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Abstract

Towards enhancing the chain-of-thought (CoT)
reasoning of large language models (LLMs),
much existing work has revealed the effective-
ness of straightforward learning on annotat-
ed/generated CoT paths. However, there is
less evidence yet that reasoning capabilities
can be enhanced through a reverse learning
process, i.e., learning from potential mistakes
in reasoning. To investigate whether LLMs
can learn from mistakes, we construct mistake-
correction datasets, using GPT-4 to identify and
correct the mistakes in inaccurate CoTs. With
these mistake-correction datasets, we fine-tune
open-source LLMs and arrive at the follow-
ing conclusions. (1) LLMs can indeed learn
from mistakes to enhance their CoT reason-
ing performances. (2) Compared to CoT data,
the mistake-correction data provides additional
knowledge on the explanations and reasons for
the potential mistakes in CoTs, which consis-
tently contributes to the effectiveness of learn-
ing from mistakes. (3) Evolution techniques,
especially the correction-centric evolution we
introduced, can further enhance the effective-
ness of learning from mistakes.

1 Introduction

Mistakes are the portals of discovery.
—James Joyce

With exponential growth in data size and model
scale, contemporary large language models (Brown
et al., 2020; Zhang et al., 2022; Hoffmann et al.,
2022; Smith et al., 2022; OpenAI, 2023b; Anil
et al., 2023) have emerged the chain-of-thought
(CoT) reasoning capabilities on solving complex
tasks (Wei et al., 2022; Wang et al., 2022; Li et al.,
2023b; Shi et al., 2023; Qin et al., 2023; Lightman
et al., 2023), such as GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). To improve
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LLM

Question: Tina makes $18.00 an hour. If she works more than 8 hours per shift, she is 

eligible for overtime, which is paid by your hourly wage + 1/2 your hourly wage. If she works 

10 hours every day for 5 days, how much money does she make?

Rationales with Mistakes:

Step 1: Tina makes $18.00 an hour for 8 hours, which is 8 * $18.00 = $144.00.

Step 2: She makes $27.00 an hour for the 2 hours of overtime, which is 2 * $27.00 = $54.00.

Step 3: So for 5 days, she makes $144.00 + $54.00 = $198.00.

Step 4: The answer is 198.

GPT-4 As Corrector

Correction:

Incorrect Step: Step 3.

Explanation: Step 3 only calculates the earnings for one day, but not for the entire five days.

Correct Solution:

...

Step 3: For one day, she makes $144.00 + $54.00 = $198.00.

Step 4: For 5 days, she makes $198.00 * 5 = $990.00.

Step 5: The answer is 990.

Sampling Rationales

Identifying Mistake and Making Correction

LLM

Fine-Tuning on Mistake-Correction Data

Figure 1: The overall process for investigating whether
LLMs can learn from mistake. We first construct the
mistake-correction dataset and then fine-tune the LLM.

the CoT reasoning of open-source LLMs such as
LLaMA-2 (Touvron et al., 2023b), a common ap-
proach is to apply the straightforward learning,
which means to directly fine-tune the models us-
ing annotated/generated CoT paths (Magister et al.,
2022; Huang et al., 2022; Ho et al., 2022; Li et al.,
2022; Yuan et al., 2023; Luo et al., 2023; Yu et al.,
2023; Li et al., 2023a; Liang et al., 2023; Ranaldi
and Freitas, 2024).

Despite existing extensive research on straight-
forward learning processes, there remains limited
exploration into whether reasoning capabilities can
be enhanced through a reverse learning process,
which means to learn from what kind of mistakes
could be made during reasoning. The insight of
learning from mistakes comes from the learning
process of human. Consider a human student who
is just beginning to learn math. Beyond learning
from golden knowledge and examples in books, he
also does exercises. After failing to solve a prob-
lem, he will learn what mistakes he has made and
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how to correct them. By learning from mistakes,
his reasoning capability will be further improved.
Inspired by this reverse learning process for human
students, this work explores whether the reason-
ing capabilities of LLMs can also be enhanced by
learning from mistakes.

To this end, we first construct mistake-correction
datasets for reasoning tasks and then use these
datasets to fine-tune LLMs (illustrated in Figure 1).
To construct the mistake-correction dataset, we
employ multiple LLMs, including the LLaMA2
and GPT families, to collect inaccurate CoTs (i.e.,
with incorrect final answers). We then use GPT-
4 (OpenAI, 2023b) as a “corrector” to generate
corrections for these inaccurate CoTs. The cor-
rections inform what mistakes have been made in
CoTs and how to correct them. We conduct human
evaluations showing that the generated corrections
exhibit adequate quality for the subsequent fine-
tuning stage. We then fine-tune open-source LLMs
on the mistake-correction data to perform LEarning
from MistAkes (LEMA), and use the augmented
CoT data for straightforward learning.

Our experiments are conducted across various
open-source LLMs (e.g., LLaMA2 family and spe-
cialized LLMs such as WizardMath (Luo et al.,
2023) and MetaMath(Yu et al., 2023)), several rea-
soning tasks (including math reasoning and com-
monsense reasoning), and two training approaches
(i.e., QLoRA (Dettmers et al., 2023) and full fine-
tuning). These experiments aim to answer the fol-
lowing research questions.

• RQ1: Can LLMs learn from mistakes to im-
prove CoT reasoning? A1: Yes. Compared
to only applying straightforward learning, in-
corporating learning from mistakes during fine-
tuning improves the reasoning performances of
backbone models. Moreover, some specialized
LLMs for math tasks can also be further en-
hanced through learning from mistakes.

• RQ2: Why does learning from mistakes take
effect? A2: It brings additional knowledge
on the explanations and reasons to the poten-
tial mistakes. Compared to the CoT data for
straightforward learning, the mistake-correction
data additionally provides the explanations and
reasons to mistakes along with CoTs. Our ab-
lation study reveals the importance of this addi-
tional knowledge.

• RQ3: Can learning from mistakes benefit

from evolution techniques? A3: Yes. Despite
the general evolution technique that randomly
selects seed questions (Xu et al., 2023; Yu et al.,
2023; Li et al., 2023a), we introduce a correction-
centric evolution strategy which focuses more
on moderately difficult questions. Experimental
results show the further improvements from ex-
panding the mistake-correction dataset through
applying the evolution techniques.

2 Methodology

Our exploration consists of three primary stages:
constructing the mistake-correction dataset, ex-
panding the dataset with correction-centric evolu-
tion, and fine-tuning LLMs.

2.1 Mistake-Correction Data Construction
Figure 2 briefly illustrates the process of construct-
ing the mistake-correction data. Given a question-
answer example (qi, ai) ∈ Q, a corrector model
Mc, and a reasoning model Mr, we will generate
the mistake-correction data pair (qi ⊕ r̃i, ci) ∈ C,
where r̃i is an inaccurate reasoning path to the ques-
tion qi, and ci is the correction for r̃i.

Collecting inaccurate reasoning paths. We first
sample multiple reasoning paths for each question
qi using the reasoning model Mr and retain paths
not achieving the correct final answer ai,

r̃i ∼ Mr(Pr ⊕ qi), Ans(r̃i) ̸= ai, (1)

where Pr is the few-shot prompt instructing the
model to perform CoT reasoning, and Ans(·) ex-
tracts the final answer from the reasoning path.

