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Abstract

Direct Preference Optimization (DPO) using an
implicit reward model has proven to be an effec-
tive alternative to reinforcement learning from
human feedback (RLHF) for fine-tuning pref-
erence aligned large language models (LLMs).
However, the overall preference annotations
of responses do not fully capture the fine-
grained quality of model outputs in complex
multi-step reasoning tasks, such as mathemat-
ical reasoning. To address this limitation, we
introduce a novel algorithm called Step-level
Value Preference Optimization (SVPO). Our
approach employs Monte Carlo Tree Search
(MCTS) to automatically annotate step-level
preferences for multi-step reasoning. Further-
more, from the perspective of learning-to-rank,
we train an explicit value model to replicate
the behavior of the implicit reward model, com-
plementing standard preference optimization.
This value model enables the LLM to gener-
ate higher reward responses with minimal cost
during inference. Experimental results demon-
strate that our method achieves state-of-the-art
performance on both in-domain and out-of-
domain mathematical reasoning benchmarks.
Our code is available at https://github.
com/MARIO-Math-Reasoning/Super_MARIO.

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable capability across a wide
range of natural language processing (NLP)
tasks (OpenAI, 2023; Du et al., 2022; Team et al.,
2023; Chen et al., 2023; Anil et al., 2023; Bai et al.,
2023; AI@Meta, 2024). However, they continue to
encounter significant challenges when engaging in
complex and symbolic multi-step reasoning, partic-
ularly in mathematical reasoning (Chen et al., 2022;
Azerbayev et al., 2023; Yu et al., 2023b; Shao et al.,
2024; Chen et al., 2024b; Kang et al., 2024; Chen
et al., 2024a).

*Corresponding Author.

Training
Paradigm

Training Data Annotation
from GPT-4

Preference
Pos. Neg.

SFT ✓ ✗ ✓ ✗

DPO ✓ ✓ ✓ Solution-level

SVPO (Ours) ✓ ✓ ✗ Step-level

Table 1: Comparison of different training paradigm.

Most existing studies (Wang et al., 2023; Yue
et al., 2023; Gou et al., 2023; Lu et al., 2024; Liao
et al., 2024) have significantly improved the math-
ematical reasoning capabilities through fine-tuning
on high-quality positive supervision data (i.e, cor-
rect solutions) annotated by GPT-4. In this process,
a large number of negative examples generated
by GPT-4 are wasted, and the model blindly imi-
tates successful cases without understanding what
the wrong solutions are. Therefore, preference
learning, such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023), has been proposed to
align with human preferences and enable the model
to distinguish between positive and negative exam-
ples. However, most current efforts (Yuan et al.,
2024; Chen et al., 2024d; Pang et al., 2024) focus
on solution-level preferences, relying on humans or
GPT-4 to generate and score complete solutions for
training. This approach is expensive and often pro-
vides only a coarse preference relationship, which
does not reflect the natural process by which hu-
mans learn to solve mathematical problems. This
discrepancy arises because solution-level prefer-
ences pursue a solution to its final answer, without
informing which step in the negative solution (i.e.,
yl) led to the mistake. Unlike these approaches,
humans tend to identify and analyze their mistakes
step by step when learning to solve mathematical
problems, thereby preventing repeated errors. In
this manner, humans progressively learn to make
informed decisions in similar states.

Furthermore, while DPO reparameterizes the re-
ward function in reinforcement learning from hu-
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man feedback (RLHF) (Ouyang et al., 2022) to
improve simplicity and training stability, it also dis-
cards the state-value function V (s), which is used
to evaluate the expected return from the current
state. Recent work (Liu et al., 2023; Liao et al.,
2024) has demonstrated the effectiveness of the
value model in improving the reasoning capabili-
ties of policy models, but it is limited by the need
for additional annotated data or the complexity of
the reinforcement learning process.

To address the above issues, we propose Step-
level Value Preference Optimization (SVPO), a
novel preference learning framework that focuses
on more fine-grained step-level preferences via
Monte Carlo Tree Search (MCTS) to signifi-
cantly enhance mathematical reasoning capabilities.
Specifically, as illustrated in Figure 1, step-level
preferences are autonomously generated through
the MCTS framework (Silver et al., 2016, 2017).
This approach not only avoids labor-intensive anno-
tation but also provides detailed insights into which
steps may lead to mistakes in yl, as indicated by
the Q-value at each node. Compared to the forced
knowledge infusion through GPT-4 annotated data,
the preferences obtained through self-exploration
are better aligned with the capabilities of the cur-
rent LLM, highlighting the reasoning errors that
the model is more prone to making. Furthermore,
we integrate an explicit value model with DPO,
where the value model is designed not only to as-
sist the policy model (i.e., LLM) in navigating more
effective reasoning paths but also to steer prefer-
ence learning. In our work, the value model is
trained based on both Q-values and step-level pref-
erence relationships derived from MCTS, thereby
bypassing the need for additional annotations and
simplifying the training process.

