the query
conditions and the candidate. Based on this, the
local frequency score takes into account the local
historical frequency information and masks candi-
dates that have not appeared in the local history.
The two scores are calculated as follows:

sass =HtqConvTransE(hs,tq , rtq) (13)

sloc =HtqConvTransE(hs,tq , rtq)⊙ fq (14)

where ⊙ denotes element-wise multiplication. Ad-
ditionally, we calculate the aggregated path score
by leveraging the aggregated path representation of
the specific candidate:

saggo = ho,tqConvTransE(hs,tq ,u
agg
o ) (15)

For the candidates unreachable by any rule, we
set the corresponding uagg

o to a zero vector and
ultimately yield the aggregated path score vector
sagg. Subsequently, we aggregate the scores to
compute the final scores for the candidates:

sfin = αass × fa(s
ass) + αloc×

fa(s
loc) + αagg × fa(s

agg) (16)

where sfin ∈ R|E|, αass;αloc;αagg ∈ [0, 1] and
αass + αloc + αagg = 1. fa denotes the softmax
activation function.
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Model ICEWS14 ICEWS18 ICEWS05-15

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-NET 39.86 30.11 44.02 58.21 29.78 19.73 32.55 48.46 43.67 33.55 48.83 62.72
RE-GCN 42.00 31.63 47.20 61.65 32.62 22.39 36.79 52.68 48.03 37.33 53.90 68.51
TANGO 36.48 26.90 41.03 54.82 28.97 19.51 32.61 47.51 42.86 32.72 48.14 62.34
CEN 41.90 31.74 46.97 61.55 31.84 21.95 35.89 51.26 46.96 36.50 52.56 67.13
TiRGN 44.04 33.83 48.95 63.84 33.66 23.19 37.99 54.22 50.04 39.25 56.13 70.71
HisMatch 45.15 35.12 49.88 64.51 33.26 23.17 37.05 52.69 52.79 42.15 58.93 73.22

xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
TITer 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83 47.60 38.29 52.74 64.86
TLogic 42.53 33.20 47.61 60.29 29.59 20.42 33.60 48.05 46.94 36.16 53.24 67.21
TECHS 43.88 34.59 49.36 61.95 30.85 21.81 35.39 49.82 48.38 38.34 54.69 68.92

CRAFT 45.71 35.05 51.83 65.21 34.21 23.96 38.53 54.11 50.14 39.56 56.18 70.09

Table 1: Performance for entity prediction task on ICEWS14, ICEWS18 and ICEWS05-15. The best results are
bolded, and the second-best results are underlined.

Model YAGO WIKI GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-NET 66.93 58.59 71.48 86.84 58.32 50.01 61.23 73.57 19.55 12.38 20.80 34.00
RE-GCN 82.30 78.83 84.27 88.58 78.53 74.50 81.59 84.70 19.69 12.46 20.93 33.81
TANGO 63.34 60.04 65.19 68.79 53.04 51.52 53.84 55.46 19.66 12.50 20.93 33.55
CEN 83.51 79.86 85.88 89.80 78.88 74.98 81.91 84.98 20.41 12.94 21.79 35.08
TiRGN 87.95 84.34 91.37 92.92 81.65 77.77 85.12 87.08 21.67 13.63 23.27 37.60
HisMatch 76.55 71.96 79.28 85.39 71.94 67.12 74.86 80.49 22.23 14.56 24.12 36.93

xERTE 84.19 80.09 88.02 89.78 73.60 69.05 78.03 79.73 19.45 11.92 20.84 34.18
TITer 87.47 80.09 89.96 90.27 73.91 71.70 75.41 76.96 18.19 11.52 19.20 31.00
TLogic 78.76 74.31 83.38 83.72 78.93 73.05 84.97 86.91 19.83 12.27 21.74 35.72
TECHS 89.24 - - 92.39 75.98 - - 82.39 - - - -

CRAFT 90.23 87.56 92.81 93.19 81.32 77.21 85.36 86.86 23.78 15.38 26.23 40.15

Table 2: Performance for entity prediction task on YAGO, WIKI and GDELT. The best results are bolded, and the
second-best results are underlined.

4.4 Parameter Learning

We regard entity prediction as a multi-label learn-
ing task, and we employ the cross-entropy function
to compute the loss:

L = −
T∑

t=1

∑

(s,r,o,t)∈Gt

log p(o|s, r, t, {Gi}t−1
i=1)

(17)

where T represents the maximum timestamp in
the training set, and p(o|s, r, t, {Gi}t−1

i=1) = sfino

denotes the prediction probability of query answer
entity o.