Generating corrections for mistakes. For ques-
tion qi and the inaccurate reasoning path r̃i, we
employ the corrector model Mc to generate a cor-
rection and check the final answer in the correction,

ci ∼ Mc(Pc ⊕ qi ⊕ r̃i), Ans(ci) = ai, (2)

where Pc contains 4 annotated mistake-correction
examples to guide the corrector model what kind
of information should be contained in the gener-
ated corrections. Figure 3 briefly illustrates Pc.
Specifically, the annotated corrections comprises
two pieces of information:
• Explanation and reason to mistake: identify

which step is incorrect and explain what kind of
mistake has been made in this step.

• Correct solution: revise the original reasoning
path to achieve the correct answer.
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Question-Answer Pairs
Reasoning Model

(e.g., LLaMA2)
Inaccurate Reasoning Paths

CoT Prompt

Corrector Model
(i.e., GPT-4)

Correction Prompt

Corrections

Mistake-Correction Pairs

Correction-Centric Evolution Model
(i.e., GPT-4)

Evolution Prompt

Sampling Seed Questions

Expanding

Figure 2: Process of generating and expanding the mistake-correction dataset.

Human evaluation for generated corrections.
Before generating data on a large scale, we first
manually assess the quality of the generated cor-
rections. We take LLaMA-2-70B as Mr, utilize
GPT-4 as Mc, and generate 50 mistake-correction
data pairs based on the GSM8K training set. We
classify the corrections into three quality levels.

• Excellent: the corrector successfully identifies
the incorrect step in r̃i, provides a reasonable
explanation, and the corrected reasoning path
exhibits high continuity with the pre-steps in the
original reasoning path1.

• Good: the corrector successfully identifies the
incorrect step in r̃i, provides a reasonable expla-
nation, while the corrected reasoning path has
minor issues in continuity.

• Poor: the corrector fails to identify the incorrect
step in r̃i or provides unreasonable explanations.

Appendix B.1 lists several examples under each
quality level. Our evaluation finds that 35 out of
50 generated corrections are of excellent quality,
11 are good, and 4 are poor. Based on this human
evaluation, we suppose the overall quality of cor-
rections generated with GPT-4 is sufficient for the
further fine-tuning stage. We generate corrections
on a large scale and take all corrections that have
correct final answers for fine-tuning LLMs. We
provide further analysis on the choice and behavior
of corrector model in Section D.6.

2.2 Correction-Centric Evolution
After building up the data generation pipeline, we
explore how to scale up our correction data. We
consider that expanding the question-answer set Q

1The high continuity means that the corrected reasoning
steps follow the pre-steps generated before the identified mis-
take step.

is a promising direction, as it primarily determines
the correction data diversity.

Inspired by the recent success of evolution tech-
niques on CoT augmentation (Xu et al., 2023; Yu
et al., 2023; Li et al., 2023a), we explore how to ef-
fectively apply the evolution method to expand our
correction data. The “evolution” means to generate
a set of new question-answer pairs from the given
seed questions by prompting powerful LLMs.

The general evolution method for CoT augmen-
tation randomly selects seed questions to evolve.
However, this strategy does not well suit the nature
of our correction data, as too simple or too chal-
lenging questions are less valuable for evolving and
collecting correction information.

• For too simple questions, the reasoning models
such as LLaMA can already solve them. Evolv-
ing these questions may not be effective for col-
lecting mistakes.

• For too challenging questions, the most powerful
LLMs still cannot handle them. Evolving these
questions may lead to much inaccurate informa-
tion in corrections.

Therefore, we apply a correction-centric evolu-
tion strategy which more focuses on moderately
difficult questions: we only sample seed questions
that occur in our correction data C, rather than
randomly sampling from the entire set Q,

q̂i ∼ Me(Pe ⊕ qi), qi ∈ C, (3)

where qi is the seed question, and Me and Pe are
the LLM and prompt for evolving questions, re-
spectively. Appendix B.3 illustrates our Pe.

The underlying principle of this strategy is
straightforward. If one question frequently appears
in correction data, it means that this question is
not well solved by many reasoning models, but its
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For the following math word problems, the original solutions may contain errors. Please identify the incorrect step in each solution, explain why it is incorrect, 

and provide the correct solution starting from that step.

Question: James creates a media empire. He creates a movie for $2000. Each DVD cost $6 to make. He sells it for 2.5 times that much. He sells 500 movies a 

day for 5 days a week. How much profit does he make in 20 weeks?

Original Solution: Step 1, 500 movies a day, 5 days a week, for 20 weeks, he sells 500 * 5 * 20 = 50000 movies. Step 2, Each movie he sells for $6 * 2.5 = 

$15. Step 3, Thus, he makes a profit of $15 - $6 = $9 per movie. Step 4, Therefore, he makes a profit of $9 * 50000 = $450000. Step 5, The answer is 450000.

Incorrect Step: Step 4.

Explanation: The error in Step 4 is that it does not take into account the initial cost of creating the movie ($2000). The correct solution should subtract this 

amount from the total profit calculated in Step 4.

Correct Solution: … Step 4, Therefore, he makes a profit of $9 * 50000 - $2000 = $448000. Step 5, The answer is 448000.

… (Another 3 annotated examples)

Question: 𝒒𝒊, Original Solution: 𝒓𝒊, Incorrect Step: {Completion}

Prompt For Generating Corrections

Figure 3: A brief illustration of our prompt for generating corrections. For the incorrect step in the original

solution, we prompt GPT-4 to find out the reason of mistake and generate the corrected step .

Table 1: Statistics of data sizes for the five tasks in our
experiments (without question evolution).

Task CoT Data Correction Data Test Data

GSM8K (Cobbe et al., 2021) 32,421 12,523 1,319
MATH (Hendrycks et al., 2021) 20,009 6,306 5,000

SVAMP (Patel et al., 2021) - - 1,000
ASDiv (Miao et al., 2020) - - 2,084

CSQA (Talmor et al., 2019) 10,536 7,241 1,221

inaccurate reasoning paths can be well handled by
the corrector model.

2.3 Fine-Tuning LLMs

After generating the correction data, we fine-tune
LLMs to examine whether these correction data can
facilitate CoT reasoning. We compare the results
under two settings:

• Only straightforward learning. We fine-tune
the model on CoT data alone. In addition to
the annotated data in each task, we additionally
take CoT data augmentation following existing
methods (Yuan et al., 2023; Li et al., 2023a; Yu
et al., 2023). We generate more reasoning paths
for each question in the training sets with GPT-
4 and filter out paths with wrong final answers.
We apply this CoT data augmentation to set up
strong baselines for straightforward learning.

• Incorporating learning from mistakes. We
fine-tune LLMs on both CoT data and the con-
structed mistake-correction dataset. This setting
is referred to as LEMA.

Appendix B.2 shows the input-output formats of
CoT data and mistake-correction data used for fine-
tuning and evaluation.

3 Experimental Setup

3.1 Tasks
Table 1 illustrates basic statics about the tasks and
data (without question evolution).

We undertake experiments on three challenging
reasoning tasks, including two mathematical rea-
soning tasks, GSM8K and MATH, and one com-
monsense reasoning task CSQA. Table 1 contains
the basic data statistics for these tasks. For these
tasks, we generate correction data based on their
training sets. Despite these tasks, we also take two
additional tasks (SVAMP and ASDiv) for out-of-
distribution evaluation (detailed in Section D.3).

GSM8K (Cobbe et al., 2021) contains high qual-
ity linguistically diverse grade school math word
problems. It has 7,473 training examples with CoT
and 1,319 test cases.

MATH (Hendrycks et al., 2021) examines math
reasoning on solving challenging competition math-
ematics problems. It contains 7,500 training CoT
data and 5,000 test cases.

