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Abstract

State-of-the-art language models (LMs) some-
times generate non-factual hallucinations that
misalign with world knowledge. To explore the
mechanistic causes of these hallucinations, we
create diagnostic datasets with subject-relation
queries and adapt interpretability methods to
trace hallucinations through internal model rep-
resentations. We discover two general and
distinct mechanistic causes of hallucinations
shared across LMs (Llama-2, Pythia, GPT-J):
1) knowledge enrichment hallucinations: in-
sufficient subject attribute knowledge in lower
layer MLPs, and 2) answer extraction hallu-
cinations: failure to select the correct object
attribute in upper layer attention heads. We also
found these two internal mechanistic causes of
hallucinations are reflected in external mani-
festations. Based on insights from our mecha-
nistic analysis, we propose a novel hallucina-
tion mitigation method through targeted restora-
tion of the LM’s internal fact recall pipeline,
demonstrating superior performance compared
to baselines 1.

1 Introduction

Language models (LMs) serve as repositories of
substantial knowledge (Petroni et al., 2019; Jiang
et al., 2020; Srivastava et al., 2023) through their
parametric knowledge gained from pre-training.
However, they are susceptible to generating “hallu-
cinations” that contain factual errors. At the level of
logit predictions, these hallucinations often display
a pattern similar to factual generations. For exam-
ple, LMs have been observed to produce seemingly
confident completions that are, in reality, hallucina-
tions (Dong et al., 2022; Zhang et al., 2023b).

To understand how hallucinations differ from
factual outputs and whether they are uniformly
generated or equally challenging to fix, thorough

*Equal contribution.
1Code and data are available at: https://github.com/

jadeleiyu/lm_hallucination_mechanisms.

analysis tools that monitoring the information flow
are required, extending beyond merely last-layer
predictions (Kaddour et al., 2023). However, re-
search on understanding the internal mechanisms
of hallucination generation is limited. Most efforts
on detecting and mitigating hallucinations (Elaraby
et al., 2023; Mündler et al., 2023; Manakul et al.,
2023; Zhang et al., 2023a) treat the LM as a black
box, devising methods based on external features
like predictive uncertainty (Xiao and Wang, 2021;
Varshney et al., 2023) and logical consistency (Co-
hen et al., 2023). These approaches provide little
insight into the internal mechanisms of factual er-
rors and have been shown to be unreliable with
often contradictory signals (Turpin et al., 2023).

In contrast, interpretability research, which ex-
amines the internal mechanisms of transformers
in white-box settings, enables the identification of
components that contribute to accurate factual pre-
dictions. For example, existing work has identified
several critical model “components” (e.g., attention
heads, feedforward layers) related to knowledge
flow that are essential for answering questions ac-
curately (Lu et al., 2021; Dai et al., 2022; Meng
et al., 2022a; Geva et al., 2023). However, it re-
mains unclear whether the results of mechanistic in-
terpretability on factual predictions can generalize
to hallucinations. Specifically, it is unknown which
model components deviate from normal function-
ing to cause hallucinations. Localizing the source
of non-factual hallucination in LMs may help us
design targeted and efficient methods to mitigate
hallucinations without significantly impacting util-
ity (e.g., by editing a small set of model weights
identified as causing hallucinations, without affect-
ing other parts that are important for information
flow).

In this study, we employ mechanistic inter-
pretability (Olah, 2022) to investigate the origins
and manifestations of non-factual hallucinations
in LMs. To address the lack of datasets for non-
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(a) Knowledge enrichment hallucination (b) Answer extraction hallucination

Figure 1: Our main finding of two non-factual hallucination mechanisms. Left (a): The knowledge enrichment
hallucinations are caused by lacking general knowledge of the subject retrieved from early and middle layer MLPs
– in these cases, the subjects tend to be relatively unknown and the incorrect answer is often nonsensical. Right
(b): The answer extraction hallucinations are caused by the failure of middle and late layer self-attention heads
to identify the most relevant object to the given subject and relation – in these cases, the subjects are often more
strongly associated with the hallucinating answers than the with the true answers.

factual hallucinations, we constructed a diagnostic
hallucination dataset from ParaRel (Elazar et al.,
2021), which contains cloze-style factual knowl-
edge queries. This enables the examination of in-
formation flow associated with non-factual hallu-
cinations. Specifically, we adapt two established
interpretability methods for hallucination analy-
sis—logit lens (Geva et al., 2022b; Dar et al., 2023)
and causal mediation analysis (Pearl, 2001; Vig
et al., 2020)—aiming to assess the influence of
model components on the generation of hallucina-
tory predictions. Through extensive analyses on
LMs of various sizes and architectures (Llama-2,
Pythia, GPT-J), we obtain converging evidence that
there exist two groups of crucial components for
factually incorrect predictions: 1) the multi-layer
perceptrons (MLPs) in lower transformer layers, 2)
the multi-head self-attentions in upper transformer
layers.

Figure 1 illustrates two distinct scenarios where
the identified hallucinating components exhibit dif-
ferent behaviors. In some instances, lower-layer
MLPs function normally, successfully retrieving
semantic attributes about queried entities, while
upper-layer attention heads struggle to distinguish
the most relevant attributes that lead to the correct
answer. In other cases, the model fails to execute
its fact-recalling pipeline at the beginning, extract-
ing no useful information from lower-layer MLPs.
We also observe that these two hallucination mech-
anisms have varying external manifestations, dis-
tinguishable by their levels of subject-object asso-
ciation strengths, robustness to input perturbations,
and model predictive uncertainty. Moreover, we
demonstrate that the mechanistic insights gained

from our analyses can be leveraged to develop
an effective method to reduce LM hallucina-
tions on multiple open-domain question answering
datasets. Our research offers the first mechanistic
explanation and mitigation of LM factual errors,
fostering future research on model explainability
and transparency.