5 Experiments

5.1 Experimental Setup

In this section, we introduce the basic experimental
setup for our model, and more details are presented
in Appendix B.

Datasets & Evaluation Metrics. We conducted
experiments on six TKG benchmarks, includ-
ing ICEWS14, ICEWS18, ICEWS05-15 (García-
Durán et al., 2018), YAGO (Mahdisoltani et al.,
2013), WIKI (Leblay and Chekol, 2018) and
GDELT (Jin et al., 2019). Moreover, we adopted
two widely used metrics to evaluate the perfor-
mance of the models on TKGF: Mean Reciprocal
Rank (MRR) and Hits@k (H@k) in percentage
(%). Meanwhile, we perform experiments under
time-aware filtering settings (Han et al., 2020) to
filter out other correct entities.
Baselines. We compare CRAFT with previous
well-performing TKGF models, which can be di-
vided into representation-based and path-based.
The former includes RE-NET (Jin et al., 2019), RE-
GCN (Li et al., 2021b), TANGO (Han et al., 2021),
CEN (Li et al., 2022b) , TiRGN (Li et al., 2022a)
and HisMatch (Li et al., 2022c). The latter includes
xERTE (Han et al., 2020), TITer (Sun et al., 2021),
TLogic (Liu et al., 2022) and TECHS (Lin et al.,
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2023).

5.2 Results
The results are shown in Table 1 and Table 2.
We can observe that CRAFT outperforms the
representation-based models on most metrics, indi-
cating that modeling candidate-specific temporal
context can effectively enhance the accuracy of pre-
dictions. For path-based approaches, CRAFT per-
forms better on all metrics, as it fully exploits the
associated information within the KG sequences.
Notably, although TECHS also attempts to com-
bine rule learning and entity representations, it de-
codes based on the simple aggregated representa-
tions of entity and time information, which limits
the expressiveness of entities. In contrast, CRAFT
utilizes semantically rich evolutional representa-
tions, achieving superior performance.

Model ICEWS14 ICEWS18

MRR H@3 MRR H@3

base 42.84 47.70 32.58 36.63
+HRCE 43.96 49.70 33.18 37.63
+LFCE 44.54 50.14 33.66 38.10
+LFCE+saa 45.38 50.79 33.91 38.27
+LFCE+taa 45.29 50.80 33.96 38.44

CRAFT 45.71 51.83 34.21 38.53

Table 3: Ablation studies of CRAFT on ICEWS14,
ICEWS18. base means only utilize evolutional rep-
resentation encoding. HRCE is Historical Relevant
Context Encoder, LFCE is Local Frequency Context
Encoder, saa is semantic alignment attention, taa is
time awareness attention.

5.3 Ablation Study
To verify the effectiveness of each component of
CRAFT, we conducted ablation experiments, and
the results are shown in Table 3. Augmenting the
base model with either the Historical Relevant Con-
text Encoder (+HRCE) or the Local Frequency
Context Encoder (+LFCE) led to notable improve-
ments in model performance, indicating that cap-
turing temporal contextual features from histori-
cal relevant paths and contextual information from
repetitive facts facilitates more accurate predictions.
Furthermore, the addition of semantic alignment
attention (+saa) and time awareness attention (+taa)
to the encoded path representations resulted in bet-
ter model performance, suggesting the necessity of
capturing more crucial contextual information, and
utilizing the dual-attention mechanism (CRAFT)
can further elevate the model capability.
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Figure 3: Differentiation analysis of diverse models. We
quantify the differentiation by calculating the variance
of the scores of the top k candidates for all queries in
the test set.

5.4 Why Can Contextual Information
Enhance Representation Learning?

Previous representation-based methods use the
same temporal context for predictions. We believe
that by modeling the candidate-specific temporal
context, we can assign higher scores to candidates
with effective contextual information, thus enabling
differential prediction and improving the model’s
performance. To validate this assumption, we con-
duct a differentiation analysis, which is illustrated
in Figure 3. It can be observed that the differenti-
ation of the SOTA model TiRGN is minimal. By
incrementally incorporating components onto the
base model, the differentiation of the prediction
scores progressively increases, reaching its apex
when all components are engaged, which is con-
sistent with our analysis. Specifically, when k is
small, only a few top-ranked candidates have suf-
ficient temporal contextual support for prediction,
leading to a pronounced distinctiveness in scores.
As k increases, the temporal contextual informa-
tion available to lower-ranked candidates becomes
relatively sparse, and thus, the score variance de-
creases accordingly. For the +LFCE variant, given
that most candidates exhibit similar or identical
local historical frequencies, the differentiation di-
minishes as k increases.

