
Findings of the Association for Computational Linguistics: EACL 2024, pages 7813–7835
November 12-16, 2024 ©2024 Association for Computational Linguistics

Learning to Plan for Retrieval-Augmented Large Language Models from
Knowledge Graphs

Junjie Wang1,2,5*, Mingyang Chen3*, Binbin Hu2,5, Dan Yang2,5, Ziqi Liu2,5,
Yue Shen2,5, Peng Wei2,5, Zhiqiang Zhang2,5, Jinjie Gu2,5, Jun Zhou2,5,

Jeff Z. Pan4, Wen Zhang1,5†, Huajun Chen1,5†

1Zhejiang University, 2Ant Group, 3Baichuan Inc., 4The University of Edinburgh
5Zhejiang University - Ant Group Joint Laboratory of Knowledge Graph

{wangjj2018,zhang.wen,huajunsir}@zju.edu.cn, chenmingyang@baichuan-inc.com
http://knowledge-representation.org/j.z.pan/

https://github.com/zjukg/LPKG

Abstract

Improving the performance of large language
models (LLMs) in complex question-answering
(QA) scenarios has always been a research fo-
cal point. Recent studies have attempted to en-
hance LLMs’ performance by combining step-
wise planning with external retrieval. While
effective for advanced models like GPT-3.5,
smaller LLMs face challenges in decomposing
complex questions, necessitating supervised
fine-tuning. Previous work has relied on man-
ual annotation and knowledge distillation from
teacher LLMs, which are time-consuming and
not accurate enough. In this paper, we intro-
duce a novel framework for enhancing LLMs’
planning capabilities by using planning data
derived from knowledge graphs (KGs). LLMs
fine-tuned with this data have improved plan-
ning capabilities, better equipping them to han-
dle complex QA tasks that involve retrieval.
Evaluations on multiple datasets, including our
newly proposed benchmark, highlight the ef-
fectiveness of our framework and the benefits
of KG-derived planning data.

1 Introduction

The past few years have witnessed significant in-
novations in LLMs (Ouyang et al., 2022; Touvron
et al., 2023; Chowdhery et al., 2023; AI@Meta,
2024). While LLMs excel in many natural lan-
guage processing tasks, they still face challenges,
particularly the smaller models, in handling com-
plex question-answering (QA) tasks (Press et al.,
2023; Shao et al., 2023; Yao et al., 2022; Xiong
et al., 2024a; Huang et al., 2024).

To improve the performance of LLMs on com-
plex QA tasks, past research has tried various meth-
ods: (1) Employing carefully designed prompt
strategies to guide the model in reasoning, such
as Chain of Thought (CoT) (Kojima et al., 2022;

* Equal contribution.
† Corresponding authors.

Q: What sports have Fluminense and
Fran Walsh's spouse played in?

Q1: Who is Fran Walsh’s Spouse?
A1: Ans_1
Q2: What sports does {Ans_1} play?
A2: Ans_2
Q3: What sports does Fluminense play?
A3: Ans_3
Final Answer:
A2 & A3

Fran Walsh

Spouse

Sports

Sports

Fluminense

Ans_1

Pattern

Instance

Planning

Figure 1: An example of a KG pattern, its grounded
instance, and verbalized planning process.

Wei et al., 2022) and Tree of Thought (ToT) (Yao
et al., 2024) methods; (2) Utilizing retrieval tech-
niques to obtain supplemental information from
external knowledge source (Lewis et al., 2020; Guu
et al., 2020); (3) Combining prompt strategies with
retrieval enhancements, as exemplified by meth-
ods like ReAct (Yao et al., 2022) and Self-Ask
(Press et al., 2023). The third approach has gar-
nered widespread research interest due to its inte-
gration of the advantages of the first two methods.
The fundamental idea of this class of methods is to
guide LLMs in breaking down a complex question
into multiple simpler sub-questions and then use
a retrieval-augmented generation (RAG) (Huang
et al., 2023, 2024) method to answer each sub-
question, thereby deducing the answer to the origi-
nal complex question. However, planning for com-
plex questions is non-trivial, especially for smaller
LLMs (with fewer than 10 billion parameters),
which often require supervised fine-tuning (Ak-
sitov et al., 2023; Chen et al., 2023a; Qin et al.,
2023).

This raises a widely concerning issue: how to
obtain supervised data for learning the planning
ability on complex questions. Manual annotation
is time-consuming and labor-intensive, making it
difficult to scale. Most existing methods attempt to
distill knowledge from teacher LLMs (Yao et al.,
2022; Aksitov et al., 2023), which places excessive

7813

http://knowledge-representation.org/j.z.pan/
https://github.com/zjukg/LPKG

trust in the teacher LLMs and, in reality, cannot
guarantee the accuracy of the distilled knowledge.
These challenges inspire us to explore new ways of
obtaining supervised planning data.

Knowledge Graphs (KGs) (Pan et al., 2017b,a)
usually store accurate knowledge in a structured
way. We find that a KG pattern can be viewed as
the abstract of a complex question, as shown in
Figure 1, which reveals the connection between
question planning and patterns. This opens up
the possibility of constructing training data to en-
hance the planning capabilities of LLMs using KGs.
Specifically, we start by grounding predefined pat-
terns in an open-domain KG to extract numerous
instances, which we then verbalize into complex
questions and corresponding sub-questions in nat-
ural language. In this way, we effectively create
a large number of accurate planning data for fine-
tuning. Being fine-tuned with these planning data,
LLMs’ capability of generating plans for complex
questions is enhanced, resulting in better final an-
swers by parsing and executing these plans. We
refer to this innovative framework as Learning to
Plan from Knowledge Graphs (LPKG).

Additionally, we construct a Comprehensive
Logical QA benchmark, CLQA-Wiki, from a sub-
set of Wikidata (Vrandecic and Krötzsch, 2014) via
grounding rich patterns as aforementioned. Exist-
ing complex QA benchmarks (Yang et al., 2018; Ho
et al., 2020; Press et al., 2023; Trivedi et al., 2022)
primarily focus on multi-hop and comparison-type
questions and lack logical operations. Furthermore,
most questions are labeled with only one answer,
whereas in reality, they often have multiple correct
answers. The CLQA-Wiki benchmark evenly cov-
ers multi-hop, comparison, intersection, and union
types of questions, which is more comprehensive
and challenging for complex QA evaluation.

Our contributions can be summarized as follows:
(1) We introduce a novel framework LPKG that
enhances the planning ability of LLMs using data
constructed from KG patterns; (2) We develop a
comprehensive and challenging evaluation bench-
mark, named CLQA-Wiki, to more effectively as-
sess the performance of LLMs on complex QA
tasks; (3) Our proposed framework LPKG achieves
better results than popular baselines on multiple
conventional complex QA benchmarks, and we
verify the effectiveness of the introduction of KG-
sourced planning data.

2 Related Works

Reasoning and Planning with LLMs In the con-
text of LLMs, reasoning typically involves decom-
posing complex questions into sub-questions (Mi-
alon et al., 2023; Hao et al., 2023). Prominent tech-
niques include Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022) which elicits rationales that
lead to the final answers, and its extension, using
self-consistency (Wang et al., 2023) or automated
demonstration selection (Zhang et al., 2023). Other
methods, such as ReAct (Yao et al., 2022), gen-
erate reasoning steps sequentially by integrating
planning, with additional strategies like Tree of
Thoughts (ToT) (Yao et al., 2024), Reasoning via
Planning (RAP) (Hao et al., 2023), and other meth-
ods (Khot et al., 2023; Zhou et al., 2023) facil-
itating complex question decomposition through
varied planning approaches. Unlike most methods
that rely on in-context learning through prompt en-
gineering, our approach generates planning data
from KGs to fine-tune LLM, thereby enhancing
their planning capabilities.