We conduct extensive experiments on both in-
domain and out-of-domain mathematical reasoning
datasets. Our SVPO significantly outperforms state-
of-the-art methods, achieving comparable or even
superior results to GPT-4 on 7B LLMs. The ex-
periments demonstrate three key points: (1), the
self-exploration process via MCTS naturally pro-
vides step-level preference relationships and high-
lights potential reasoning errors by Q-values; (2),
compared to solution-level preferences, step-level
preferences can significantly enhance the reason-
ing capabilities of the policy model; (3), the value
model effectively guides the policy model’s prefer-
ence learning and reasoning.

2 Background

In standard RLHF framework, it first learns a re-
ward model r(x,y) with Bradley-Terry (Bradley
and Terry, 1952) preference optimization.

L(r) = −Ex,yw,yl

[
log σ

(
r(x,yw)− r(x,yl)

)]
(1)

where the expectation is taken over a preference
dataset that includes tuples of prompts and prefer-
ence responses (x,yw ≻ yl). Following this, the
policy model π is optimized using the learned re-
ward model r and the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017). Typically,
PPO requires maintaining 4 models in the training
pipeline: a reward model r, a policy model π, a
reference policy model π′, and a value model V ,
making it a complex procedure.

Instead of learning an explicit reward model,
DPO only maintains 2 policy models and minimize
the following objective.

LDPO(π) = −Ex,yw,yl

[
log σ

(
β log

π(yw|x)π′(yl|x)
π′(yw|x)π(yl|x)

)]

(2)

where reference policy π′ is typically a supervised
fine-tuning (SFT) model. The implicit reward
model is characterized by the log-likelihood ra-
tio between two policy models. Although DPO
simplifies the training process, it discards the value
model, which has been proven effective in improv-
ing the reasoning capabilities of the policy model.
Additionally, the coarse preferences derived from
existing annotation methods also limit its perfor-
mance in multi-step reasoning tasks.

3 Method

In this section, we present our SVPO in detail to
further explore the potential of preference learn-
ing in multi-step reasoning tasks, particularly in
mathematical reasoning.

3.1 Step-level Preference Annotation
Unlike the traditional annotations that only provide
solution-level preferences, we employ the MCTS
framework to encourage LLMs to autonomously
explore step-level generations as well as infer step-
level preferences, as shown in Figure 1. In this
manner of self-exploration, we obtain more fine-
grained preferences, while the Q-values at each
step (tree node) indicate potential reasoning errors
that traditional annotations cannot achieve.

The policy model for running MCTS is a
SFT model of multi-step reasoning, denoted as
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Figure 1: Comparison of different frameworks: SFT, DPO, and SVPO. The top panel shows the typical pipeline of
SFT and DPO, where GPT-4 does not indicate which step in yl led to the mistake. The bottom panel illustrates the
pipeline of SVPO. Step-level preferences are autonomously generated via MCTS, where Q-values (represented by
node colors) indicate potential reasoning errors.

π(y1:T |x), where x is the prompted question and
yt represents the t-th step. In the parlance of rein-
forcement learning, the state and action are defined
as st = y<t and at = yt, respectively. In addi-
tion, the state transition function is deterministic as
st+1 = ConCat[st,at].

Our primary objective in annotating preferences
is to compare the quality of two potential step-level
generations. Concretely, this can be transformed
into comparing the Q-values of two possible ac-
tions for the same previous state:

Q(st,a
(1)
t ) v.s. Q(st,a

(2)
t ) (3)

Next, we will introduce the detailed MCTS process
to automatically derive the Q-values. Specifically,
we will iterate through the following four opera-
tions until convergence.

Selection Given the current tree T , MCTS first
needs to select a leaf node as a candidate for further
exploration. By initializing the state s as the root,
we use the PUCT criterion (Rosin, 2011) until a
leaf node is encountered.

argmax
a

Q(s,a) + cpuct

∑
j π(aj |·)
|a|

√
Nparent(a)

1 +N(st,a)
(4)

where N(·) represents the visit count, and aj is the
j-th token in the step.

Expansion and Evaluation Given the state rep-
resented by the selected leaf node, we sample multi-
ple possible candidate actions for the next step. To
encourage diversity, a higher temperature, typically
ranging from 0.6 to 1, is used.

For efficient evaluation, we reuse the expanded
nodes and simply apply a one-step rollout. If the
rollout action is not terminal, we directly set the
value of the current leaf node to 0. Otherwise, the
final answer in the terminal action is evaluated for
equivalence to the ground truth. If the final answer
is correct, the reward R will be 1; otherwise, it
will be -1. Therefore, the value can be written as
follows.

V (s) = Iterminal(a) ·R(s,a) (5)

where I(·) is the indicator function.

Backup For the terminal nodes reached during
the rollout and the current leaf node, MCTS per-
forms a backward update of the visit count and
Q-value for every (s′,a′) along the path from cur-
rent node to the root.

N(s′,a′)← N(s′,a′) + 1

Q(s′,a′)← Q(s′,a′) +
1

N(s′,a′)
(V (s)−Q(s′,a′))

(6)

As shown in Figure 1, we obtain a solution tree
T with many branches after running the above
MCTS process for several iterations. From this
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tree, we can extract a partial solution and its two
different next steps along with their corresponding
Q-values. The step with the larger Q-value will be
annotated as the preferred example.