CSQA (Talmor et al., 2019) is a question an-
swering dataset for commonsense reasoning. It has
9,741 examples in the training set and 1,221 ex-
amples in the dev set. As it does not contain any
CoT annotation, we first annotate 4 CoT examples
(detailed in Appendix C.2), then take its training
set to augment CoT data and generate correction
data.

3.2 Data Construction
CoT Data. For GSM8K, the CoT data contains
all training examples of GSM8K and 24,948 aug-
mented reasoning paths. We first generate 30,000
reasoning paths with GPT-4 and filter out 5,052
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Table 2: Our main experimental results (%) on three reasoning tasks. Appendix D.3 contains the results on another
two out-of-distribution tasks, and Appendix D.1 and D.2 illustrate the performance variances during training.

Model Training Method
GSM8K MATH CSQA Average

Acc ∆ Acc ∆ Acc ∆ Acc ∆

LLaMA-2-70B
(Touvron et al., 2023b)

QLoRA
Straightforward Learning 81.4 - 23.6 - 84.2 - 63.1 -
+ Learning From Mistakes 83.5 +2.1 25.0 +1.4 85.3 +1.1 64.6 +1.5

LLaMA-65B
(Touvron et al., 2023a)

QLoRA
Straightforward Learning 76.2 - 19.7 - 83.1 - 59.7 -
+ Learning From Mistakes 77.9 +1.7 20.8 +1.1 84.0 +0.9 60.9 +1.2

CodeLLaMA-34B
(Rozière et al., 2023)

QLoRA
Straightforward Learning 68.8 - 19.1 - 78.1 - 55.3 -
+ Learning From Mistakes 71.7 +2.9 20.4 +1.3 80.8 +2.7 57.6 +2.3

LLaMA-2-13B
(Touvron et al., 2023b)

Full Fine-Tuning
Straightforward Learning 63.6 - 14.0 - 80.1 - 52.6 -
+ Learning From Mistakes 67.0 +3.4 16.5 +2.5 82.1 +2.0 55.2 +2.6

QLoRA
Straightforward Learning 62.9 - 12.2 - 80.4 - 51.8 -
+ Learning From Mistakes 65.7 +2.8 12.6 +0.4 81.9 +1.5 53.4 +1.6

LLaMA-2-7B
(Touvron et al., 2023b)

Full Fine-Tuning
Straightforward Learning 55.0 - 10.1 - 76.9 - 47.3 -
+ Learning From Mistakes 57.1 +2.1 11.6 +1.5 79.0 +2.1 49.2 +1.9

QLoRA
Straightforward Learning 52.6 - 8.7 - 76.9 - 46.1 -
+ Learning From Mistakes 54.1 +1.5 9.4 +0.7 78.8 +1.9 47.4 +1.3

Table 3: Performances of LEMA with specialized LLMs
on GSM8K (with QLoRA for training).

Model Acc (%)

WizardMath-70B (Luo et al., 2023) 81.6
WizardMath-70B + LEMA 84.2 (+2.6)
MetaMath-70B (Yu et al., 2023) 82.3
MetaMath-70B + LEMA 85.4 (+3.1)

paths with wrong final answers or unexpected for-
mat2. For MATH, the CoT data contains all training
examples and 12,509 augmented reasoning paths.
We sample 30,000 reasoning paths with GPT-4 and
filter out 17,491 paths. For CSQA, we generate
15,000 reasoning paths with GPT-4 and then filter
out 4,464 paths.

Mistake-Correction Data. We utilize multiple
LLMs to collect inaccurate reasoning paths, in-
cluding LLaMA-2 (Touvron et al., 2023b), Wiz-
ardLM (Xu et al., 2023), WizardMath (Luo et al.,
2023), Text-Davinci-003 (OpenAI, 2023c), GPT-
3.5-Turbo (OpenAI, 2023a) and GPT-4 (OpenAI,
2023b). We take GPT-4 as the corrector model.
Finally, we collect 12,523, 6,306, 7,241 mistake-
correction pairs based on the training sets of
GSM8K, MATH and CSQA, respectively.

2The unexpected format means that the final answer is
failed to be extracted from the path with the regular expression.

Correction-Centric Evolution. We take 10K
bootstrap samples from the questions in our correc-
tion data. We utilize GPT-4 to evolve the questions.
To generate “ground-truth” answers for the evolved
questions, we utilize GPT-4 to sample three an-
swers for each question and conduct a majority
voting. The question that leads to three different
answers will be filtered. Note that the evolved data
will only be used in Section 4.3.

3.3 Fine-Tuning and Evaluation

We fine-tune multiple open-source LLMs in the
LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), CodeLLaMA (Rozière et al.,
2023), WizardMath (Luo et al., 2023) and Meta-
Math (Yu et al., 2023) families. We consider SFT
rather than DPO for fine-tuning, as DPO only uses
the correct and mistake CoTs during training while
the explanations and reasons of mistakes are not
used.

The fine-tuning approaches cover both QLoRA
and full fine-tuning. Considering the high train-
ing cost, the full fine-tuning is mainly applied on
relative small models (such as 7B and 13B models).

QLoRA fine-tuning. We use QLoRA3 (Hu et al.,
2022; Dettmers et al., 2023) to conduct parameter-
efficient fine-tuning (PEFT). We set low-rank di-
mension as 64 and dropout rate as 0.05. We set

3https://github.com/artidoro/qlora.
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Figure 4: Performances of LEMA with (w/) and without (w/o) providing the reasons to the mistakes. Across various
models and tasks, the reasons to the mistakes consistently contribute to the performances.

learning rate as 1e-4 for LLMs larger than (or equal
to) 34B and 2e-4 for LLMs smaller than 34B. We
set batch size as 96, train for 2K steps, and save
checkpoints for every 100 training steps. We evalu-
ate the performance of all saved checkpoints and
report the accuracy of the best checkpoint. To clar-
ify the influence from random disturbances during
training, we provide the performances of the best
three checkpoints in Appendix D.1 and the perfor-
mance curves during the whole training processes
in Appendix D.2.

Full fine-tuning. We set learning rate as 1e-5
for LLMs larger than (or equal to) 34B and 2e-5
for LLMs smaller than 34B, and set batch size as
128. To avoid severe over-fitting problem, we apply
a cosine learning rate scheduler and only take 3-
epoch training. The final checkpoint will be saved
and evaluated.

For evaluation, we take vLLM library4 (Kwon
et al., 2023) for efficient inference. We set tem-
perature as 0 (i.e., greedy decoding) and max sam-
ple length as 2,048. We do not add demonstra-
tion examples into the prompt for both fine-tuning
and evaluation by default. All evaluations are con-
ducted under the same CoT instruction. For models
trained with LEMA, we do not generate corrections
during evaluations. All our experiments can be con-
ducted on 4 x A100 GPU stations.

4 Results and Analysis

We mainly focus on three main research questions
in this section. More results and analysis are con-
tained in Appendix D.

4https://github.com/vllm-project/vllm.

Table 4: Performances with the same size of training
tokens (5.8M) on GSM8K (with QLoRA for training).

Model Data Acc (%)

LLaMA-2-70B
CoT-5.8M 82.1

LEMA-5.8M 83.5 (+1.4)

LLaMA-2-13B
CoT-5.8M 64.2

LEMA-5.8M 65.7 (+1.5)

Table 5: Results with DPO training on GSM8K.

Model Method (with QLoRA) GSM8K

Mistral-7B

Straightforward Learning (SFT) 68.2
+ Learning From Mistakes (SFT) 71.3 (+3.1)
+ Learning From Mistakes (standard DPO) 69.1 (+0.9)
+ Learning From Mistakes (modified DPO) 70.2 (+2.0)

4.1 RQ1: Can LLMs Learn From Mistakes?

The following experimental results show that incor-
porating learning from mistakes can improve CoT
reasoning. These results demonstrate that LLMs
can learn from mistakes to improve their reasoning
performances.