Retrieval-Augmented Generation Retrieval-
Augmented Generation (RAG) can enhance LLMs
by incorporating external data, allowing models to
access up-to-date information and factual knowl-
edge to mitigate hallucinations (Gao et al., 2023;
Guu et al., 2020; Lewis et al., 2020). Each mod-
ule in the RAG pipeline can be optimized, for in-
stance, through retriever tuning (Shi et al., 2023;
Lin et al., 2023), self-reflection during retrieval
(Asai et al., 2023; Yan et al., 2024), or query re-
finement (Chan et al., 2024). To address multi-
hop questions, iterative RAG models (Shao et al.,
2023; Feng et al., 2023; Press et al., 2023) have
been developed, which iteratively conduct retrieval-
enhanced generation and generation-enhanced re-
trieval. However, the multiple RAG steps in exist-
ing methods are not optimized and rely heavily on
in-context learning. Our approach uses planning
data from KGs to facilitate more efficient RAG.

LLMs with KGs In the existing realm of LLMs,
KGs are primarily utilized as sources of structured
factual knowledge (Pan et al., 2023). For exam-
ple, Think-on-Graph (Sun et al., 2023) extracts
relevant triples from KGs to assist in QA. Reason-
ing on Graph (RoG) (Luo et al., 2023) generates
relation-based plans and retrieves corresponding
paths from these graphs. While aiding in KGQA
tasks where answers are directly sourced from

7814

Step 1: Data Construction

Knowledge Graph
Grounding

Spouse

Sports

Sports

Q1:What is the Spouse of Fran Walsh?

Q2:What sports does {Ans_1} play?

Q3:What sports does Fluminense play?

Final Q: What sports have Fluminense
and Fran Walsh's spouse played in?

Input
##Example 0##
…
##Example 1##
...
##Your Turn##
Original_Question: str = ‘What sports have Fluminense
and Fran Walsh's spouse played in?’

Output
Sub_Question_1: str = " What is the Spouse of Fran Walsh? "
Info_1: str = Search(query = Sub_Question_1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Sub_Question_2: str = f" What sports does {Ans_1} play? "
Info_2: str = Search(query = Sub_Question_2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Sub_Question_3: str = "Q3:What sports does Fluminense
play?"
Info_3: str = Search(query = Sub_Question_3)
Ans_3: str = Get_Answer(query = Sub_Question_3, info = Info_3)

Inter_Results1: str = Intersection(Answer1 = Ans_2, Answer2 =
Ans_3)
Final_Answer: str = Finish_The_Plan(Answer = Inter_Results1)

A1: Ans_1

A2:Ans_2

A3:Ans_3

Step 2: Planning LLM Tuning and Inference

Filling

SFT Inference
“Which regions border Drake Bell's birthplace
and Santa Ana at the same time?”

Sub_Question_1: str = " What is the birthplace of Drake Bell?"
Info_1: str = Search(query = Sub_Question_1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Sub_Question_2: str = f" Which areas border with {Ans_1} "
Info_2: str = Search(query = Sub_Question_2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Sub_Question_3: str = "Which areas border with Santa Ana?"
Info_3: str = Search(query = Sub_Question_3)
Ans_3: str = Get_Answer(query = Sub_Question_3, info = Info_3)

Inter_Results1: str = Intersection(Answer1 = Ans_2, Answer2 =
Ans_3)
Final_Answer: str = Finish_The_Plan(Answer = Inter_Results1)

Step 3: Plan Parsing and Execution
Sub_Question_1: …
Info_1: str = Search …
…
…
Ans_1: str = Get_Answer …
…
Inter_Results1: str = Intersection…
…
Final_Answer …

Retrieval

QA LLM

Set Operate

Final Answer

Fran Walsh

Spouse

Sports

Sports

Fluminense

Ans_1

Verbalization

Figure 2: Overview of our Learning to Plan from Knowlege Graph (LPKG) framework.

KGs, these graphs also support rationale generation.
Chain-of-Knowledge (CoK) (Li et al., 2024) fur-
ther leverages KGs along with other heterogeneous
sources to generate faithful rationales. Unlike pre-
vious studies, our approach constructs planning
data for complex questions from KGs, recogniz-
ing that patterns within KGs inherently represent
multi-step plans. This data is utilized to enhance
the planning capabilities of LLMs.

Complex Logical Query in KGs Recent re-
search on complex logic queries in KGs primarily
focuses on first-order logical (FOL) queries that
incorporate operations like conjunctions, disjunc-
tions, negation, and existential quantifiers within
incomplete KGs (Hamilton et al., 2018; Ren et al.,
2020; Ren and Leskovec, 2020; Arakelyan et al.,
2021; Chen et al., 2022; Xu et al., 2022; Xiong
et al., 2024b; Wu et al., 2024). These works de-
fine diverse patterns to assess the capability of log-
ical operations in vector spaces, specifically tar-
geting logical forms rather than natural language.
Nonetheless, their methodologies for pattern defini-
tion and extraction inspire our approach to deriving
complex questions from KGs.

3 Method

3.1 Overview

As shown in Figure 2, there are 3 steps in our
Learning to Plan from Knowledge Graphs (LPKG)

framework. (1) In the data construction step, we
construct planning data from KGs. Specifically, we
defined some basic KG patterns as shown in Figure
3. We ground patterns in an existing KG to extract
instances. For each extracted instance, we sequen-
tially verbalize the sub-queries within the instance
into natural language sub-questions according to
their order in the instance, eventually assembling
them into a complex question. Afterward, we build
input and output templates for planning data, where
complex questions are concatenated to the input
prompt, and sub-questions are filled into the corre-
sponding positions in the output text according to
the type of patterns. (2) In the planning LLM tun-
ing and inference step, we fine-tune LLMs based
on such planning data to enable the LLMs to fol-
low instructions to infer the plan for each question
in the downstream test sets. (3) In the third step,
such a plan will be parsed and executed, thereby
obtaining the final answer to each question.

3.2 Construction of Planning Data

Basic KG Patterns. Inspired by previous work
on complex logic queries within KGs (Ren
and Leskovec, 2020), we define the basic
KG patterns as shown in Figure 3. The
set of KG patterns is denoted as P =
{1p, 2p, 3p, 2i, 3i, 2u, ip, pi, compare}. Specifi-
cally, p, i, u respectively indicate projection, in-
tersection, and union. 1p, 2p, and 3p represent

7815

u

u
1p 2p 3p

2i 3i

2u

pi ip

c

c
compare

Figure 3: Basic KG patterns.

queries that span from one to three hops, 2i and 3i
respectively represent the intersection of two sub-
queries and three sub-queries, 2u represents the
union of two sub-queries, and ip and pi represent
complex queries that combine two-hop with inter-
section logic. In addition, we also combine pairs of
triples that have numeric tail entities and the same
relations to construct comparison patterns, denoted
as compare.

Grounding. Given a KG, we first ground these
patterns in it to extract instances:

Ipat = fpat(KG), pat ∈ P (1)

where Ipat are the instances grounded by knowl-
edge graph KG of pattern pat, fpat is the corre-
sponding extraction function. For example, an in-
stance of the 2p pattern can be “(Inkheart, (cast
member, educated at))”. To best meet the needs of
open-domain QA, we use Wikidata15k (Chen et al.,
2023b), a subset of the open-domain KG Wikidata,
as KG.