3.2 Step-level Preference Learning
Given our autonomously generated step-level pref-
erence annotations, we propose an approach called
step-level value preference optimization–SVPO. In
contrast to DPO, we maintain 3 models with an
additional value model Vϕ. Unlike in PPO, our
value model is lightweight, achieved by adding an
auxiliary value head directly over the policy model.
This value head consists of a single linear layer
with a tanh activation function, running parallel to
the linear layer used for token prediction.

For notation simplification, we denote the anno-
tated step-level preference instance (st,a

w
t ≻ alt)

as (swt+1 ≻ slt+1), where the two multi-step genera-
tions are only different at their last steps. Accord-
ing to our previous definition, the state st+1 also
represents the first t steps y1:t .

Pre-Training In DPO, the policy model is pre-
trained with a standard SFT loss. In our approach,
due to the weights sharing architecture between π
and Vϕ, our pre-training adopts the multi-task loss.

V̂ (st+1) =

{
R(st,at), at is terminal
Q(st,at), otherwise

L = LSFT + E
[
(Vϕ(st+1)− V̂ (st+1))

2
] (7)

The mean squared error (MSE) loss is employed to
pre-train the value head, which is also the pointwise
approach in ranking algorithm (Liu et al., 2009).
The label for the value prediction is either the Q-
value of the intermediate step or the final reward.

SVPO As indicated by DPO, the difference of im-
plicit rewards for a pair of preference annotations
can be re-parameterized as follows:

∆rπ(s
w
t+1, s

l
t+1) = β log

π(swt+1)π
′(slt+1)

π′(swt+1)π(s
l
t+1)

(8)

In our SVPO, we aim to optimize both policy and
value models through preference learning. Accord-
ingly, we define the explicit value difference.

∆rϕ(s
w
t+1, s

l
t+1) = Vϕ(s

w
t+1)− Vϕ(s

l
t+1) (9)

We then propose the following SVPO loss function,
which includes three different objectives.

LSVPO = − log σ(∆rπ(s
w
t+1, s

l
t+1))

+ max(0, γ −∆rϕ(s
w
t+1, s

l
t+1))

+
(
∆rπ(s

w
t+1, s

l
t+1)− sg

[
∆rϕ(s

w
t+1, s

l
t+1)

])2

(10)

where the margin γ ≥ 0 is tunable hyper-parameter,
and sg[·] denotes the stop gradient operator.

The first objective essentially replicates the orig-
inal DPO loss LDPO in (2), applied to the automati-
cally annotated step-level preference data.

The second objective is a margin loss for value
preference learning, inspired by the pairwise rank-
ing algorithm (Liu et al., 2009). Given a non-
negative margin γ, minimizing this loss encourages
the value of the positive example to be larger than
that of the negative one by at least γ. The detailed
theoretical analysis can refer to (Chen et al., 2009).

The third objective is a regularization term
adapted MSE loss, which aims to ensure a simi-
lar preference scale between the implicit reward
model and our proposed explicit value model. In
this loss, we use ∆rϕ as the targeted label and de-
tach its gradient to prevent model degeneration.

Analysis of Regularization A natural question
regarding the regularization term is whether design-
ing the value output via tanh can match the reward
defined in the log-likelihood ratio. We can first
derive the possible theoretical matching range.

∆rϕ ∈ [−2, 2]

⇒π(yw)π′(yl)

π′(yw)π(yl)
= e∆rπ/β ∈ [e−2/β , e2/β ]

(11)

Therefore, the range is determined by β.
(1) limβ→0[e

−2/β, e2/β] = (0,+∞): when β
is small in DPO or PPO, it can prevent the pol-
icy model from deviating too far. For example of
the commonly used β = 0.1, the allowed match-
ing range becomes [e−20, e20], which is actually
equivalent to (0,+∞) in the context of numerical
precision. In other words, for smaller β, our regu-
larization loss can easily match the scale between
implicit and explicit preferences.

(2) limβ→∞[e−2/β, e2/β] = {1}: when β be-
comes large, the allowed matching range will grad-
ually center around 1, forcing the distance between
π and π′ to be closer. In other words, for larger
β, our regularization loss can also play the role of
preventing the policy model from deviating too far.

3.3 Step-level Inference

Even without the value model, one can still di-
rectly apply greedy decoding to the policy model.
However, incorporating the value model and an as-
sociated reranking criterion allows step-level beam
search (SBS) (Yu et al., 2023a; Chen et al., 2024a)
to effectively select the preferred solution path in
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mathematical reasoning, all while incurring a lower
computational cost compared to MCTS. Since our
value preference learning is optimized at the step
level and utilizes ranking loss, our approach seam-
lessly integrates with the inference framework of
step-level beam search.