Incorporating learning from mistakes effectively
improves CoT reasoning for various base mod-
els. Table 2 shows the main experimental results
for five base models and three reasoning tasks.
Compared to only applying the straightforward
learning, incorporating learning from mistakes dur-
ing fine-tuning brings improvements across all
models and tasks. Such improvements demonstrate
that these base model can indeed benefit from learn-
ing from mistakes. Despite these in-task perfor-
mances, Appendix D.3 shows the improvements
on unseen tasks.

Specialized LLMs can be further enhanced
through learning from mistakes. To adapt base
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GSM8K (with QLoRA for training). These gains further demonstrate the effectiveness of the additional knowledge
provided by LEMA (i.e., the explanations and reasons to the mistakes).

models into the math domain, there have been sev-
eral specialized LLMs such as WizardMath (Luo
et al., 2023) and MetaMath (Yu et al., 2023). We
also apply the mistake-correction dataset to fine-
tune these specialized LLMs. As these models
have been already enhanced through straightfor-
ward learning, here we directly compare with the
results reported in the original papers for these
specialized models. Table 3 shows that by incorpo-
rating learning from mistakes, the performances of
these specialized LLMs can be further improved.
Appendix D.4 contains more experimental results
on specialized LLMs.

SFT vs. DPO. Our experiments are mainly con-
ducted under the SFT paradigm. We do not take
DPO because it can not utilize the explanations and
reasons of mistakes in our correction data. Here,
we provide some preliminary explorations showing
that DPO does not suit our setting.

Specifically, we conduct the standard DPO train-
ing and also try a variant of DPO with a modifica-
tion on the loss function, defined in Equation 4,

L(πθ;πref ) = (4)

− E(x,yw,yl)∼D[log σ(β log
πθ(yw|x)
πref (yw|x)

− β log
πref (yl|x)
πθ(yl|x)

)]−γ logPθ(yw|x) .

Such a modification is inspired by the recent
work (Pal et al., 2024; Yuan et al., 2024). It seems
that applying DPO on quite similar positive and
negative examples requires an additional penalty
term to avoid the reduction of the model’s likeli-
hood of the preferred examples.

Our preliminary results are shown in Table 5. It
shows that applying DPO to perform learning from

mistakes can outperforms straightforward learning,
but cannot outperform SFT training. We suppose it
is because the DPO training cannot fully utilize the
mistake-correction data, specifically, the explana-
tions and reasons of mistakes are discarded. In the
following section, we will further demonstrate the
importance of this part of additional knowledge.

4.2 RQ2: Why Does Learning From Mistakes
Take Effect?

Compared to straightforward learning which only
learns from CoTs, learning from mistakes provides
both the corrected CoTs and the explanations
and reasons to mistakes, thus providing addi-
tional knowledge for the model. The following
experiments demonstrate that such kind of addi-
tional knowledge contributes to the reasoning per-
formances of LLMs.

Ablating the explanations and reasons of mis-
takes affect the effectiveness of learning from
mistakes. For the two part of information in
mistake-correction dataset, here we discard the ex-
planations and reasons to mistakes and keep the
corrected solutions. As shown in Figure 4, across
different models and tasks, the performances con-
sistently decrease when the explanations and rea-
sons to mistakes are not used during fine-tuning.
Such decrements are in line with the performances
of DPO training which just use correct and mistake
CoTs. These results demonstrate that the additional
knowledge provided by the explanations and rea-
sons to mistakes indeed contribute to the reasoning
performances of LLMs.

Mistake-correction data has non-homogeneous
effectiveness with CoT data. If the effectiveness
of the two data sources are completely homoge-
neous, the gains in Table 2 will be diminished if the
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data sizes for two learning processes are controlled
as the same. To further validate the effectiveness of
mistake-correction data, we conduct two ablation
studies with controlled data sizes. In default set-
tings, we have about 32K examples for CoT-alone
fine-tuning and 45K examples for LEMA. Here are
another two controlled settings:
• LEMA-32K. We keep the 13K correction data

and randomly remove 13K CoT data.

• CoT-45K. To expand CoT data, we extract the
corrected CoT from each correction example.

Figure 5 shows that LEMA can still bring gains
under the same data size. Note that under the
same data size, the two learning processes contain
the same amount of CoTs at the target side, while
learning from mistakes additionally provides the
explanations and reasons to mistakes. These results
further demonstrate that the additional knowledge
from learning from mistakes improves the reason-
ing performances of LLMs.

Training-token efficiency. Despite controlling
the training data sizes to be the same, we also
investigate the training-token efficiency of learn-
ing from mistakes compared with only applying
straightforward learning. Notice that the target-
side length of mistake-correction data is generally
longer than CoT data, so incorporating learning
from mistakes will have slightly more training to-
kens than straightforward learning under the same
data size. Specifically, CoT-45K has 5.4M training
tokens and LEMA-45K has 5.8M (a ∼7% relative
increment). To conduct the comparison under the
same size of training tokens, we construct CoT-
5.8M by sampling more reasoning paths (following
Section 2.3) to add into CoT-45K.

Table 4 shows that LEMA still outperforms CoT-
alone fine-tuning with the same number of train-
ing tokens. Note that this comparison is under
an unfavorable setup for LEMA as it increases
the training samples for CoT-alone fine-tuning.
The improvements in Table 4 further support the
non-homogeneous effectiveness of CoT data and
mistake-correction data. Moreover, we notice that
augmenting more reasoning paths for LLaMA-2-
70B does not continuously boost the model per-
formance on GSM8K. To validate this, we further
expand CoT-5.8M to CoT-6.8M and have a 82.2%
accuracy. Such an observation is in line with the
Yu et al. (2023). We suppose that this is because
sampling too many reasoning paths for the same
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Figure 6: Performance of LEMA on MATH with general
and correction-centric evolution (with full fine-tuning).
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Figure 7: The performance trends of LEMA with
QLoRA and full fine-tuning (logarithmically fitted). X-
axis is the number of sampled questions.

question will only bring redundant information to
the training.

4.3 RQ3: Can Learning From Mistakes
Benefit From Evolution Techniques?

We apply two evolution techniques to expand the
mistake-correction dataset. The following experi-
ments demonstrate that learning from mistakes can
be further improved with evolution techniques.

Evolution techniques, especially the correction-
centric evolution, can further improve the per-
formance of leaning from mistakes. Figure 6
shows the performance of learning from mistakes
with incorporating evolution techniques5. There
are two primary conclusions. First, learning from
mistakes can effectively benefit from evolution
techniques. It indicates that the performance of
LEMA can be further improved by incorporating
existing data augmentation techniques. Second,
the correction-centric evolution outperforms the
general evolution. It demonstrates that moderately
difficult questions are more suitable for expanding
the correction data.

Learning from mistakes has a better scaling
trend under full fine-tuning. To explore the scal-
ing trend of learning from mistakes, we apply the

5Appendix C.3 contains the detailed experimental settings.
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correction-centric evolution on another 10K sam-
pled seed questions (detailed in Appendix C.4).
Figure 7 shows the performance trends of LEMA

as the question set expands. It shows that with
expanding the question set, the performances with
full fine-tuning improve significantly, while the per-
formances with QLoRA increase slightly.