Verbalization. Subsequently, based on the
grounded instances, we need to verbalize them
bottom-up into sub-questions and assemble them
into complex questions. There are several methods
for this step, such as a templates-based method,
manual annotation, or utilizing an LLM. Since
the template-based approach often lacks fluency
in language expression, and the manual method is
time-consuming and labor-intensive, we opt for an
LLM-based method. Specifically, we write a small
number of verbalization examples for each pattern
type. These examples are used as demonstrations
De1 to fill in the prompt. Finally, we concatenate
a grounded instance i ∈ Ipat to the prompt, ask-
ing an LLM to verbalize it to a natural language
question:

{{Qsn}kn=1, Qc} = llm(concat(De1, i)) (2)

where {Qsn}kn=1 and Qc represent the resulting
sub-questions and complex question respectively,

concat is string level concatenation. We use GPT-4
as llm here. It is important to note that here the
llm’s role is merely to transform the data format;
the sub-questions and complex question still orig-
inate from the structure of the KG itself, without
introducing any knowledge from the llm in the task
of question planning. The prompt we use can be
found in Appendix C.1.

Filling. We then extract sub-questions and com-
plex questions from the output of the llm. Subse-
quently, we built a set of planning templates Tpat
for the planning process of questions correspond-
ing to each pattern. The {Qsn}kn=1 obtained in the
previous step will be filled into fixed positions in
Tpat corresponding to their pattern type, thereby
obtaining the output for training. The Qc obtained
in the previous step is concatenated to the end of
a fixed instruction Ins and some planning demon-
strations De2 (also constructed from KGs), thus
obtaining the input for training data:

x = concat(Ins,De2, Qc) (3)

y = Tpat.fill({Qs}kn=1), pat ∈ P (4)

where .fill is a filling function of templates Tpat.
Inspired by (Aksitov et al., 2023), we use a code-
formatted input x and output y here (shown in “In-
put” and “Output” in Figure 2) to facilitate for-
matting and subsequent parsing and execution of
the output plan (more details in Appendix C.2).
In the end, we obtain 9000 training data entries
Dtrain = {xn, yn}9000n=1 , with 1000 entries for each
pattern. We randomly select 100 items from the
training sets for manual verification, with an accu-
racy rate of over 95%.

3.3 Fine-tuning and Inference of Planning
LLMs

We use the obtained training data Dtrain to fine-
tune the planning LLMs Mp directly with the stan-
dard next token training objective:

max
Mp

E(x,y)∈Dtrain
Log pMp(y|x) (5)

The fine-tuned planning LLM Mp can be used
to infer the plan P for each question Qtest in the
downstream test set:

P = Mp(concat(Ins,De2, Qtest)) (6)

where Ins and De2 are the same as the contents
in the Equation (3). It should be noted that in the

7816

Type Count Type Count
2p question 200 3p question 200
2i question 200 3i question 200
ip question 50 pi question 50
2u question 200 compare question 100

Table 1: Distribution of CLQA-Wiki.

multi-hop questions, the specific sub-questions in
the second and third hops need to be constructed
based on the answers to the previous hop’s sub-
questions. Since our P outputs all processes at
once, the Mp cannot know the answers to the previ-
ous hop’s sub-questions when outputting the plans.
Therefore, we will use a placeholder to replace the
answer to the previous hop sub-questions, allow-
ing the planning to proceed smoothly (as shown in
Table 9, 10, 13, 14 in Appendix C.1). These place-
holders will then be filled in during the subsequent
parsing and execution process.

3.4 Plan Parsing and Execution

The obtained plan P needs to be parsed and exe-
cuted to obtain the final answer of the Qtest. Due to
our adoption of code-formatted input and output for
fine-tuning the Mp, the P here is also highly for-
matted code, which facilitates our parsing of each
step of the plan and executing them. In particular:
• When a step includes a “Search” function, we

will call an external retrieval tool.
• When a step includes a “Get Answer” func-

tion, we’ll invoke an external QA LLM MQA to
get answers for a sub-question based on the re-
trieved information. The possible placeholders in
sub-questions will be filled with previous answers.
We ask QA LLM to organize answers in the form
of a list (prompt is shown in Table 7 in Appendix
C.3).
• When “Intersection” or “Union” appears in

the step, we will run actual intersection or union
functions. This can be easily completed due to list
format answers in the previous step.

It is important to note that the planning LLM
Mp and the QA LLM MQA are completely decou-
pled in our framework. Here we can use any LLM
off-the-shelf to handle the task of QA. Ultimately,
we can obtain the answer to Qtest.

4 New BenchMark: CLQA-Wiki

The conventional complex QA datasets include
HotPotQA (Yang et al., 2018), 2WikiMultiopQA

(Ho et al., 2020), MuSiQue (Trivedi et al., 2022),
and Bamboogle (Press et al., 2023). Despite their
widespread use in evaluating the QA performance
of language models, we identify some problems
with these datasets:

(1) All these datasets are primarily focused on
multi-hop and comparison-type questions. The
types of questions are not balanced and comprehen-
sive enough, and less attention is paid to questions
involving intersection and union logic, which are
also very common in reality.

(2) Except for MuSiQue, the questions on the
rest of the other three datasets only have one an-
swer, whereas many questions in reality often have
multiple answers. For example, the answer to an
intersection question “Which country borders with
Russia and China at the same time?” is a set [Mon-
golia, Kazakhstan, North Korea].

In light of this, we aim to construct a new test-
ing benchmark that embodies more comprehensive
logic and allows for an unrestricted number of an-
swers to more thoroughly evaluate the performance
of language models on various logical questions.
Considering the detailed pattern structures and un-
restricted number of answer entities in KGs, we
construct a test set based on Wikidata15k.

Similar to the method used to construct the plan-
ning data, we extract instances from Wikidata15k
(which do not appear in the training data) and use
GPT-4 to do verbalization. Moreover, for each
instance, we can obtain all the answer entities
from Wikidata15k, which we then designate as
the answers to the questions. After manual quality
checks, we obtain a test set called CLQA-Wiki,
which contains 1,200 pieces of data featuring a
variety of Comprehensive Logical QA pairs. The
question types and their distribution are listed in Ta-
ble 1. It is worth noting that we have constructed 9
types of testing questions until now, and for newly
defined patterns, we can also quickly construct
corresponding questions using the above method,
showing the better scalability of our dataset.

5 Experiment

We aim to answer the following research questions
in our experiments:
• RQ1: Can LPKG outperform baseline meth-

ods on conventional complex QA datasets?
• RQ2: Can planning data derived from KGs

help improve the planning ability of the LLMs?
• RQ3: Can planning data derived from KGs

7817

be more helpful in improving the LLMs’ planning
ability compared to normal distillation methods?
• RQ4: Can LPKG outperform baseline meth-

ods on the new benchmark CLQA-Wiki?

5.1 Experimental Settings

Datasets We first conduct experiments on
four conventional complex QA datasets:
HotPotQA (Yang et al., 2018), 2WikiMulti-
HopQA(2WikiMQA) (Ho et al., 2020), MuSiQue
(Trivedi et al., 2022), and Bamboogle (Press et al.,
2023). Among them, HotPotQA, 2WikiMQA,
and MuSiQue contain completed train sets,
development sets, and test sets, while Bamboogle
is a small dataset that only contains 125 test data.
Similar to the previous method (Shao et al., 2023;
Aksitov et al., 2023), we respectively extract
the first 500 entries from the development set of
HotPotQA, 2WikiMQA. For MuSiQue, we follow
Press et al. (2023) to use only 2-hop questions
in the development set. And for Bamboogle, we
use all of its data as test data. Finally, we conduct
testing on our benchmark CLQA-Wiki.