4 Experiments

4.1 Experimental Setup

We validate the applicability of our frame-
work across various base models, including
math domain-specific pre-trained models such
as DeepseekMath-Base-7B (Shao et al., 2024),
as well as general pre-trained models such as
Llama3 (AI@Meta, 2024). In this study, we mainly
focus on how to improve mathematical reasoning
skills through step-level preference learning. There-
fore, we obtain the corresponding multi-step SFT
models using 27k MARIO seed data (Liao et al.,
2024) in XML format, as detailed in Appendix A.5.

Step-level Preference Annotation via MCTS
Given a multi-step SFT model for mathemat-
ical reasoning, we only extract the 15k ques-
tions from the GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) datasets. Follow-
ing the methodology described in Section 3.1, we
employ the MCTS framework to automatically gen-
erate both multi-step solutions and step-level pref-
erences. This process requires no supervision from
either humans or GPT-4. Particularly, for each
question, we continue constructing trees until we
obtain four complete and correct multi-step solu-
tions or until the number of trees reaches 10. We
then extract step-level preferences from the trees in
a top-down manner, maintaining an approximate ra-
tio of 1:4 between positive and negative examples.
Consequently, we acquire a total of 56k complete
positive instances yw. Additional details are pro-
vided in Appendix A.2.

Test sets The in-domain test sets from GSM8K
and MATH share the same distribution as our
training data. Meanwhile, we evaluate our
final checkpoint on the out-of-domain (OOD)
datasets GaoKao2023 (Liao et al., 2024) and OCW-
Courses (Lewkowycz et al., 2022). These OOD
test sets are even more challenging than the MATH
dataset but inherently require multi-step reasoning.

Baselines For commercial and popular open-
source models, we compared our approach with

OpenAI’s ChatGPT and GPT-4 (OpenAI, 2023),
Llama2 (Touvron et al., 2023), and Llemma (Azer-
bayev et al., 2023) using the Chain of Thought
(CoT) (Wei et al., 2022) and Program-Aided Lan-
guage (PAL) (Gao et al., 2023). Additionally,
we benchmarked our method against recent high-
performing fine-tuned mathematical LLMs, in-
cluding MAmmoTH (Yue et al., 2023), Math-
Coder (Wang et al., 2023), ToRA (Gou et al., 2023),
MARIO (Zhang et al., 2024), MathGenie (Lu et al.,
2024), DeepSeekMath-Instruct (Shao et al., 2024),
and AlphaMath (Chen et al., 2024a). Similar to
our approach, these models leverage a Python code
interpreter for numerical calculations. Further im-
plementation details are provided in Appendix A.

4.2 Main Results
For a fair comparison, in Table 2, we report the
in-domain and out-of-domain results of our SVPO

based on DeepSeekMath-Base-7B, which is con-
sistent with the state-of-the-art methods, such as
DeepSeekMath-Instruct (Shao et al., 2024) and Al-
phaMath (Chen et al., 2024a).

Greedy Decoding Without the assistance of a
value model, we first evaluate the policy model us-
ing greedy decoding, which is comparable to most
related works. The main conclusion is that for more
difficult problems requiring more reasoning steps,
our approach shows greater advantages. As the dif-
ficulty increases for GSM8K, MATH, GaoKao2023
(GK2023), and OCWCourses (OCW), our ap-
proach achieves improvements of -2.0% / +2.1% /
+3.2% / +16.2% over the previous state-of-the-art,
DeepSeekMath-Instruct.

We slightly lag behind in GSM8K, which could
be attributed to two possible reasons. First,
GSM8K usually requires single step solution and
less logical reasoning. Second, the diversity of our
training dataset is limited. While DeepSeekMath
utilized 776k high-quality supervised data, we only
autonomously generated 56k complete positive ex-
amples based on 15k questions.

SBS With the value model optimized by step-
level value preference learning, we can utilize the
computationally efficient step-level beam search
(SBS) to investigate the role of the value model
in facilitating mathematical reasoning. Compared
to greedy decoding, the value model significantly
assists the policy model in navigating more effec-
tive reasoning paths, rather than solely relying on
prior probabilities. Compared with AlphaMath, our
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Model Size Tool Zero
Shot

In-Domain OOD
GSM8k MATH GK2023 OCW

Proprietary Models

GPT-4 - ✗ ✗ 92.0 42.5 - -
GPT-4 (PAL) - ✓ ✗ 94.2 69.7 43.6 30.1
ChatGPT - ✗ ✗ 80.8 35.5 - -
ChatGPT (PAL) - ✓ ✗ 78.6 38.7 - -

Open-Source Models

Llama-2 7B ✗ ✗ 13.3 4.1 - 3.7
CodeLlama 7B ✗ ✗ 10.5 4.5 - 4.7
CodeLlama(PAL) 7B ✓ ✗ 27.1 17.2 - -
Llemma 7B ✗ ✗ 36.4 18.0 - 7.7
Llemma (PAL) 7B ✓ ✗ 40.1 21.5 - -
DeepSeekMath-Base(PAL) 7B ✓ ✗ 66.9 31.4 - -

Tuning Models

MAmmoTH-Coder 34B ✓ ✓ 72.7 43.6 25.2 14.0
MathCoder 34B ✓ ✓ 81.7 46.1 - -
ToRA-Code 34B ✓ ✓ 80.7 50.8 31.7 5.5
MARIO 34B ✓ ✓ 78.2 53.5 42.6 30.2
MathGenie 34B ✓ ✓ 84.1 55.1 - -