5.5 Case Study

We demonstrate how CRAFT models temporal con-
text through a case study, which is presented in
Table 4. For the answer entity Oman, CRAFT
leverages the dual-attention mechanism to assign
higher weights to important historical relevant
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Candidate Contextual Information saa(%) taa(%) sC sT

Oman

Iran
Express intent to cooperate−−−−−−−−−−−−−→

2014-11-29
Oman 33.51 11.52

13.49
(0.00%)

13.26
(↓0.45%)

Iran Consult−−−−−→
2014-11-29

Oman 32.70 11.52

Iran
Engage in diplomatic cooperation−1

−−−−−−−−−−−−−−−−−→
2014-11-30

Oman 15.04 13.37

Iraq

Iran
Express intent to cooperate−−−−−−−−−−−−−→

2014-11-14
Iraq 32.71 7.35

10.07
(↓25.35%)

13.32
(0.00%)Iran Make Statement−1

−−−−−−−−−→
2014-11-12

Iraq 19.39 7.36

Iran
Sign formal agreement−−−−−−−−−−−→

2014-11-26
Iraq 11.56 10.42

France
Iran

Engage in negotiation−1

−−−−−−−−−−−−→
2014-11-29

France 35.76 52.97 8.78
(↓34.91%)

12.77
(↓4.13%)Iran

Reject plan, agreement to settle dispute−1

−−−−−−−−−−−−−−−−−−−−→
2014-11-06

France 21.23 23.52

Table 4: Case study for query (Iran, Express intent to cooperate, Oman, 2014-12-01). We report part of contextual
information, attention scores, and prediction scores for the top 3 candidates. The contextual information is sorted in
descending order according to the average of the two attentions. sC denotes the score given by the CRAFT model,
and sT represents the score given by the TiRGN model.

paths, thereby fully utilizing related contextual in-
formation to achieve correct prediction. For the
candidates Iraq and France, CRAFT also captures
semantically and temporally critical contextual fea-
tures. However, the temporal validity of fact (Iran,
Express intent to cooperate, Iraq, 2014-11-14) is
relatively low, and facts (Iran, Sign formal agree-
ment, Iraq, 2014-11-26) and (Iran, Reject plan,
France, 2014-11-06) exhibit weak semantic cor-
relation with the query. These factors contribute
to the temporal contexts of candidates Iraq and
France not sufficiently supporting them as the cor-
rect answer. Furthermore, the scoring of candidates
by different models aligns with our analysis in Sec-
tion 5.4. Due to the utilization of identical tempo-
ral context, the SOTA model TiRGN struggles to
achieve distinctive predictions. In contrast, within
the framework of the CRAFT, candidates with ef-
fective temporal contexts receive higher scores,
while those without receive lower scores. Addi-
tional case studies are presented in Appendix C.

5.6 The Impact of Contextual Information
Quantity

To investigate the impact of the amount of con-
textual information used on the prediction perfor-
mance of the CRAFT model, we conduct further
analysis of two key hyperparameters: the number
of aggregated paths n and the window size of Lo-
cal Frequency Context Encoder w. The results are
shown in Figure 4. We observe that the model’s per-
formance deteriorates when n is either too small or
too large. We believe this is because when the num-
ber of aggregated paths is inadequate, the model
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Figure 4: Hyperparameter analysis of the number of
aggregated paths n and the window size of Local Fre-
quency Context Encoder w on datasets ICEWS14 and
ICEWS18.

fails to fully leverage the contextual information
pertinent to the candidates; conversely, an exces-
sive amount of paths inevitably introduces noise,
thereby affecting the precision of predictions. Addi-
tionally, w exhibits a parallel trend, indicating that
a window that is too narrow prevents the exploita-
tion of effective historical frequency information,
while events that occurred far in the past struggle to
support the recurrence of future events. Therefore,
it is necessary to use an appropriate amount of tem-
poral contextual information to sufficiently support
the prediction results while simultaneously mitigat-
ing the introduction of noise, thereby facilitating
more accurate predictions.
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6 Conclusion

In this paper, we propose a novel representation-
based model for TKGF, namely CRAFT, to model
the candidate-specific temporal context from two
aspects: historical relevant context and local fre-
quency context. We first employ a Historical Rele-
vant Context Encoder to extract contextual features
in historical relevant paths of candidates and utilize
a Local Frequency Context Encoder to capture con-
textual information in repetitive facts. Then, we ap-
ply a Context-Enhanced Decoder to achieve more
accurate predictions via the obtained representa-
tion. The experiments on six widely-used TKG
datasets demonstrate the effectiveness of CRAFT
and can achieve differential predictions.