Baselines We compare our framework to various
baselines: • Direct: Directly input the original
question into LLM. • CoT: Follow Kojima et al.
(2022), we instruct LLM firstly “Think step by step”
and then give the final answers. • Direct RAG: The
prompt sent to LLM contains the original question
and retrieved information related to the original
question. • ReAct (Yao et al., 2022): Answering
questions through iterative planning, action, and
observation. The action here is the retrieval tool
and observation is the retrieved information. The
planning and QA are conducted on a single LLM.
• Self-Ask (Press et al., 2023): Similar to ReAct, it
first instructs LLM to judge whether sub-questions
are needed. If so, it will request LLM to generate
the sub-questions, then conduct external retrieval
based on the sub-questions, and allow LLM to pro-
vide answers based on the retrieved information.
• ICLPKG A variant of LPKG framework. Plan-
ning LLMs are not fine-tuned, while just using
In-Context Learning to do Planning with some
KG-sourced planning demonstrations.

Evaluation Metrics Exact Match (EM) is set as
an evaluation metric in HotPotQA, 2WikiMQA,
Bamboogle, and MuSiQue. While in CLQA-Wiki,
we use Recall and Precision.

Implementation Details All baselines are con-
ducted with gpt-3.5-turbo-11061 (GPT-3.5).
The prompts of “Direct”, “CoT”, and “Direct RAG”
are written by ourselves. The ReAct and Self-Ask
are replicated based on their source code with the
GPT-3.5 API. To facilitate assessment, we will ask
the model to only output concise answer phrases.

In our framework: (1) For pattern grounding,
we use Wikidata15k as KG, which contains about
15k entities and 263 relations. The extraction
tool in grounding is modified from existing works
(Ren and Leskovec, 2020). (2) For the planning
LLM Mp, we choose CodeQwen1.5-7B-Chat and
Llama3-8B-Instruct, one excels at coding while
the other excels at common sense reasoning. We
fine-tune them with Lora tuning, running on 4x80G
A100 GPUs for about 3 hours. The fine-tuning is
conducted for 2 epochs, with a learning rate of
5e-5 and a cosine learning rate scheduler. (3) For
retrieval, following previous works (Shao et al.,
2023; Asai et al., 2023), we employ Wikipedia as
the corpus for document retrieval and use the off-
the-shelf Contriever-MS as the retriever. We select
the Top 5 documents as the retrieved information.
(4) For QA LLM, since we only care about the abil-
ity of the planning LLMs, in order to eliminate the
impact of differences in the ability of QA LLMs,
we use GPT-3.5 to align with baselines.

5.2 Results on Conventional Complex QA

Main Results (RQ1,RQ2) Table 2 shows results
on conventional complex QA datasets. Since the
QA LLM remains unchanged in our framework, we
use “LPKG(Llama3)” and “LPKG(CodeQwen)” to
represent LPKG frameworks using different plan-
ning LLMs, respectively. They are fine-tuned on
Llama3-8B-Instruct and CodeQwen1.5-7B-Chat
with KG-sourced planning data. It can be found
that our framework outperforms the baseline meth-
ods on the majority of datasets. Particularly, com-
pared to ReAct and Self-Ask, our approach shows
significant improvement. It is worth noting that
both ReAct and Self-Ask iterative planning and
RAG in their workflows, whereas our approach de-
couples planning and RAG into two separate mod-
els. This allows each model to focus more inten-
sively on its individual task. Moreover, we specifi-
cally enhance the planning part by fine-tuning Mp

with planning data sourced from KG. These two
changes have brought significant improvements to

1https://platform.openai.com/docs/models/gpt-3-5-turbo

7818

Planning RAG HotPotQA 2WikiMQA Bamboogle MuSiQue
Direct % % 0.268 0.284 0.128 0.090
CoT " % 0.288 0.286 0.280 0.090
Direct RAG % " 0.292 0.230 0.080 0.088
ReAct " " 0.211 0.216 0.168 0.060
Self-Ask " " 0.176 0.194 0.136 0.116
ICLPKG(GPT-3.5) " " 0.352 0.344 0.296 0.254
LPKG(CodeQwen) " " 0.338 0.356 0.280 0.266
LPKG(Llama3) " " 0.376 0.372 0.304 0.296

Table 2: Exact match results on conventional complex QA datasets. The best results are in bold, and the second
best is underlined. All baseline methods are conducted on GPT-3.5. LPKG(CodeQwen), and LPKG(Llama3)
respectively represent using our framework with fine-tuned CodeQwen1.5-7B-Chat and fine-tuned Llama3-8B-
Instruct (fine-tuning is conducted on KG-sourced planning data).

HotPotQA 2WikiMQA Bamboogle MuSiQue
LPKG(CodeQwen) 0.338 0.356 0.256 0.266

ICLPKG(CodeQwen) 0.110 0.286 0.176 0.176
LPKG(Llama3) 0.376 0.372 0.272 0.296

ICLPKG(Llama3) 0.369 0.353 0.256 0.290

Table 3: Ablation study on the KG-sourced planning data. ICLPKG(CodeQwen) and ICLPKG(Llama3) represent
using the raw CodeQwen1.5-7B-Chat and Llama3-8B-Instruct to conduct planning, respectively.

the overall accuracy.

At the same time, we also attempt to replace
the fine-tuned Mp with GPT-3.5 while keeping
other parts unchanged, denoted as “ICLPKG(GPT-
3.5)” in Table 2. Results show that even though
fine-tuned Mp CodeQwen (7B) and Llama3 (8B)
have significantly fewer parameters than GPT-3.5
(more than 175B), they can maintain or even sur-
pass GPT-3.5 in terms of planning ability. Next,
we replace the Mp fine-tuned on KG-sourced data
with their raw models, and the experimental re-
sults are shown in Table 3. It can be observed that
after fine-tuning with planning data derived from
the KG, both CodeQwen1.5-7B-Chat and Llama3-
8B-Instruct show significant improvements in plan-
ning ability. In particular, CodeQwen1.5-7B-Chat,
which is significantly inferior to GPT-3.5 across
all datasets in planning ability before fine-tuning,
exhibits a notable enhancement after fine-tuning
on KG-based planning data, especially achieving
better results than GPT-3.5 on 2WikiMQA and
MuSiQue. All these experimental phenomena fully
demonstrate the efficacy of using KG-sourced plan-
ning data in improving the planning ability of the
LLMs.

Bamboogle
LPKG(CodeQwen) 0.272
DLPKG(CodeQwen) 0.216
ICLPKG(CodeQwen) 0.176

Table 4: Comparison with normal distillation methods.
QA LLM is GPT-3.5.

Compare to Normal Distillation (RQ3) To fur-
ther validate the effectiveness of using planning
data constructed from KG, we compare it with
the normal distillation method. Specifically, we
extracted 3000 questions each from the training
sets of HotPotQA, 2WikiMQA, and MuSiQue
(9000 questions in total). Using the same in-
put prompt with Equation (6), we obtain the
planning process of these questions by invoking
GPT-3.5. These planning data are then used to
fine-tune CodeQwen1.5-7B-Chat which has rela-
tively weaker planning capabilities, resulting in
DLPKG(CodeQwen).

To ensure the fairness of the comparison, we con-
duct testing on the unseen dataset Bamboogle, and
the experimental results are shown in Table 4. The
results demonstrate that, under the same amount of
training data and without using in-domain ques-

7819

Planning Error Retrieval Error QA LLM Error
13 17 10

Table 5: Error analysis of LPKG(Llama3).