Llama-2 SFT 7B ✗ ✓ 41.3 7.2 - -
Llama-2 RFT 7B ✗ ✓ 51.2 - - -
MAmmoTH-Coder 7B ✓ ✓ 59.4 33.4 15.3 11.0
MathCoder 7B ✓ ✓ 67.8 30.7 - -
ToRA 7B ✓ ✓ 68.8 40.1 19.5 2.6
ToRA-Code 7B ✓ ✓ 72.6 44.6 23.9 4.8
MARIO 7B ✓ ✓ 74.5 48.3 34.5 21.7
MathGenie 7B ✓ ✓ 76.0 48.3 - -
DeepSeekMath-Instruct 7B ✓ ✓ 83.7 57.4 43.9 18.0
AlphaMath 7B ✓ ✓ 73.5 53.6 40.5 26.1

+ SBS (B1 = 1) ✓ ✓ 81.1 62.8 46.2 30.5
+ SBS (B1 = 3) ✓ ✓ 84.1 66.3 51.4 33.1

SVPO (Ours) 7B ✓ ✓ 81.7 59.5 47.1 34.2
+ SBS (B1 = 1) ✓ ✓ 85.9 64.4 54.6 36.8
+ SBS (B1 = 3) ✓ ✓ 86.5 67.2 55.3 40.8

Table 2: Main results. The best results for greedy decoding and step-level beam search (SBS) are highlighted in
bold and blue box , respectively. By default, we set the beam size B2 = 5 in SBS.

SVPO achieves an average improvement of 5.3%
/ 3.7% on B1 = 1 / B1 = 3, respectively, which
demonstrates the effectiveness of our approach. We
will further analyze the value model in subsequent
ablation studies. It is worth noting that with the
help of the value model, our SVPO on 7B LLMs
achieves comparable or even better results than
GPT-4 in the challenging datasets.

4.3 Analysis 1: Policy Model

In this section, we will investigate the impact of
step-level preferences on the policy model and ex-

plore the performance of different base models in
our SVPO framework.

Ablation Study of Training Paradigm As
shown in Table 3, we compare the performance
of the policy model under different preference opti-
mization. Our principal findings are as follows: (1)
Compared to SFT, which blindly imitates positive
examples yw, preference learning encourages the
policy model to distinguish between yw and yl,
thereby enhancing its reasoning capability. How-
ever, solution-level DPO is limited by its coarse
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Training
Paradigm

In-Domain OOD
GSM8k MATH GK2023 OCW

SFT 77.7 56.9 43.1 27.5
DPO† 78.9 57.1 45.4 28.3

SVPO (Ours) 81.7 59.5 47.1 34.2
- w/o regularization 80.2 58.3 46.2 32.1

Table 3: Ablation study of training paradigm on policy
model. †Solution-level DPO.

Model In-Domain OOD
GSM8K MATH GK2023 OCW

Llama3-8B + SFT 75.9 46.5 33.2 10.3
Llama3-8B-Instruct 79.6 30.0 - -
Llama3-70B-Instruct 93.0 50.4 - -

Llama3-8B + SVPO 81.3 48.8 35.6 11.1
+ SBS (B1 = 1) 84.3 54.2 40.0 13.3
+ SBS (B1 = 3) 85.5 56.3 43.7 16.6

Table 4: Performance comparison of Llama3 series.

preference relationships, which do not indicate
which specific step in the negative solutions yl

led to the mistakes. (2) Compared to solution-level
DPO, our proposed step-level preferences can sig-
nificantly enhance the reasoning performance of
the policy model on both in-domain and out-of-
domain datasets. This can be attributed to the more
granular information of reasoning steps reflected
by Q-value in the Monte Carlo tree. (3) The value
model can further guide the optimization of the
policy model, as evidenced by the performance
decreases when the regularization term is removed.

Discussion of Different Base Models We fur-
ther investigate the performance of the general pre-
trained model, Llama3 (AI@Meta, 2024), within
our framework. As shown in Table 4, we have
the following main findings: (1) Compared to
DeepSeekMath-Base-7B in Table 2, the overall
performance of the general pre-trained model
Llama3 is relatively insufficient. This is because
DeepSeekMath-Base is pre-trained on a substan-
tial math-related corpus and is believed to process
more necessary mathematical knowledge, resulting
in higher quality preference data. (2) Our SVPO

outperforms the instruction-tuned Llama3 and ap-
proached the performance of the 70B model. Fur-
thermore, compared to the SFT model, we achieved
significant improvements, demonstrating the effec-
tiveness and applicability of our approach.

Method SBS In-Domain OOD
GSM8K MATH GK2023 OCW

SVPO (Ours)
B1 = 1 85.9 64.4 54.6 36.8
B1 = 3 86.5 67.2 55.3 40.8

w/o Margin loss
B1 = 1 85.4 62.5 49.6 34.9
B1 = 3 85.2 63.7 52.2 37.5

w/o MSE loss
B1 = 1 83.8 60.5 52.2 30.8
B1 = 3 82.1 56.7 45.7 28.6

Table 5: Ablation study of value model.