Such an observation is not well aligned with the
conclusions of some existing work. Some work
indicated that if the model size is large enough,
parameter-efficient fine-tuning (PEFT) can achieve
comparable performance with fine-tuning (Lester
et al., 2021; An et al., 2022; Sun et al., 2023; Su
et al., 2023; Artur Niederfahrenhorst and Ahmad,
2023). We suppose the property of correction data
causes the inconsistency in observations. Specifi-
cally, correction data is just auxiliary data that do
not directly contribute to the in-task training. We
suppose that models with PEFT can “be fed” a large
amount of correction data but cannot fully “digest”
them. As a results, the training on correction data
with PEFT might not effectively contribute to the
forward reasoning process.

5 Related Work

LLMs with CoT reasoning. Wei et al. (2022)
uncovered the emergence of CoT reasoning capa-
bility for extremely large language models, and
this reasoning capability was then examined in var-
ious reasoning-related domains including logical
reasoning (Creswell et al., 2022; Pan et al., 2023;
Lei et al., 2023), commonsense reasoning (Talmor
et al., 2019; Geva et al., 2021; Ahn et al., 2022),
and math reasoning (Miao et al., 2020; Koncel-
Kedziorski et al., 2016; Patel et al., 2021; Cobbe
et al., 2021; Hendrycks et al., 2021). The impres-
sive performance of LLMs in these domains has
spurred the research community to further investi-
gate methods for effectively harnessing and enhanc-
ing CoT reasoning for LLMs (Wang et al., 2022;
Zhou et al., 2022; Creswell and Shanahan, 2022;
Li et al., 2023b; Lightman et al., 2023).

Enhancing CoT reasoning for solving mathe-
matical problems. There has been much work
dedicated to enhancing the performance of LLMs
in solving mathematical problems from various
perspectives. Some studies explored the voting or
verification methods based on sampling multiple
reasoning paths (Wang et al., 2022; Li et al., 2023b;
Lightman et al., 2023). Some methods considered
to generate executable programs to obtain the final

answer or to integrate plug-in tools that facilitate
the execution of external APIs during intermedi-
ate steps (Jie and Lu, 2023; Wang et al., 2023a;
Yue et al., 2023; Azerbayev et al., 2023; Gou et al.,
2023). Some work collected math-related corpus
such as arXiv papers for pre-training better base
models for math (Azerbayev et al., 2023; Wang
et al., 2023d). Some work focused on augment-
ing existing datasets, which expanded training sets
or provided external annotations (Magister et al.,
2022; Huang et al., 2022; Ho et al., 2022; Li et al.,
2022; Luo et al., 2023; Yu et al., 2023; Li et al.,
2023a; Liang et al., 2023; Liu et al., 2023a,b; Wang
et al., 2023e). From the perspective of the tech-
niques used, this work follows the data augmenta-
tion approach.

Using mistake data to improve LLMs. Some
recent work has explored how to leverage the mis-
take data to improve the performances of LLMs,
instead of merely relying on the correct data (Chen
et al., 2023; Tyen et al., 2023; Tong et al., 2024; An
et al., 2024; Huang et al., 2024; Shinn et al., 2024;
Wang and Li, 2023; Cobbe et al., 2021; Lightman
et al., 2023; Rafailov et al., 2023; Meng et al., 2024;
Pal et al., 2024; Yuan et al., 2024). There are pri-
marily three existing ways of using mistake data:
1) prompt and agent engineering such as Reflex-
ion (Shinn et al., 2024) and SALAM (Wang and
Li, 2023), which exploits the incorrect attempts
in historical data to improve the performance of
a frozen LLM; 2) training verifiers (Cobbe et al.,
2021; Lightman et al., 2023), which fine-tunes a
small model to re-rank the candidate answers from
the LLMs; 3) preference optimization (Rafailov
et al., 2023; Meng et al., 2024; Pal et al., 2024;
Yuan et al., 2024), which modifies the training ob-
jective with incorporating the model preferences
on mistake data. To the best of our knowledge, we
are the first to explore whether the mistake reason-
ing data can be directly utilized through a standard
fine-tuning approach.

6 Conclusion

This work provides an empirical study on exploring
whether LLMs can learn from mistakes to improve
their CoT reasoning performances. Our experi-
ments on mistake-correction data reveal that LLMs
can indeed learn from mistakes, especially benefit
from the explanations and reasons to mistakes.
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Limitations

Relying on GPT-4 for data construction. Our
data generation process heavily relies on calling
GPT-4 API. Moreover, this reliance can not be
replaced with some cheaper APIs such as GPT-3.5-
Turbo (analyzed in Appendix D.6). We consider
the self-correction/self-reflection methods as future
directions for learning from mistakes.

Limitation on data scale. The data scale we ex-
plored is <100K. This is mainly due to the low suc-
cess rate for correcting mistakes from challenging
questions (analyzed in Appendix D.6) and also the
high cost for GPT-4 API calling. Our experiments
with evolution techniques in Section 4.3 implies
the potential of LEMA on a larger data scale.

Potential performance degradation due to the
parameter-efficient tuning. Our experiments in
Table 2 and Figure 7 indicate that the QLoRA fine-
tuning might limit the effectiveness of learning
from mistakes. Much existing work also revealed
that parameter-efficient tuning might affect the final
performance, especially for smaller models (Lester
et al., 2021; An et al., 2022; Sun et al., 2023; Su
et al., 2023; Artur Niederfahrenhorst and Ahmad,
2023). This might limit the performances shown in
Table 2 and Table 3.

Ethics Statement

Due to the using of pre-trained language models,
this work could be exposed to some potential risks
of ethical issues on general deep learning models
(such as social bias and privacy breaches). We hope
that the idea of learning from mistakes would fa-
cilitate the development of responsible AI models,
for instance, on training LLMs to recognize and
modify risky generated contents.
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This is the Appendix of the paper: Can LLMs
Learn From Mistakes? An Empirical Study on Rea-
soning Tasks.

A Discussion

Here, we discuss further about the insights from
our exploration on learning from mistakes.

A.1 LLMs for Self-Correction
Recently, much work has investigated the behavior
of advanced LLMs (e.g., GPT-4) on correcting mis-
takes generated by themselves (Valmeekam et al.,
2023; Stechly et al., 2023; Huang et al., 2023). We
also conduct further analysis on self-correction per-
formance based on our correction data (detailed in
Appendix D.6). These work and our analysis drew
the same conclusion: the most powerful LLMs by
now still struggle to perform self-correction. To
achieve more reliable utilization of self-correction,
we think that there are mainly three directions. (1)
Inject external supervision to verify the correcting
process, such as using the labeled final answers
(which is applied in our work) or incorporating
human feedback. (2) Train a process-based veri-
fier to judge the quality of self-correction process.
Lightman et al. (2023) has demonstrated the great
potential of verifier-based method. (3) Develop
trust-worth LLMs that can at least honestly tell us
what it can solve and what does not.

A.2 Training with Feedback
To align the behavior of LLMs with human ex-
pectations, existing work has tried to collect feed-
back for the model-generated contents and inject
these feedback back into the model through var-
ious techniques, such as PPO (Lu et al., 2022),
RLHF (OpenAI, 2023b) and DPO (Rafailov et al.,
2023). To reduce human efforts on annotation,
some recent work tried to use LLMs to generate
feedback, such as RLAIF (Lee et al., 2023). From
this view, LEMA can also be regarded as inject-
ing the feedback from more powerful LLMs (i.e.,
GPT-4) into smaller models (e.g., LLaMA). We
highlight one difference here: the injection pro-
cess of LEMA is just implemented with instruction-
based fine-tuning rather than RL-based methods.
It sheds light that for large pre-trained models, it
can directly and effectively learn from the com-
parison between unexpected and expected contents
through the input-output fine-tuning process. This
can much save the researchers effort to specially
design the learning algorithms.