CLQA-Wiki
Precision Recall

CoT 0.0605(+80.6%) 0.0641(+103.4%)

Direct RAG 0.0814(+34.2%) 0.0789(+65.3%)

ReAct 0.0264(+314.0%) 0.0270(+382.9%)

Self-Ask 0.0385(+183.8%) 0.0423(+208.2%)

ICLPKG(GPT-3.5) 0.0907(+20.5%) 0.1014(+28.6%)

LPKG(Llama3) 0.1112 0.1344

Table 6: Precision and Recall result on CLQA-Wiki.

tions for fine-tuning, using planning data con-
structed from KG yields better performance than
using planning data distilled from GPT-3.5. We
believe this observation is inspiring and can be at-
tributed to the richer reasoning types in the KG
patterns, as well as the highly accurate reasoning
paths in well-constructed KG.

Error Analysis To gain a deeper understanding
of the model’s performance, we conduct an error
analysis of LPKG. Specifically, we extract 40 in-
correct samples (10 per dataset) of LPKG(Llama3)
and manually categorize the error cases into three
types: planning error, retrieval error, and QA LLM
error. As shown in Table 5, the performance of the
retrieval model has the greatest impact. Among the
13 samples with planning errors, 10 of them are due
to incorrect judgment of the type of questions, and
3 are due to incorrect expression of sub-questions.
Future exploration directions can be based on im-
proving the performance of the retriever model and
enhancing the planning LLM’s ability to identify
question types.

5.3 Results on CLQA-Wiki (RQ4)
Main Results We then conduct testing based on
the CLQA-Wiki benchmark. Given that answers
in this benchmark may have multiple candidates,
we adjust the instructions for QA LLMs to require
them to output all potential answers in a speci-
fied list format. This adjustment is made to facili-
tate the extraction and evaluation of the responses.
Since Llama3-8B-Instruct is more powerful than
CodeQwen1.5-7B-Chat as shown in Table 2, we
only conduct LPKG with Llama3 here. Experimen-
tal results are presented in Table 6. It can be seen

that CLQA-Wiki is a very challenging dataset, but
LPKG(Llama3) still outperforms the baseline meth-
ods. At the same time, compared to ICLPKG(GPT-
3.5), LPKG(Llama3) has an average improvement
of over 20%, highlighting the importance of using
KG-sourced planning data.

In addition, we conduct more fine-grained exper-
iments based on the type of questions, and the ex-
perimental results are shown in Figure 4. We found
that LPKG(Llama3) performs more prominently
on some complex questions, such as the 3p, 2i, and
2u questions, demonstrating the advantages of our
framework in dealing with complex logic questions.
At the same time, we also found that direct retrieval
performs well on some types of questions, such as
3i and compare questions. This may be due to the
fact that in the process of verbalizing these ques-
tions, the assembly of sub-questions into complex
questions is relatively straightforward, allowing an-
swers to each sub-questions to be obtained directly
through the retrieval of complex questions or the
knowledge of the LLM itself.

Case Study To more intuitively demonstrate the
effectiveness of KG-source planning data, we con-
duct a case study on CLQA-Wiki, detailed in Fig-
ure 5 in Appendix A. When planning a 2i question
“What sport is associated with John Madden and
Ben Johnson?”, GPT-3.5 generates some meaning-
less sub-questions and incorrectly defines the ques-
tion type, which will definitely lead to incorrect
answers. But LPKG(Llama3) could identify it as a
2i question and provide the correct sub-questions
and planning steps, thereby helping to obtain the
correct answer during final parsing and execution.

6 Conclusion

In this paper, we try to enhance the planning ability
in retrieval-augmented LLMs using KGs. Specifi-
cally, we design a framework for Learning to Plan
from KG (LPKG). The proposed LPKG framework
first utilizes the rich patterns in the KGs to con-
struct planning data, then fine-tune planning LLMs
based on such data to enable them to conduct plan-
ning on downstream datasets, and ultimately get
the final answer through parsing and execution.
The experimental results reveal the excellent per-
formance of the LPKG framework and also demon-
strate the effectiveness of using KG-sourced data to
enhance LLMs’ planning ability. Finally, we con-
struct CLQA-Wiki, providing a more challenging
complex QA benchmark for the community.

7820

Figure 4: Fine-grained evaluation based on question types.

Limitation

In our view, the limitations of our work at the cur-
rent stage mainly stem from two aspects:

(1) During the fine-tuning phase of planning
LLMs, we simply mixed various types of ques-
tions together uniformly for training. We have not
yet explored the impact of question type distribu-
tion on the experimental results, which could be
the focus of future work.

(2) At present, the datasets we test have explicit
types of questions (multi-hop, comparison, and
union/intersection), but in reality, some question
types may be implicit or even not be included in
the types we define. The future direction of our
work can be to study planning methods for these
types of unclear questions.

Acknowledgement

This work is founded by National
Natural Science Foundation of China
(NSFC62306276/NSFCU23B2055/NSFCU19B2027),
Zhejiang Provincial Natural Science Foundation
of China (No. LQ23F020017), Yongjiang Talent
Introduction Programme (2022A-238-G), Chang
Jiang Scholars Program (J2019032), Fundamental
Research Funds for the Central Universities
(226-2023-00138).

References
AI@Meta. 2024. Llama 3 model card.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang

Li, Sheila Babayan, Kavya Kopparapu, Zachary
Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srini-
vasan, et al. 2023. Rest meets react: Self-
improvement for multi-step reasoning llm agent.
arXiv preprint arXiv:2312.10003.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and
Michael Cochez. 2021. Complex query answer-
ing with neural link predictors. In ICLR. OpenRe-
view.net.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
CoRR, abs/2310.11511.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. RQ-RAG:
learning to refine queries for retrieval augmented
generation. CoRR, abs/2404.00610.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
Fireact: Toward language agent fine-tuning. arXiv
preprint arXiv:2310.05915.

Xiang Chen, Duanzheng Song, Honghao Gui, Chengxi
Wang, Ningyu Zhang, Jiang Yong, Fei Huang,
Chengfei Lv, Dan Zhang, and Huajun Chen. 2023b.
Factchd: Benchmarking fact-conflicting hallucina-
tion detection. CoRR, abs/2310.12086.

Xuelu Chen, Ziniu Hu, and Yizhou Sun. 2022. Fuzzy
logic based logical query answering on knowledge
graphs. In AAAI, pages 3939–3948. AAAI Press.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek

7821

Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Zhangyin Feng, Xiaocheng Feng, Dezhi Zhao, Mao-
jin Yang, and Bing Qin. 2023. Retrieval-generation
synergy augmented large language models. volume
abs/2310.05149.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, abs/2312.10997.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In ICML, volume 119
of Proceedings of Machine Learning Research, pages
3929–3938. PMLR.

William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan
Jurafsky, and Jure Leskovec. 2018. Embedding logi-
cal queries on knowledge graphs. In NeurIPS, pages
2030–2041.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In EMNLP, pages 8154–8173. Association
for Computational Linguistics.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Wenyu Huang, Mirella Lapata, Pavlos Vougiouklis,
Nikos Papasarantopoulos, and Jeff Z. Pan. 2023. Re-
trieval augmented generation with rich answer en-
coding. In Proceedings of the 13th International
Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics, pages
1012–1025.

Wenyu Huang, Guancheng Zhou, Hongru Wang, Pav-
los Vougiouklis, Mirella Lapata1, and Jeff Z. Pan.
2024. Less is More: Making Smaller Language Mod-
els Competent Subgraph Retrievers for Multi-hop

KGQA. In Proc. of Empirical Methods in Natural
Language Processing (EMNLP 2024).