4.4 Analysis 2: Value Model
In this section, we further investigate the impact of
value loss (mainly including the MSE loss in Eq. (7)
and Margin loss in Eq. (10) on performance and
evaluate the accuracy of identifying preferences.

Ablation Study of Value Loss As shown in Ta-
ble 5, we compare the performance of step-level
beam search in different setups for value loss. Our
principal findings are as follows: (1) When mar-
gin loss is omitted, which describes the local re-
lationships in preference data, the performance
will decrease. As explained in the method, this
can be attributed to the ability of margin loss to
further distinguish the value of candidate actions.
(2) MSE loss is crucial for the value model, as it
provides global information for each node in the
Monte Carlo tree. Relying solely on preference
relationships by margin loss may cause the value
model to lose the ability to screen cousin nodes
(i.e., candidate actions at the same level but with
different previous states). This explains why the
performance of B1 = 3 is significantly lower than
that of B1 = 1 when MSE loss is omitted. In
summary, MSE loss and margin loss provide com-
plementary information, and their combined effect
leads to a better value model.

Win Rate of Preference We conduct a further in-
vestigation into the accuracy of the policy and value
model by Eq. (8) and (9) in assessing preference
relationships. We randomly select 200 questions
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Figure 2: Win Rate of Preference.
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from the test sets of GSM8K and MATH respec-
tively, and utilize MCTS to build preferences as
the test set in the win rate. As shown in Figure 2,
we have the following main findings: (1) The pref-
erence relationships in training sets can be easily
mastered, as evidenced in Figure 2a, where the
accuracy of both “Policy” and “SVPO w/o MSE”
significantly surpasses that of others. However,
the poor performance of “Policy” on the test set
indicates that the implicit reward model (i.e., pol-
icy model) is highly susceptible to overfitting. (2)
Compared to the implicit reward model, our pro-
posed explicit value model is relatively stable even
if it only learns preference relationships by margin
loss. This further demonstrates the effectiveness of
our value model.

4.5 Sensitivity of β and γ
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Figure 3: Hyperparameter sensitivity analysis.

β in Eq. (8) controls the implicit reward model,
while the margin γ in Eq. (10) controls the explicit
value model. Thus, we investigate the impact of
the two key hyper-parameters.

Beta β Following DPO (Rafailov et al., 2023),
we investigate the impact of different β on the pol-
icy model, as shown in Figure 3a. We observe
that the optimization of the policy model remains
relatively stable across different β. This can be
attributed to the regularization term, as analyzed in
Section 3.2. The explicit value model can prevent
the policy model π from deviating too far from the
reference policy model π′ through the regulariza-
tion term, thereby improving the stability.

Margin γ As shown in Figure 3b, we evaluate
the results of SBS in MATH with varying γ be-
tween [0, 1]. We observe that an excessively large
γ will cause the value model to degenerate. This
can be attributed to the fact that a large margin γ
compresses the predicted values towards either -1
or 1, making it difficult for the value model to cor-
rectly differentiate between candidate actions at the
same level in SBS. Moreover, setting γ to 0 also

leads to a performance degradation, indicating that
it is not the optimal target margin. Although with
γ = 0 the value model still maintains the value
preference learning, an appropriate gamma is con-
ducive to increase the confidence in scoring and
enhances the model’s generalization.

5 Related Work

Mathematical Reasoning Recent work (Gou
et al., 2023; Liao et al., 2024; Lu et al., 2024; Shao
et al., 2024) has achieved remarkable progress in
mathematical reasoning. However, most efforts fo-
cus solely on supervised fine-tuning, which makes
LLMs blindly imitate positive solutions without
understanding what the wrong solutions are.

Preference Learning Recently, preference learn-
ing (Rafailov et al., 2023; Ethayarajh et al., 2024;
Chen et al., 2024c) has attracted significant at-
tention due to its ability to align with human
preferences and distinguish between positive and
negative examples. However, due to focusing
solely on coarse solution-level preferences, most
existing work is limited in performance on multi-
step reasoning tasks, particularly in mathemati-
cal reasoning. Compared to previous work, our
SVPO autonomously annotates step-level prefer-
ences through MCTS, and reflects potential rea-
soning errors through the Q-values at each step,
thereby significantly improving the performance of
preference learning on multi-step reasoning tasks.

Value Model The value model is derived from
the state-value function in reinforcement learning
(RL), which is used to evaluate the expected return
of the current state. Recent work (Liu et al., 2023)
has found that the value model can effectively en-
hance the reasoning capability of the policy model
but limited by the complex training process of RL.
In our study, we propose step-level value prefer-
ence optimization, which achieves higher quality
value models in a simpler training process.