A.3 Learning From the World Model

Recent advancements in LLMs have enabled them
to perform a step-by-step approach in problem-
solving. However, this multi-step generation pro-
cess does not inherently imply that LLMs possess
strong reasoning capabilities, as they may merely
emulate the superficial behavior of human reason-
ing without genuinely comprehending the underly-
ing logic and rules necessary for precise reasoning.
This incomprehension results in mistakes during
the reasoning process and necessitates the assis-
tance of a “world model” that possesses a con-
sciousness prior about the logic and rules governing
the real world. From this perspective, our LEMA

framework employs GPT-4 as a “world model” to
teach smaller models in adhering to these logic and
rules, rather than merely mimicking the step-by-
step behavior.

B Additional Examples

B.1 Examples in Human Evaluation

Figure 14 illustrates the quality levels of three ex-
ample corrections.

B.2 Input-Output Formats for Fine-Tuning

Figure 8 illustrate the input-output formats of CoT
data and correction data, respectively. Note that
during the fine-tuning process, the input part serves
as a prompt and only the loss in the output part
participates in the back-propagation.

B.3 Evolution Prompt

Figure 9 illustrates our prompt used for evolving
new questions from the given seed question.

C More Details For Experimental Setup

C.1 Evaluation on ASDiv

As mentioned in our setup, the original version
of ASDiv contains 2,305 questions and part of
them lead to non-numerical answers. For instance,
for the question “Mrs. Hilt has two pennies, two
dimes, and two nickels. Jacob has four pennies,
one nickel, and one dime. Who has more money?”,
the answer is the string value “Mrs. Hilt”; for the
question “Tessa has 4 apples. Anita gave her 5
more. She needs 10 apples to make a pie. Does
she have enough to make a pie?”, the answer is a
Boolean value “False”. As our models are trained
on data derived from GSM8K where questions are
all leading to numerical answers, it is reasonable
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Input:

Please solve the following math problem.

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and 

May?

Answer: Let's think step by step.

Output:

Natalia sold 48 / 2 = 24 clips in May. Natalia sold 48 + 24 = 72 clips altogether in April and May. The answer is 72.

Input-Output Format of CoT Data

Input:

For the following math problem, the original solution is incorrect. Please identify the incorrect step, explain why it is incorrect, and correct the original solution 

starting from the incorrect step.

Question: Courtney liked to collect marbles. She kept them in mason jars. One jar had 80 marbles. Her second jar had twice that amount. She just started her 

third jar which currently has 1/4 the amount of her first jar. How many marbles does she have in total?

Original Solution:

{

Step 1: 80 marbles in the first jar, 2 x 80 = 160 marbles in the second jar.

Step 2: The third jar has 1/4 of the first jar, which is 80 / 4 = 20 marbles.

Step 3: So, Courtney has 160 + 20 = 180 marbles in total.

Step 4: The answer is 180.

}

Incorrect Step:

Output:

Step 3.

Explanation: The calculation in Step 3 is incorrect because it only adds the marbles from the second and third jars. The marbles from the first jar should also be 

included in the total.

Correct Solution:

{

…

Step 3: So, Courtney has 80 (first jar) + 160 (second jar) + 20 (third jar) = 260 marbles in total.

Step 4: The answer is 260.

}

Note: The ellipsis here are tokens that were actually used in the fine-tuning process, as we suppose that simply copying pre-steps is not much informative for 

learning.

Input-Output Format of Correction Data

Figure 8: The input-output formats for our CoT data and correction data, respectively. The input part serves as a
prompt and only the loss in the output part participates in the back-propagation.

that these models can not generate non-numerical
answers. Therefore, for evaluation on ASDiv, we
filter out questions with non-numerical answers and
finally leave 2,084 questions. Specifically, for the
question-answer pair in ASDiv, it will be filtered
out if the answer can not be successfully recognized
by the Python function float(·).

C.2 Data Construction For CSQA

The original training examples in CSQA only con-
tain the labeled final answers without rationales.
Therefore, we need to generate CoT for the train-
ing examples. We first annotate rationales for four
training examples. Figure 10 shows one annotated
example. Specifically, the CoT contain three parts:
the explanation to each candidate answers, the pre-
dicted final answer, and the reason to choose this
answer. Then, we utilize GPT-4 to generate ra-
tionales for other training examples and filter out

rationales that do not contain the correct final an-
swers. For generating correction data, we do not
require GPT-4 to explicitly identify the position of
mistake. It is because the CoT for commonsense
questions does not exhibit a clear step-wise manner,
and our ablation study on math tasks have showed
that this information is less influential to the final
performance.

C.3 Experimental Settings for Evolution

In Figure 6, besides the correction-centric evolu-
tion introduced in Section 2.2, we also compare
with the general evolution strategy applied in pre-
vious work (Xu et al., 2023; Yu et al., 2023; Li
et al., 2023a). For a fair comparison, the num-
ber of seed questions is kept the same for both
evolution strategies (i.e., 10K). We also tried the
Llemma (Azerbayev et al., 2023) model which has
been pre-trained on a math-related corpus (such

849



I want you to act as a math teacher. You need to create relevant math questions for the given question. The created math question must be reasonable, without 

unknown variables, and must be understood to answer in pure number by humans. Ensure that the created questions are **diverse** from the original one. 

Ensure that the created questions use **different natural language expressions**.

#Given Question#: 𝒒𝒊

#Created Question#:

Prompt For Question Evolution

Figure 9: The prompt for evolving questions.

Please answer the following commonsense question. Please first explain each candidate answer, then select only one answer that is most relevant to the 

question and provide reasons.

Question: The fox walked from the city into the forest, what was it looking for?

Candidate Answers: pretty flowers, hen house, natural habitat, storybook, dense forest.

Explanations: 

Pretty flowers - This answer suggests that the fox might be looking for beautiful flowers. However, it is not common for a fox to seek out flowers, as they are 

carnivorous animals and do not have a particular interest in plants.

Hen house - This answer implies that the fox might be searching for a hen house to find food, such as chickens. Foxes are known to prey on small animals, and 

a hen house would be a potential source of food for them.

Natural habitat - This answer suggests that the fox is looking for its natural habitat, which is typically a forest or wooded area. Foxes are wild animals and are 

more comfortable in their natural environment than in a city.

Storybook - This answer implies that the fox is searching for a storybook, which is an inanimate object and not something a fox would be interested in or 

capable of finding.

Dense forest - This answer is similar to the natural habitat option, suggesting that the fox is looking for a dense forest, which could be a part of its natural 

habitat.

Reasons and Final Answer:

The most relevant answer to the question is that the fox was looking for its natural habitat. This is because foxes are wild animals and are more comfortable in 

their natural environment, such as a forest, than in a city. The other candidate answers either do not align with the natural behavior of a fox (pretty flowers, 

storybook) or are too specific (hen house, dense forest) without enough context to support them as the most likely answer.

The answer is natural habitat.

Annotated CoT Example For CSQA

Figure 10: One annotated CoT example for CSQA.

as arXiv papers). We fully fine-tune LLMs as the
correction data scale has been much increased.

C.4 Another Round of Correction-Centric
Evolution

To explore the scaling trend of LEMA, we take
another round of correction-centric evolution to
expand correction data. The second round takes
the same 10K seed questions as the first round. The
only difference is that we replace the vanilla model
as the fine-tuned models from the first round to
collect inaccurate reasoning paths.