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu,
Kyle Richardson, Peter Clark, and Ashish Sabharwal.
2023. Decomposed prompting: A modular approach
for solving complex tasks. In ICLR. OpenReview.net.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing.
2024. Chain-of-knowledge: Grounding large lan-
guage models via dynamic knowledge adapting over
heterogeneous sources. In The Twelfth International
Conference on Learning Representations.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Wei-
jia Shi, Maria Lomeli, Rich James, Pedro Ro-
driguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis,
Luke Zettlemoyer, and Scott Yih. 2023. RA-DIT:
retrieval-augmented dual instruction tuning. CoRR,
abs/2310.01352.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Reasoning on graphs: Faithful and
interpretable large language model reasoning. CoRR,
abs/2310.01061.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented
language models: a survey. CoRR, abs/2302.07842.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, ussa Biswas, Gerard de Melo, Angela
Bonifati, Edlira Vakaj, Mauro Dragoni, and amien
Graux. 2023. Large language models and knowledge
graphs: Opportunities and challenges. Transactions
on Graph Data and Knowledge.

7822

J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer,
F. Lin, and Y. Zhao, editors. 2017a. Reasoning Web:
Logical Foundation of Knowledge Graph Construc-
tion and Querying Answering. Springer.

J.Z. Pan, G. Vetere, J.M. Gomez-Perez, and H. Wu, edi-
tors. 2017b. Exploiting Linked Data and Knowledge
Graphs for Large Organisations. Springer.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In EMNLP (Findings), pages 5687–5711.
Association for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In ICLR. Open-
Review.net.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing
Systems, 33:19716–19726.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. In EMNLP
(Findings), pages 9248–9274. Association for Com-
putational Linguistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. CoRR, abs/2307.07697.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In ICLR. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Yike Wu, Yi Huang, Nan Hu, Yuncheng Hua, Guilin
Qi, Jiaoyan Chen, and Jeff Z. Pan. 2024. CoTKR:
Chain-of-Thought Enhanced Knowledge Rewriting
for Complex Knowledge Graph Question Answering.
In Proc. of Empirical Methods in Natural Language
Processing (EMNLP 2024).

Siheng Xiong, Ali Payani, Ramana Kompella, and
Faramarz Fekri. 2024a. Large language mod-
els can learn temporal reasoning. arXiv preprint
arXiv:2401.06853.

Siheng Xiong, Yuan Yang, Ali Payani, James C Kerce,
and Faramarz Fekri. 2024b. Teilp: Time prediction
over knowledge graphs via logical reasoning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 16112–16119.

Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Hua-
jun Chen. 2022. Neural-symbolic entangled frame-
work for complex query answering. In NeurIPS.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
CoRR, abs/2401.15884.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving

7823

with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In ICLR. OpenReview.net.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In ICLR.
OpenReview.net.

7824

A Case Study

Cases are shown in Figure 5 where we mark the
bad parts of the ICLPKG (GPT-3.5) planning in red,
and the corresponding parts of LPKG (Llama3) in
blue. In order to highlight the core difference, the
“Thought” in planning is omitted in the cases.

B Prevention of Data Leakage

In the experiment, we used data from knowledge
graph sources as training data, which may raise
concerns about data leakage, specifically the over-
lap between the training data and the four multi-
hop test sets(HotPotQA, 2WikiMQA, Bamboogle,
MusiQue). We calculate the semantic similarity
between the training and testing questions. We use
the BGE-M3 model to embed the training and test-
ing questions into high-dimensional vectors and
calculate their cosine similarity. We found that the
similarity between the testing and training ques-
tions does not exceed 0.8, and is generally below
0.6. This indicates that there is almost no high de-
gree of overlap between the training data and the
testing data.

In addition, when conducting experiments on our
own test set CLQA-Wiki, we excluded questions
similar to those in CLQA-Wiki from the training
data (with similarity scores above 0.9), ensuring no
high overlap between the training and testing data.

C Prompt Content

C.1 Prompt of Verbalization

Table 8,9,10,11,12,13,14,15,16 shows the different
prompts of verbalizing pattern instances to their
natural language questions. The specific instance
that needs to be verbalized will be added to the end
of the prompt.

C.2 Prompt of Planning LLM

The code-formatted input prompt for planning
LLM is as follows. Due to space limitations, only
some demonstrations are displayed in the prompt.
In fact, we will include planning demonstrations
for different types of questions in the prompt:

Complete the Code Below

from package1 import SerpAPIWrapper
from package2 import QA_LLM
search = SerpAPIWrapper ()

def Search(query:str ,thought:str):
""" Search relevant information about query based

on external Search Engine.
Attributes:

query: The question you want to
search.

thought: The reason why this query
is need.

"""
if thought is not None:

return search.run(query)
else:

return (" Please give your thought !")

def Get_Answer(query:str ,info:str):
""" Get the answer of the query based on the

information.
Attributes:
query: The question you want to search.
info: The information relevant to the query.
"""
Use the QA_LLM model to get the answer.
return QA_LLM(query ,info)

def Compare(Original_Query:str ,Subquestions:list ,
Answers:list):
""" Compare the answer of the sub -questions and

return the final answer of original query.
Attributes:
Original_Query: The original question.
Subquestions: The list of sub -questions.
Answers: The list of answers of the sub -

questions.
"""
query = Original_Query
info = str()
for i in range(len(Subquestions)):

info += Subquestions[i] + ’ : ’ + Answers[i]
+ ’\n’

return QA_LLM(query ,info)

def Intersection(Answer1:str ,Answer2:str):
""" Find the intersection of two answer sets.
Attributes:
Answer1: The first answer set.
Answer2: The second answer set.
"""
List1 = Answer1.split(’,’)
List2 = Answer2.split(’,’)
return str(set(List1) & set(List2))

def Union(Answer1:str ,Answer2:str):
""" Find the union of two answer sets.
Attributes:
Answer1: The first answer set.
Answer2: The second answer set.
"""
List1 = Answer1.split(’,’)
List2 = Answer2.split(’,’)
return str(set(List1) | set(List2))

def Finish_The_Plan(Answer:str):
""" Call this function to finish the plan and

return the final answer.
Attributes:
Answer: The final answer of the original

question.
"""
return Answer

###################
Example 0:
###################

Original_Question: str = "What is the ethnic group
of Booker T. Jones ?"

Question Type: One Projection
Decompose the original question into sub -

questions.

Thought1: str = "An atomic question , no need to
decompose. Search directly ."

Sub_Question_1: str = "What is the ethnic group of
Booker T. Jones ?"

Info_1: str = Search(query = Sub_Question_1 , thought
= Thought1)

Ans_1: str = Get_Answer(query = Sub_Question_1 , info
= Info_1)

Final_Answer: str = Finish_The_Plan(Answer = Ans_1)

7825

Question: What sport is associated with both John Madden and Ben Johnson?

ICLPKG(GPT-3.5) Planning LPKG(Llama3) Planning

Thought1: …
Sub_Question_1: str = "Who is John Madden?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = "Who is Ben Johnson?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Thought3: …
Inter_Results1: str = Intersection(Answer1 = Ans_1, Answer2 = Ans_2)

Thought4: …
Sub_Question_3: str = f"What sport is associated with the people in
{Inter_Results1}?"
Info_3: str = Search(query = Sub_Question_3, thought = Thought4)
Ans_3: str = Get_Answer(query = Sub_Question_3, info = Info_3)

Final_Answer: str = Finish_The_Plan(Answer = Ans_3)

Thought1: …
Sub_Question_1: str = "What sport is associated with John Madden?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = "What sport is associated with Ben Johnson?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Thought3: …
Inter_Results1: str = Intersection(Answer1 = Ans_1, Answer2 = Ans_2)

Final_Answer: str = Finish_The_Plan(Answer = Inter_Results1)

Question: What is the place of birth of Robert Cray named after?