6 Conclusion

In this study, we introduce Step-level Value Pref-
erence Optimization (SVPO) by extending Direct
Preference Optimization (DPO) through the inte-
gration of a lightweight step-level value model.
The training framework of SVPO is much more
computationally efficient compared to Proximal
Policy Optimization (PPO). Extensive experimen-
tal results demonstrate that for tasks involving
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multi-step mathematical reasoning, our approach
significantly enhances performance, particularly
with the support of the proposed value model.

Limitations

First, we consider our work, SVPO, as a trade-off
approach between DPO and PPO, offering a rela-
tively lower computational cost. Beyond being an
Empirical Method in Natural Language Process-
ing (EMNLP), the theoretical foundation of margin
loss in the area of learning-to-rank has been exten-
sively discussed in Chen et al. (2009), and we also
theoretically analyze how the regularization loss in
LSVPO impacts the preference learning of the policy
model. Nevertheless, in the future work, we need
to establish a more solid theoretical foundation to
connect the implicit reward model and the explicit
value model.

Secondly, although our method has achieved ex-
cellent performance in multi-step reasoning, par-
ticularly in mathematical reasoning, there is still
an issue that deserves further exploration in fu-
ture work: whether our SVPO can enhance math-
ematical reasoning capabilities in the context of
multimodal data. This may include mathematical
reasoning from multiple combinations of modal-
ities, such as language, images, tables, or audio,
which is an increasingly prevalent and demanding
type of reasoning in real-world scenarios. In future
work, we plan to extend our SVPO to accommodate
multimodal scenarios.

Additionally, although in this study we integrate
the step-level value preference optimization into
DPO as an example, our approach is broadly appli-
cable to various types of preference learning algo-
rithms (Ethayarajh et al., 2024; Chen et al., 2024c;
Hong et al., 2024). In future work, we will ex-
plore incorporating our SVPO into these preference
learning algorithms.
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This work primarily focuses on mathematical rea-
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we have open-sourced the code and utilized openly
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search, without any sensitive information to our
knowledge. The authors of this work adhere to the
ACL ethical guidelines, and the application of this
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A Implementation Details

A.1 Detailed Setup

For step-level preference annotation via MCTS,
we set cpuct to 1.25, set the temperature within the
range of 0.6 to 1, limit the maximum tree depth
to 8, set each node to expand 5 child nodes, and
simulate at most 60 times. For each question in
training set, we construct at most 10 trees. Fol-
lowing Chen et al. (2024a), we define two types of
steps in MCTS, C-step and A-step. The C-step is
responsible for code execution and consists of text
analysis, code snippets, and execution results. The
A-step is responsible for summarizing the answers,
comprising text analysis and the final answer. We
organize these two steps in the following XML
format:

C-step

<step>
<p>
{textual analysis}
</p>
<code>
{code snippets}
</code>
<p>
{code output}
</p>
</step>

A-step

<step>
<p>
{textual analysis}
</p>
<p>
Final Answer: {predicted answer}
</p>
</step>

For Pre-training via SFT, we convert the pre-
trained model into a corresponding multi-step SFT
model through the pre-training loss in Eq. (7). We
set the learning rate to 2e-5, the batch size to 512,
fix the MSE weight to 0.01, and train for 10 epochs.
We employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and a cosine learning rate scheduler,
setting the warm-up rate to 0.03.

For SVPO, we set β to 0.1, γ to 0.5, learning
rate to 5e-6, batch size to 512, and train for 1 epoch.
Since preference learning may easily degenerate
model, it is common practice to incorporate SFT
loss in RLHF or DPO training (Ouyang et al., 2022;
Pang et al., 2024) to mitigate this issue. Thus, we

Dataset OOD? # Training # Test

GSM8K In-Domain 7473 1319
MATH In-Domain 7500 5000
GaoKao2023 OOD - 385
OCWCourses OOD - 272

Table 6: Datasets Statistics

also use the pre-training loss including standard
SFT loss and MSE value loss in preference opti-
mization stage. Specifically, we fixed the weights
for the margin loss and MSE loss at 0.25, the
weight for the regularization term at 0.001, and the
weight for the SFT loss at 5. In addition, we also
employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and the cosine learning rate sched-
uler with a warmup rate of 0.03.

A.2 Datasets Details

Mathematical Reasoning Benchmarks Table 6
provides a detailed overview of the mathemati-
cal reasoning benchmarks. The training and test
sets are divided in accordance with previous stud-
ies (Cobbe et al., 2021; Hendrycks et al., 2021).
GSM8K (Cobbe et al., 2021) is a dataset fo-
cused on multi-step mathematical reasoning, fea-
turing high-quality, diverse grade school math
word problems crafted by human authors. The
MATH dataset (Hendrycks et al., 2021) con-
tains complex competitive mathematics problems.
GaoKao2023 (Liao et al., 2024) includes math
problems from the 2023 Chinese National Col-
lege Entrance Examination, the 2023 American
Mathematics Competitions, and the 2023 Ameri-
can College Testing. OCWCourses (Lewkowycz
et al., 2022) is a compilation of 272 STEM prob-
lems targeted at the undergraduate level, most of
which require multi-step reasoning.