7 Limitations

Our proposed model has the following limitations:
First, we only utilized the relation chains and times-
tamps in the historical relevant paths of candi-
dates while neglecting the entity chain information
within, which may also be beneficial for temporal
context modeling. Second, we designed two at-
tention functions that effectively capture important
contextual information in relevant paths; however,
more complex and expressive attention functions
may be available. Last but not least, due to the
introduction of historical relevant paths, both the
spatial and temporal costs of model training have
increased.
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A Generation of Historical Relevant
Paths

Taking query (s, r, ?, tq) as an example. For each
temporal rule tr ∈ TR, we ground the rule body
by instantiating the variables with historical facts
in a KG sequence and ensuring E1 = s. The
object entity of the last edge in body grounding,
which is in correspondence with the object entity
in the rule head, is the rule-reachable candidate
entity. Notably, a single rule can reach multiple
candidates, concurrently, a candidate can be ac-
cessible via multiple rules, and the body ground-
ings of reachable rules constitute the historical
relevant paths of candidates. For example, for
the query (Iran, Express intent to cooperate, ?,
2014-12-01) and its corresponding temporal rule:
(E1, Express intent to cooperate, E2, T2) ←
(E1, Consult, E2, T1), we can obtain the histor-
ical relevant path (Iran, consult, Oman, 2014-11-
29) and the rule-reachable candidate Oman by rule
application.

B Details of Experimental Setup

Datasets & Evaluation Metrics. Following (Jin
et al., 2019), we split each dataset chronologically
into training, validation, and test sets with a propor-
tion of 80%, 10%, and 10%. The statistics of the
datasets are presented in Table 5. For each query,
the model calculates a rank for the correct entity.
MRR denotes the average of the reciprocal rank of
all query answers, and Hits@k is the proportion of
query answers that rank in the top k. Specifically,
we report Hits@{1, 3, 10}.
Implementation. For the computation of all de-
coding scores, we employ the time vectors as
introduced in (Li et al., 2022a). Following (Li
et al., 2021b), we add static graph constraints to
all ICEWS datasets. The embedding dimension
d is set to 200 for all datasets. We obtain the
optimal values of some hyperparameters by grid
search on the validation sets and grid search range
is as follows: the number of paths to aggregate
n ∈ {5, 6, ..., 20}, the time decay coefficient λ ∈
{0.1, 0.2, ..., 0.9}, the window size of Local Fre-
quency Context Encoder w ∈ {1, 2, ..., 15}, score
coefficients αass;αloc;αagg ∈ {0.1, 0.2, ..., 0.9}.
Notably, for GDELT, the search range of w is set
to {20, 30, ..., 100}. The specific values of hyper-
parameters set on various datasets are presented
in Table 6. The maximum training epoch is set to
40 for all datasets and the early stopping strategy

is utilized to mitigate the risk of overfitting. We
utilize Adam (Kingma and Ba, 2014) for param-
eter learning and the learning rate is set to 0.001.
Regarding the remaining hyperparameters, we ad-
hered to the settings prescribed by (Li et al., 2022a)
and (Liu et al., 2022).

C Case Study

The results of the case study are presented in Ta-
bles 7 and 8. For query (Japan, Consult, China,
2014-12-08), the temporal context of the candidates
China and South Korea both effectively support
them as prediction results, hence CRAFT calcu-
lates similar scores for them. Taking into account
both the semantic relevance and temporal validity
of the historical relevant paths, CRAFT ultimately
predicts the correct answer as China. For the can-
didate North Korea, due to insufficient contextual
information, CRAFT calculates a lower score.