Thought1: …
Sub_Question_1: str = "Who is Robert Cray?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = f"What is the place of birth of {Ans_1}?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Final_Answer: str = Finish_The_Plan(Answer = Ans_2)

Thought1: …
Sub_Question_1: str = "Where was Robert Cray born?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = f"What is {Ans_1} named after?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Final_Answer: str = Finish_The_Plan(Answer = Ans_2)

Question: Which team's stadium has a greater maximum capacity, Zamalek SC or Selangor FA?

Thought1: …
Sub_Question_1: str = "What is the stadium of Zamalek SC?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = "What is the stadium of Selangor FA?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Thought3: …
Ans_3: str = Compare(Original_Query = Original_Question, Subquestions
= [Sub_Question_1,Sub_Question_2], Answers = [Ans_1,Ans_2])

Final_Answer: str = Finish_The_Plan(Answer = Ans_3)

Thought1: …
Sub_Question_1: str = "What is the maximum capacity of the stadium of
Selangor FA?"
Info_1: str = Search(query = Sub_Question_1, thought = Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1, info = Info_1)

Thought2: …
Sub_Question_2: str = "What is the maximum capacity of the stadium of
Selangor FA?"
Info_2: str = Search(query = Sub_Question_2, thought = Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2, info = Info_2)

Thought3: …
Ans_3: str = Compare(Original_Query = Original_Question, Subquestions
= [Sub_Question_1,Sub_Question_2], Answers = [Ans_1,Ans_2])

Final_Answer: str = Finish_The_Plan(Answer = Ans_3)

ICLPKG(GPT-3.5) Planning LPKG(Llama3) Planning

LPKG(Llama3) PlanningICLPKG(GPT-3.5) Planning

Figure 5: Case study on CLQA-Wiki.

7826

###################
Example 1:
###################

Original_Question: str = "Who succeeded the first
President of Namibia ?"

Question Type: Two Projection
Decompose the original question into sub -

questions.

Thought1: str = "If I want to know who succeeded the
first President of Namibia , I need to first

know who is the first President of Namibia ."
Sub_Question_1: str = "Who is the first President of

Namibia ?"
Info_1: str = Search(query = Sub_Question_1 , thought

= Thought1)
Ans_1: str = Get_Answer(query = Sub_Question_1 , info

= Info_1)

Thought2: str = "After knowing who is the first
President of Namibia , I need to know who
succeeded him."

Sub_Question_2: str = f"Who succeeded {Ans_1 }?"
Info_2: str = Search(query = Sub_Question_2 , thought

= Thought2)
Ans_2: str = Get_Answer(query = Sub_Question_2 , info

= Info_2)

Final_Answer: str = Finish_The_Plan(Answer = Ans_2)

......(More Examples are omitted here)
###################
Your turn! Just complete the code below and do not

return other things.
###################

Original_Question: str =

C.3 Prompt of QA LLM
Table 7 shows the prompt we used for QA LLM.
The “Wikipedia Docs.” will be filled with retrieved
Wikipedia documents based on input questions.

7827

Instruction:
Give a question and some information that may help you answer the question. Please answer the
question based on your own knowledge and the information provided.
Retrieved Information:
Information
{Wikipeida Docs.}
Input
Question:
{Input Question}
Your Answer: (You only need to provide the final answer to the question. Intermediate answers are
not needed. Please return your answer in the form of a list, where each element in the list is a short
entity answer, such as [Apple]. When you think there are multiple answers, please divide them with a
’#’ symbol, such as [Apple#Banana#Origin]. If the answer is not included in the information provided,
please answer based on your own knowledge. If you don’t know either, please return [None].)

Table 7: Prompt for QA LLM.

Instruction:
Given a subgraph query in the knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format (h,(r,)), where h and r represent the head entity and relation respectively,
and the meaning of this query is to find the set of tail entities of h under the relation r. Your responsibility
is to transfer it into a question in natural language form. I will give you some examples, please complete
your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: (Booker T. Jones, (ethnic group,))
Natural Language Question: What is the ethnic group of Booker T. Jones?
Example 2:
Subgraph Query: (Daniel Handler, (educated at,))
Natural Language Question: Where did Daniel Handler receive education?
Your Turn (Just output the Natural Language Question and do not return other content):
Input:
Subgraph Query:

Table 8: Prompt of verbalization for 1p pattern instances.

7828

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format (h,(r1,r2,)), where h represents the head entity, and r1 and r2 represent
a two-hop relation path starting from head entity h. The purpose of this query is to find the target entity
associated with the head entity h under the relational path (r1, r2). Your responsibility is to first transfer
it into two sub-questions and finally combine them to form a complex question. When constructing the
second sub-question, you may need the answer to the first sub-question, so we will assume that the
answer to the first sub-question is A1 and the answer to the second sub-question is A2, to facilitate
the formulation of the sub-question. When composing the final question, please pay attention to the
fluency of the language and avoid mechanically stitching sub-questions together. I will give you some
examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query:(Chongqing, (twinned administrative body, country of citizenship’))
Q1: Which city or administrative body that is twinned with Chongqing?
Q1_Answer: A1
Q2: What is the country of {A1}?
Q2_Answer: A2
Final Question: Which country has a city or administrative body that is twinned with Chongqing?
Example 2:
Subgraph Query:(Inkheart, (cast member, educated at))
Q1: Who is the cast member of Inkheart?
Q1_Answer: A1
Q2: Where did {A1} receive education?
Q2_Answer: A2
Final Question: Where did the cast member of Inkheart receive education?
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 9: Prompt of verbalization for 2p pattern instances.

7829

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format (h,(r1,r2,r3,)), where h represents the head entity, and (r1,r2,r3,)
represents a three-hop relation path starting from the head entity h. The purpose of this query is
to find the target entity associated with the head entity h under the relational path (r1,r2,r3,). Your
responsibility is to first transfer it into three sub-questions and finally combine them to form a complex
question. When constructing the second and third sub-question, you may need the answer to the
previous sub-question, so we will assume that the answers to these three sub-questions are A1, A2, and
A3, to facilitate the formulation of the sub-question. When composing the final question, please pay
attention to the fluency of the language and avoid mechanically stitching sub-questions together. I will
give you some examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query:(Chongqing, (twinned administrative body, country of citizenship))
Subgraph Query: (Android, (developer, country, foundational text))
Q1: Who is the developer of Android?
Q1_Answer: A1
Q2: What is the country of {A1}?
Q2_Answer: A2
Q3: What is the foundational text of country {A2}?
Q3_Answer: A3
Final Question: What is the foundational text of the Android developer’s country?
Example 2:
Subgraph Query: (X-Men: The Last Stand, (cast member, place of birth, shares border with))
Q1: Who is the cast member of X-Men: The Last Stand?
Q1_Answer: A1
Q2: What is the birthplace of {A1}?
Q2_Answer: A2
Q3: Which area borders with {A2}?
Q3_Answer: A3
Final Question: Which area borders the birthplace of X-Men: The Last Stand’s cast member?
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 10: Prompt of verbalization for 3p pattern instances.

7830

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format “(h1,(r1,)) Intersection (h2,(r2,))”, where h1 and h2 represent two
head entities, r1 and r2 are their corresponding relations. The purpose of this query is to find the
intersection set of the tail entities of (h1,(r1,)) and (h2,(r2,)). Your responsibility is to first transfer it
into two sub-questions and finally combine them to form a complex question. When composing the
final question, please pay attention to the fluency of the language and avoid mechanically stitching
sub-questions together. The questioning method can be adjusted appropriately, but the meaning cannot
be changed. I will give you some examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: (Jimmy Carter, (educated at,)) Intersection (John Wells, (educated at,))
Q1: Where did Jimmy Carter receive education?
Q2: Where did John Wells receive education?
Final Question: Where did both Jimmy Carter and John Wells receive education?
Example 2:
Subgraph Query: (Burlington County, (shares border with,)) Intersection (Trumbull County, (shares
border with,))
Q1: Which areas border with Burlington County?
Q2: Which areas border with Trumbull County?
Final Question: Which areas border with Burlington County and Trumbull County at the same time?
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 11: Prompt of verbalization for 2i pattern instances.