Preference Test set in the Win Rate In Sec-
tion 4.4, we evaluate the accuracy of the policy
model and the value model in assessing preferences.
These models can accurately assess the preferences
on the training set, as shown in Figure 2a. To ac-
curately evaluate the generalization of the value
model, we randomly sample 200 questions from
the test sets of GSM8K and MATH respectively,
and constructed total 10633 preference pairs using
MCTS.

7900



Step-level Preference Pairs Construction in
Monte Carlo tree After step-level preferences
annotation via MCTS, we need to filter the prefer-
ence pairs from the Monte Carlo tree for training.
Given step-level beam search, we need to consider
the preference relationships among sibling nodes
(at the same layer with same previous state), cousin
nodes (at the same layer but with different previ-
ous states), and non-same-level terminal nodes (at
different layer with terminal nodes).

Algorithm 1 outlines the process of our step-
level preference pairs construction. First, we label
each node along the path based on the correctness
of the terminal node (Lines 2-4). Then, we iter-
atively construct step-level preference pairs in a
top-down manner (Lines 5-23). In this process,
we can specify the quantities of the three different
types of preference relationships. In this study, we
set the number of sibling nodes to 2, the number of
cousin nodes and non-same-level terminal nodes to
1, respectively. This maintains an approximate ratio
of 1:4 between positive and negative examples.

A.3 Policy-value model Details

... </step>

...

...

Linear Layer ( )

tanh softmax

Linear Layer ( )

LLM ( )

Figure 4: An overview of our policy-value model. d
represents the dimension of the hidden state in LLM,
and v represents the size of the vocabulary.

As shown in Figure 4, the value model Vϕ and
the LLM policy model πθ are the same model but
with different final layers. This design implies that
these two models, πθ and Vϕ, share the majority
of their parameters. In practical implementation of
the value loss, the value is only predicted on the
last token of current reasoning step, representing
the step-level preference.

A.4 Experiment Environments
All experiments were conducted on Ubuntu 22.04
equipped with 8 * NVIDIA A100 GPUs. Our code
mainly depends on Python 3.11 and PyTorch 2.2.1.

We use our customized Llama Factory (Zheng
et al., 2024) as the training framework and our
customized vLLM (Kwon et al., 2023) as the in-
ference framework1. We trained all models with
DeepSpeed ZeRO Stage2 (Rajbhandari et al., 2021)
and Flash-Attention 2 (Dao, 2023). The pre-trained
LLMs are sourced from HuggingFace2.

A.5 Prompt Example of our XML format
To train the SFT model in executing mathemati-
cal reasoning, we utilize an XML format along-
side zero-shot learning. This approach is adopted
because the math-related pre-training corpora are
predominantly harvested from the Internet, where
HTML tags serve to distinguish various types of
content, including text, equations, and code snip-
pets. In this work, each solution consists of both
text analysis and code snippet, as shown in Fig-
ure 5.

1We have released our customized framework in our
Github Repository.

2https://huggingface.co
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Algorithm 1 Step-level Preference Pairs Construction

Require: Monte Carlo trees T , prompted question x.
Ensure: Step-level Preference Pairs P .

1: P = [ ] ▷ Initialization
2: for terminal node n in T do
3: if n has correct final answer then
4: Backpropagation labels each node as correct along the path from root to n
5: n← root node in T
6: while n is non-terminal node do ▷ In a top-down manner
7: nw ← argmaxchild∈n.children{Q(child)|child is correct node.} ▷ Ensure yw is a correct solu-

tion
8: yw ← partial solution from root to nw in T
9: ns ← randomly select a non-correct node in n.children ▷ Pairs in sibling nodes

10: if ns ̸= ∅ then
11: yl ← partial solution from root to ns in T
12: Add (x,yw,yl) to P
13: nc ← randomly select a non-correct node at the same level of nw ▷ Pairs in cousin nodes
14: if nc ̸= ∅ then
15: yl ← partial solution from root to nc in T
16: Add (x,yw,yl) to P
17: nt ← randomly select a non-correct terminal node at the different level of nw ▷ Pairs in non-

same-level terminal nodes
18: if nt ̸= ∅ then
19: yl ← partial solution of nt in T
20: Add (x,yw,yl) to P
21: if ns = nc = nt = ∅ then
22: (Optional) Find yl in another tree T ′. ▷ If no negative example found in all trees, all possible

generated solutions are correct. No preference learning needed for this question.
23: n← nw ▷ Go to next layer
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An example of our SFT XML format:

<question>Haley grows at the rate of 3 inches every year. If she is currently 20 inches tall,
what will be her height after 10 years?</question>
<step>
<p>
To calculate Haley's height after 10 years, I need to add 10 times the growth rate of 3 inches to
her current height.
</p>
<code>
```python
current_height = 20
growth_rate = 3
years = 10
future_height = current_height + (growth_rate * years)
print(future_height)
```
</code>
<output>
50
</output>
</step>
<step>
<p>
I have calculated Haley's height after 10 years. Haley will be 50 inches tall
after 10 years.
</p>
<p>
Final Answer: $50$
</p>
</step>

Figure 5: An example of our SFT XML format. The text in black is prompt, and the text in red is model generation.
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