For query (Cambodia, Engage in diplomatic co-
operation, Vietnam, 2014-12-25), CRAFT simi-
larly captures important contextual features for
each candidate. The candidates Thailand and
China not only exhibit relevant paths semanti-
cally correlated with the query, such as (Thailand,
Cooperate economically, Cambodia, 2014-12-15)
and (Cambodia, Engage in diplomatic coopera-
tion, Thailand, 2014-12-02), but also demonstrate
closer temporal interactions with the subject entity
of query Cambodia, including (Cambodia, Host
a visit, Thailand, 2014-12-24) and (China, Sign
formal agreement, Cambodia, 2014-12-24). How-
ever, CRAFT concurrently considers the signifi-
cance of both semantic and temporal aspects rather
than evaluating them separately. Therefore, by em-
ploying the dual-attention aggregation and context-
enhanced decoding, CRAFT predicts the candidate
Vietnam as the correct answer.
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Datasets #Entities #Relations #Train #Valid #Test #Timestamps #Time interval

ICEWS14 6,869 230 74,845 8,514 7,371 365 24 hours
ICEWS18 23,033 256 373,018 45,995 49,995 304 24 hours
ICEWS05-15 10,094 251 368,868 46,302 46,159 4,017 24 hours
YAGO 10,623 10 161,540 19,523 20,026 189 1 year
WIKI 12,554 24 539,286 67,538 63,110 232 1 year
GDELT 7,691 240 1,734,399 238,765 305,241 2,976 15 minutes

Table 5: The Statistics of datasets. #Train, #Valid and #Test are the numbers of quadruples in the training, validation
and test sets.

Datasets n λ w αass αloc αagg

ICEWS14 18 0.2 7 0.4 0.5 0.1
ICEWS18 10 0.7 6 0.8 0.1 0.1
ICEWS05-15 16 0.9 10 0.7 0.2 0.1
YAGO 15 0.3 1 0.2 0.7 0.1
WIKI 8 0.7 3 0.6 0.3 0.1
GDELT 10 0.2 100 0.5 0.4 0.1

Table 6: The hyperparameter settings for the dataset.

Candidate Contextual Information saa(%) taa(%) sC sT

China

Japan
Express intent to meet or negotiate−−−−−−−−−−−−−−−−→

2014-12-01
China Make a visit−1

−−−−−−−→
2014-12-04

Japan Consult−−−−−→
2014-12-05

China 34.47 5.15
14.03

(0.00%)
13.91

(↓2.66%)
Japan

Engage in diplomatic cooperation−−−−−−−−−−−−−−−−→
2014-12-01

China 27.04 5.15

Japan
Express intent to cooperate−−−−−−−−−−−−−→

2014-11-29
Iran 18.81 4.75

South Korea

Japan Consult−−−−−→
2014-12-05

South Korea 59.44 7.79
13.98

(↓0.36%)
14.29

(0.00%)
Japan

Engage in negotiation−−−−−−−−−−→
2014-11-27

South Korea 14.26 5.03

Japan
Express intent to cooperate−−−−−−−−−−−−−→

2014-11-22
South Korea 8.80 4.69

North Korea Japan
Express intent to meet or negotiate−1

−−−−−−−−−−−−−−−−−−→
2014-11-20

North Korea 99.89 20.18 6.84
(↓51.25%)

13.69
(↓4.20%)

Table 7: Case study for query (Japan, Consult, China, 2014-12-08).

Candidate Contextual Information saa(%) taa(%) sC sT

Vietnam
Cambodia

Cooperate economically−1

−−−−−−−−−−−−−→
2014-12-15

Vietnam 69.74 4.48 17.36
(0.00%)

16.41
(↓7.34%)Cambodia

Engage in diplomatic cooperation−−−−−−−−−−−−−−−−→
2014-12-18

Vietnam 28.23 5.00

Thailand

Cambodia
Cooperate economically−1

−−−−−−−−−−−−−→
2014-12-15

Thailand 68.34 4.57
8.44

(↓51.38%)
17.71

(0.00%)
Cambodia Host a visit−−−−−→

2014-12-24
Thailand 10.31 9.06

Cambodia
Engage in diplomatic cooperation−−−−−−−−−−−−−−−−→

2014-12-02
Thailand 13.99 4.69

China
Cambodia

Sign formal agreement−1

−−−−−−−−−−−−→
2014-12-24

China 74.39 17.26 8.04
(↓53.69%)

15.92
(↓10.11%)Cambodia

Engage in diplomatic cooperation−1

−−−−−−−−−−−−−−−−−→
2014-12-18

Vietnam Host a visit−−−−−→
2014-12-22

China 14.37 9.74

Table 8: Case study for query (Cambodia, Engage in diplomatic cooperation, Vietnam, 2014-12-25).
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