D More Results and Analysis

D.1 Performances of Best Three Checkpoints

Table 6 shows the performances of the best three
checkpoints saved during the fine-tuning process
along with the average of three results. It demon-
strates that our main results are not caused by soem
random disturbances during training.

D.2 Training Curves

Figure 11 shows the performance curves of
LLaMA-2-70B during 2,000 fine-tuning steps. It
shows that adding correction data leads to clear

improvements during training. These consistent
improvements demonstrate that the effectiveness
of our correction data is robust to the random dis-
turbances during training.

D.3 Performances on OOD Tasks

Despite the three tasks in our main text, here
we take experiments on another two math tasks
SVAMP (Patel et al., 2021) and ASDiv (Miao et al.,
2020). We use the model fine-tuned for GSM8K
and take these two tasks for out-of-distribution
(OOD) evaluations.
SVAMP (Patel et al., 2021) consists of questions
with short NL narratives as state descriptions. For
evaluation on SVAMP, we use the same training
data as for GSM8K and take all 1,000 examples in
SVAMP as test cases.
ASDiv (Miao et al., 2020) is a diverse math dataset
in terms of both language patterns and problem
types for evaluating. For evaluation on ASDiv, we
use the same training data as for GSM8K and test
on 2,084 examples in ASDiv6.

Table 7 shows the results on these two OOD

6The original ASDiv contains 2,305 examples and we filter
out non-numerical examples, detailed in Appendix C.1.
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Table 6: Performances of the best three checkpoints during the fine-tuning process and the average of three results.

Model Method (with QLoRA)
GSM8K MATH

1st / 2nd / 3rd Avg. 1st / 2nd / 3rd Avg.

LLaMA-2-70B (Touvron et al., 2023b)
Straightforward Learning 81.4 / 81.3 / 81.1 81.3 23.6 / 23.2 / 23.2 23.2
+ Learning From Mistakes 83.5 / 83.4 / 83.2 83.4 (+2.1) 25.0 / 25.0 / 24.6 24.9 (+1.7)

LLaMA-65B (Touvron et al., 2023a)
Straightforward Learning 76.2 / 76.2 / 75.7 76.0 19.7 / 19.7 / 19.2 19.5
+ Learning From Mistakes 77.9 / 77.3 / 77.2 77.5 (+1.5) 20.8 / 20.3 / 20.2 20.4 (+0.9)

CodeLLaMA-34B (Rozière et al., 2023)
Straightforward Learning 68.8 / 68.5 / 68.2 68.5 19.1 / 19.0 / 18.9 19.0
+ Learning From Mistakes 71.7 / 71.0 / 70.9 71.2 (+2.7) 20.4 / 20.2 / 20.0 20.2 (+1.2)

LLaMA-2-13B (Touvron et al., 2023b)
Straightforward Learning 62.9 / 62.7 / 62.7 62.8 12.2 / 11.9 / 11.8 12.0
+ Learning From Mistakes 65.7 / 65.2 / 65.0 65.3 (+2.5) 12.6 / 12.6 / 12.4 12.5 (+0.5)

LLaMA-2-7B (Touvron et al., 2023b)
Straightforward Learning 52.6 / 52.5 / 52.5 52.5 8.7 / 8.5 / 8.5 8.6
+ Learning From Mistakes 54.1 / 53.7 / 53.6 53.8 (+1.3) 9.4 / 8.9 / 8.8 9.0 (+0.4)

Figure 11: The performance curves of LLaMA-2-70B during 2,000 fine-tuning steps.

tasks. These improvements indicate that LEMA

has a certain extent of generalizability in the out-
of-distribution scenarios.

D.4 Performances with Specialized Models
Table 8 contains more results with specialized mod-
els. Another interesting finding in Table 8 is that
the performance of LLaMA-2-70B + LEMA can
be comparable with MuggleMath-70B (Li et al.,
2023a) and MetaMath-70B (Yu et al., 2023). Note
that these two specialized LLMs also take the
LLaMA-2-70B as the backbone model while their
training data sizes are much larger than LEMA:
MuggleMath has ∼220K CoT data and MetaMath
has ∼400K CoT data, while LEMA only has ∼70K
CoT + correction data for math problems. This
comparison further supports the non-homogeneous
effectiveness between CoT data and correction
data.

D.5 Additional Analysis to LEMA

LEMA can still bring improvements to Straight-
forward Learning if the distributions of ques-
tions are controlled the same. In our default
setting, correction data contains more challenging

questions that can not be easily solved by various
LLMs. This leads to a distribution shift on the
difficulty of questions in training data. As Wang
et al. (2023b) indicated that this distribution shift
can also benefit fine-tuning LLMs, we also miti-
gate the influence from question distribution shift
to further clarify the effectiveness of LEMA. Our
ablation setting CoT-45K can be used to clarify this
point: its additional CoT data are just converted
from correction data, thus the question distribu-
tions of CoT-45K and our default LEMA-45K are
exactly the same. Therefore, the results in Figure 5
under 45K data size demonstrate that LEMA still
outperforms CoT-alone fine-tuning when the influ-
ence from question distribution shift is kept the
same.

The comparison learned in the correction data
also influences the CoT generation. During
training on the correction data, LLMs could be
aware of the comparison between the correct and
incorrect CoT. We suppose such kind of compari-
son can take effect during CoT generation. Based
on this intuition, we evaluate the differences be-
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Table 7: Results on two out-of-distribution tasks.

Model Method (with QLoRA) SVAMP ASDiv

LLaMA-2-70B (Touvron et al., 2023b)
Straightforward Learning 80.3 80.7
+ Learning From Mistakes 81.6 (+1.3) 82.2 (+1.5)

LLaMA-65B (Touvron et al., 2023a)
Straightforward Learning 71.9 77.4
+ Learning From Mistakes 72.8 (+0.9) 77.7 (+0.3)

CodeLLaMA-34B (Rozière et al., 2023)
Straightforward Learning 67.4 73.9
+ Learning From Mistakes 72.0 (+4.6) 74.4 (+0.5)

LLaMA-2-13B (Touvron et al., 2023b)
Straightforward Learning 58.0 67.8
+ Learning From Mistakes 62.0 (+4.0) 71.1 (+3.3)

LLaMA-2-7B (Touvron et al., 2023b)
Straightforward Learning 53.0 63.8
+ Learning From Mistakes 54.1 (+1.1) 65.5 (+1.7)
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Figure 12: Statistics of generated correction data according to different difficulty levels in MATH. Left: The number
of collected inaccurate reasoning paths and generated corrections with correct final answers under different difficulty
levels. Right: The success rate for correcting inaccurate reasoning paths under different difficulty levels.
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Figure 13: The differences between the PPLs (∆PPL)
on mistaken CoT and correct CoT. A higher difference
indicate that the model can better avoid the mistakes.

tween PPLs defined as follows,

∆PPL(C; θ) = (5)
1

||C||
∑

(qi,r̃i,ci)∈C
[PPL(r̃i|qi; θ)− PPL(ri|qi; θ)],

where C is a set of correction data, θ represents the
model parameters after fine-tuning, PPL(y|x; θ)
returns the perplexity on y with x as the context,
r̃i is one mistaken CoT for the question qi, and ri
is the correct CoT extracted from the correction ci.
We calculate ∆PPL for fine-tuned LLaMA-2-70B
and LLaMA-65B, based on the correction data for
GSM8K and MATH. Figure 13 shows ∆PPL for
different fine-tuned models. It shows that LEMA

consistently leads to a higher ∆PPL than CoT-

alone fine-tuning.