7831

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format “(h1,(r1,)) Intersection (h2,(r2,)) Intersection (h3,(r3,))”, where h1, h2
and h3 represent three head entities, r1, r2 and r3 are their corresponding relations. The purpose of
this query is to find the intersection set of the tail entities of (h1,(r1,)), (h2,(r2,)) and (h3,(r3,)). Your
responsibility is to first transfer it into three sub-questions and finally combine them to form a complex
question. When composing the final question, please pay attention to the fluency of the language
and avoid mechanically stitching sub-questions together. The questioning method can be adjusted
appropriately, but the meaning cannot be changed. I will give you some examples, please complete
your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: ((Alice in Wonderland, (genre,)) Intersection (Blues Brothers 2000, (genre,)) Inter-
section (Pinocchio, (genre,)))
Q1: What are the genre of Alice in Wonderland?
Q2: What are the genre of Blues Brothers 2000?
Q3: What are the genre of Pinocchio?
Final Question: What are the same genre shared between Alice in Wonderland, Blues Brothers 2000
and Pinocchio?
Example 2:
Subgraph Query:(Springfield, (capital of,)) Intersection (Ulster County, (shares border with,)) Intersec-
tion (Montgomery County, (shares border with,))
Q1: What is the capital of Springfield?
Q2: Which areas border with Ulster County?
Q3: Which areas border with Montgomery County?
Final Question: Which area is the capital of Springfield and borders with Ulster County and Mont-
gomery County at the same time?
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 12: Prompt of verbalization for 3i pattern instances.

7832

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format “(h1,(r1,)) Intersection (h2,(r2,)) Projection r3”, where h1 and h2
represent two head entities, r1 and r2 are their corresponding relations. The purpose of this query is to
fisrt get the intersection set of the tail entities of (h1,(r1,)) and (h2,(r2,)), and then find the tail entities
of every entity in the previous intersection set under relation r3. Your responsibility is to first transfer
it into three sub-questions and finally combine them to form a complex question. When composing
the final question, please pay attention to the fluency of the language and avoid mechanically stitching
sub-questions together. The questioning method can be adjusted appropriately, but the meaning cannot
be changed. I will give you some examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: (John Williams, (educated at,)) Intersection (John Milton, (educated at,)) Projection
named after
Q1: Where did John Williams receive education?
Q2: Where did John Milton receive education?
Intersection_Answer: Inter_A
Q3: The {Inter_A} was named after what?
Final Question: The place where John Williams and John Milton both received education was named
after what?
Example 2:
Subgraph Query: (The Blues Brothers, (cast member,)) Intersection (Going My Way, (cast member,))
Projection member of political party
Q1: Who are the cast members of The Blues Brothers?
Q2: Who are the cast members of Going My Way?
Intersection_Answer: Inter_A
Q3: What are the political party of {Inter_A}?
Final Question: What are the political party of people who are cast members of both The Blues Brothers
and Going My Way?
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 13: Prompt of verbalization for ip pattern instances.

7833

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format “(h1,(r1,r2,)) Intersection (h2,(r3,))”, where (h1,(r1,r2,)) represents a
two-hop relational path starts from head entity h1 followed by relation r1 and r2, and (h2, (r3,)) is an
one-hop relational path start from head entity h2. The purpose of this query is to find the intersection
set of the tail entity of relational path (h1,(r1,r2)) and (h2,(r3,)). Your responsibility is to first transfer it
into three sub-questions and finally combine them to form a complex question. When constructing
second or third sub-questions, you may need the answer to the previous sub-question, so we will
assume that the answer to the first sub-question is A1 and the answer to the second sub-question is
A2, to facilitate the formulation of the sub-question. When composing the final question, please pay
attention to the fluency of the language and avoid mechanically stitching sub-questions together. The
questioning method can be adjusted appropriately, but the meaning cannot be changed. I will give you
some examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: (Drake Bell, (place of birth, shares border with)) Intersection (Santa Ana, shares
border with)
Q1: What is the birthplace of Drake Bell?
Q1_Answer: A1
Q2: Which areas border with {A1}?
Q2_Answer: A2
Q3: Which areas border with Santa Ana?
Q3_Answer: A3
Final Question: Which regions border Drake Bell’s birthplace and Santa Ana at the same time?
Final Answer: A2 Intersection A3
Example 2:
Subgraph Query: (Fran Walsh, (spouse, sport)) Intersection (Fluminense F.C., (sport,))
Q1: Who is the spouse of Fran Walsh?
Q1_Answer: A1
Q2: What sports does {A1} play?
Q2_Answer: A2
Q3: What sports does Fluminense F.C. play?
Q3_Answer: A3
Final Question: What sports have Fluminense F.C. and Fran Walsh’s spouse played in?
Final Answer: A3 Intersection A2
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 14: Prompt of verbalization for pi pattern instances.

7834

Instruction:
Given a subgraph query in knowledge graph, please transfer it into natural language. The subgraph
query is expressed in the format “(h1,(r1,)) Union (h2,(r2,))”, where h1 and h2 represent two head
entities, r1 and r2 are their corresponding relations. The purpose of this query is to find the Union set of
the tail entities of (h1,(r1,)) and (h2,(r2,)). Your responsibility is to first transfer it into two sub-questions
and finally combine them to form a complex question. When composing the final question, please pay
attention to the fluency of the language and avoid mechanically stitching sub-questions together. The
questioning method can be adjusted appropriately, but the meaning cannot be changed. I will give you
some examples, please complete your task after reading them:
Demonstrations:
Example 1:
Subgraph Query: (Wuthering Heights, (cast member,)) Union (Traffic, (cast member,))
Q1: Who are the cast members of Wuthering Heights?
Q2: Who are the cast members of Traffic?
Final Question: Who are all the cast members from Wuthering Heights combined with the cast members
from Traffic?
Example 2:
Subgraph Query: (Eve, (director,)) Union (Cold Mountain, (cast member,))
Q1: Who is the director of Eve?
Q2: Who are the cast members of Cold Mountain?
Final Question: Please list the director of Eve as well as all the cast members from Cold Mountain.
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 15: Prompt of verbalization for 2u pattern instances.

Instruction:
Given two triples with numerical tail entities, please create a comparison-type question based on the
given triples and create the corresponding sub-questions for each triple. Finally, you should also give
the answer based on the given triple. The final answer should be “Yes” or “No”. Here are some
examples:
Demonstrations:
Example 1:
Triple 1:(Vietnam male, marriageable age, 20 years old)
Triple 2:(Vietnam female, marriageable age, 18 years old)
Q1: What is the marriageable age for Vietnamese men?
Q2: What is the marriageable age for Vietnamese women
Final Question: Is the marriageable age the same for men and women in Vietnam? Answer: No
Example 2:
Triple1:(Vietnam, population, 94660000)
Triple2:(Halifax, population, 424931)
Q1: What is the population of Vietnam?
Q2: What is the population of Halifax?
Final Question: Which company has less population, Vietnam or Halifax?
Answer: Halifax
Input:
Your Turn (Just complete your task in the above format and do not return other content):
Subgraph Query:

Table 16: Prompt of verbalization for compare pattern instances.

7835