D.6 Further Analysis on Corrector
In our default setting, we take GPT-4 as the correc-
tor model and our human evaluation in Section 2.1
supports this choice. In the following, we pro-
vide further analysis on the choice and behavior
of the corrector model. Specifically, we want to
answer the following research questions: RQ1:
Can we use a less powerful model as the correc-
tor model? RQ2: How well does GPT-4 perform
in self-correction? RQ3: How well does GPT-4
correct inaccurate reasoning paths for challenging
questions?

Less powerful models are not suitable for gener-
ating corrections. Despite GPT-4, we have also
tried leveraging GPT-3.5-Turbo as the corrector
model and assess the quality of generated correc-
tions. We take another round of human evaluation
on 20 corrections generated by GPT-3.5-Turbo and
find that nearly half are of poor quality. There-
fore, we just call GPT-4 for correction generation
although it is much more expensive than GPT-3.5-
Turbo. We believe it is a valuable research direction
to explore how to generate high-quality corrections
without GPT-4.
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Table 8: Math reasoning performances of various LLMs.

Model GSM8K MATH

closed-source models
GPT-4 (OpenAI, 2023b) 92.0 42.5
Claude-2 (Anthropic, 2023) 88.0 -
Flan-PaLM-2 (Anil et al., 2023) 84.7 33.2
GPT-3.5-Turbo (OpenAI, 2023a) 80.8 34.1
PaLM-2 (Anil et al., 2023) 80.7 34.3

open-source models
LLaMA-2-7B (Touvron et al., 2023b) 14.6 2.5
Baichuan-2-7B (Yang et al., 2023) 24.5 5.6
SQ-VAE-7B (Wang et al., 2023c) 40.0 7.0
RFT-7B (Yuan et al., 2023) 50.3 -
Qwen-7B (Alibaba, 2023) 51.6 -
LLaMA-2-7B + LEMA (ours) 54.1 9.4
WizardMath-7B (Luo et al., 2023) 54.9 10.7
WizardMath-7B + LEMA (ours) 55.9 11.9
LLaMA-2-13B (Touvron et al., 2023b) 28.7 3.9
SQ-VAE-13B (Wang et al., 2023c) 50.6 8.5
Baichuan-2-13B (Yang et al., 2023) 52.8 10.1
RFT-13B (Yuan et al., 2023) 54.8 -
WizardMath-13B (Luo et al., 2023) 63.9 14.0
LLaMA-2-13B + LEMA (ours) 65.7 12.6
MetaMath-13B (Yu et al., 2023) 72.3 22.4
MetaMath-13B + LEMA (ours) 73.2 22.7
LLaMA-2-70B (Touvron et al., 2023b) 56.8 13.5
RFT-70B (Yuan et al., 2023) 64.8 -
WizardMath-70B (Luo et al., 2023) 81.6 22.7
MuggleMath-70B (Li et al., 2023a) 82.3 -
MetaMath-70B (Yu et al., 2023) 82.3 26.6
LLaMA-2-70B + LEMA (ours) 83.5 25.0
WizardMath-70B + LEMA (ours) 84.2 27.1
MetaMath-70B + LEMA (ours) 85.4 26.9

GPT-4 can correct its own mistakes but with
a low success rate. Specifically, for 2,696 in-
accurate reasoning paths generated by GPT-4 on
MATH training set, we finally get 217 correc-
tions with correct final answers. It means that
GPT-4 only achieves 8.0% success rate for self-
correction. Compared with this low success rate
for self-correction, GPT-4 can more effectively cor-
rect mistakes from less powerful models, such as
LLaMA-2-70B (37.5% success rate on MATH) and
GPT-3.5-Turbo (26.9% success rate on MATH).
One possible reason for the low success rate of self-
correction is that the mistakes generated by GPT-4
are from more challenging questions, thus these
mistakes are naturally harder for correcting.

GPT-4 still struggles to correct inaccurate rea-
soning paths for challenging questions. The
math problems in MATH can be categorized into
five levels of difficulty: Level 1 for the easiest prob-
lems and Level 5 for the most challenging ones.
Figure 12 shows statistics of our correction data

on MATH according to different difficulty levels.
As the difficulty increased from Level 1 to Level 5,
the number of collected inaccurate reasoning paths
increased, while the number of correct corrections
(i.e., corrections for which the final answer is cor-
rect) first increases and then decreases. We also
calculate the success rate for correcting mistakes
under each difficulty level, dividing the number
of correct corrections by the total number of col-
lected reasoning paths. Figure 12 shows that the
success rate significantly drops with increasing the
difficulty. These statistics reveals that there is still
huge room for improving contemporary LLMs on
correcting mistakes.
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Question: Courtney liked to collect marbles. She kept them in mason jars. One jar had 80 marbles. Her second jar had twice that amount. She just started her 

third jar which currently has 1/4 the amount of her first jar. How many marbles does she have in total?

Original Solution:

Step 1: 80 marbles in the first jar, 2 x 80 = 160 marbles in the second jar.

Step 2: The third jar has 1/4 of the first jar, which is 80 / 4 = 20 marbles.

Step 3: So, Courtney has 160 + 20 = 180 marbles in total.

Step 4: The answer is 180.

Incorrect Step: Step 3.

Explanation: The calculation in Step 3 is incorrect because it only adds the marbles from the second and third jars. The marbles from the first jar should also 

be included in the total.

Correct Solution:

…

Step 3: So, Courtney has 80 (first jar) + 160 (second jar) + 20 (third jar) = 260 marbles in total.

Step 4: The answer is 260.

Generated Correction (Excellent)

Question: Johnny is a dog walker. He can walk 3 dogs at once. He gets paid $15 for a 30-minute walk and $20 for a 60-minute walk. Johnny works for 4 hours 

per day. If he always walks the maximum number of dogs possible and 6 dogs have 60-minute walks per day, how much money does he make in a week where 

he works 5 days?

Original Solution:

Step 1: 4 hours per day * 5 days = 20 hours per week.

Step 2: Johnny can walk 3 dogs at once, so he can walk 20 / 3 = 6 three-dog walks per day.

…

Step 6: The answer is $360.

Incorrect Step: Step 2.

Explanation: The incorrect step is Step 2. The calculation used in this step is not correct for finding the number of three-dog walks per day. Instead, we should 

calculate the number of 30-minute and 60-minute walks Johnny does.

Correct Solution:

…

Step 2: Johnny works for 4 hours per day, which is 240 minutes. He walks 6 dogs for 60 minutes each, which takes 120 minutes. This leaves 120 minutes for 

30-minute walks.

…

Step 6: The answer is 1500.

Note: The explanation is reasonable and the final answer is correct. But the new solution has issues on continuity: the new Step 2 does not exactly follow the 

original Step 1.

Generated Correction (Good)

Question: Tom, Tim, and Paul are collecting photos of cars. Paul has 10 photos more than Tim. Tim has one hundred photos less than the total amount of 

photos which is 152. How many photos does Tom have?

Original Solution:

Step 1: 152 - 100 = 52.

Step 2: Tom has 52 photos.

Step 3: The answer is 52.

Incorrect Step: Step 1.

Explanation: The step is incorrect because it subtracts 100 from the total number of photos (152) to find the number of photos Tim has. However, the problem 

states that Tim has 100 photos less than the total amount of photos, not the total amount of photos minus 100.

Correct Solution:

…

Step 5: The answer is 38.

Note: Step 1 is correct and the mistake step is Step 2, because Tim, not Tom, has 52 photos.

Generated Correction (Poor)

Figure 14: Some examples of generated corrections and their quality levels under our human evaluation.
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