2 Related Work and Background

Factual knowledge in language models. The
exploration of knowledge tracing within Language
Models (LMs) has gained substantial attention
lately, with researchers investigating specific lay-
ers (Wallat et al., 2020; Geva et al., 2021; Meng
et al., 2022a) and neurons (Dai et al., 2022) re-
sponsible for storing factual information. This line
of inquiry extends to techniques for model editing
(De Cao et al., 2021; Mitchell et al., 2021; Meng
et al., 2022b) and inference intervention (Hernan-
dez et al., 2023; Li et al., 2023). Recent advance-
ments by Geva et al. (2023); Yu et al. (2023) iden-
tify crucial LM components that form an internal
pipeline for factual information transfer. Our frame-
work complements existing research by offering an
additional perspective on LM factual knowledge
processing, revealing that compromised factually
relevant modules can lead to hallucinations.

Hallucinations. Language models are suscepti-
ble to generating hallucinations that can be unfaith-
ful (i.e. deviating from the source input provided
by users) or non-factual (i.e. contradicting estab-
lished world knowledge) (Cao et al., 2020; Ji et al.,
2023; Zhang et al., 2023b). Here, we focus on the
latter type of hallucination. Existing studies aimed
at detecting or mitigating hallucinations leverage
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features such as internal activation patterns (Yuk-
sekgonul et al., 2023; Li et al., 2023), predictive
confidence (Cao et al., 2022a,b; Varshney et al.,
2023), and generation consistency (Mündler et al.,
2023; Manakul et al., 2023; Zhang et al., 2023a).

Mechanistic interpretability. Mechanistic inter-
pretability (Olah, 2022; Nanda, 2023) is an evolv-
ing research area. Recent works employ projec-
tions to the vocabulary (Geva et al., 2022b,a; Nos-
talgebraist, 2020; Katz et al., 2024) and interven-
tions in transformer computation (Finlayson et al.,
2021; Haviv et al., 2022; Stolfo et al., 2023; Ghan-
deharioun et al., 2024) to study LM inner work-
ings, explore neural network learning dynamics
(Nanda et al., 2022) and discover sparse computa-
tional graphs for specific tasks (Wang et al., 2022;
Conmy et al., 2023). Leveraging multiple mecha-
nistic interpretability methods, our study provides
a principled account and mitigation method for
non-factual hallucinations.

Background and notations Our work
builds on the inference pass of decoder-only,
transformer-based LMs. An auto-regressive
transformer (Vaswani et al., 2017), denoted as G,
maps an input sequence of tokens u = [w1, ..., wT ]
into a probability distribution over the vocabulary
for next-token prediction. Within the transformer,
the i-th token is represented as a series of hidden
states h

(l)
i where at each layer l, the model

computes and adds the intermediate embeddings
by two modules from h

(l−1)
i : 1) an aggregated

multi-head self-attention module output
a
(l)
i = Wo([a

(l,0)
i , ..., a

(l,K)
i ]), where a

(l,k)
i is the

output of the k-th attention head at layer l (with
K heads in total) for the i-th token 2, and Wo is a
linear transformation; 2) a multi-layer perceptron
(MLP) output m(l)

i = f
(l)
MLP(h

(l−1)
i + a

(l)
i ) at layer

l. Putting together, the hidden representation h
(l)
i

is computed as: h(l)i = h
(l−1)
i + a

(l)
i + m

(l)
i . Let

H = {hli} be the set of T × L token hidden states
across all layers (following Elhage et al. (2021),
we shall call them the residual stream outputs),
A = {ali} be the set of T × L attention outputs,
and M = {m(l)

i } be the set of T × L MLP
outputs. We aim to investigate which intermediate
hidden representations z ∈ Z = A

⋃
M are

causing the model to generate a factually incorrect

2a
(l,k)
i = softmax

(
Qk

i (K
k
i )T√
d

)
· V k

i and Qk
i ,K

k
i , V

k
i are

derived from h
(l−1)
i with linear transformations.

answer for an input question.

3 Dataset for LM Hallucination

Dataset Construction We collect a set of ques-
tions from the ParaRel (Elazar et al., 2021) dataset
of cloze-style factual knowledge queries. Each
example in ParaRel consists of a subject-relation-
object triple (s, r, o) (e.g., (Paris, CAPITAL_CITY,
France)) and a set of prompts u(s, r, o) generated
from hand-curated templates that contains (s, r)
and has o as its ground-truth next word continu-
ation (e.g., “The capital city of France is ”). To
ensure the uniqueness of the true answer for each
query, we only take prompts generated from triples
in the “many-to-one” relational classes in ParaRel
where each subject-relation has a single associated
object entity that begins with a capitalized English
letter. This yields a large set of approximately 80K
factual knowledge queries.

We evaluated three widely used pretrained LMs
on our constructed query dataset: 1) Llama-2 (32
layers, 7B parameters, fine-tuned on instruction
following) (Touvron et al., 2023), 2) Pythia (Bider-
man et al., 2023) (32 layers, 6.9B parameters), and
3) GPT-J (28 layers, 6B parameters) (Wang and Ko-
matsuzaki, 2021). For each prompt u, we compute
the LM predicted conditional probability p(t|u)
of the next token continuation, where t is taken
from the collection of all capitalized alphabetical
tokens in the model vocabulary. We define the non-
factual hallucination set as the queries for which
a model predicted next token t̂ = argmax

t
p(t|u) is

not a prefix of the true object answer o (i.e., the
model makes a factual error), and otherwise the
query is an example of the factual set (i.e., the
model answers correctly). Finally, for each model,
we discard those queries with no capitalized al-
phanumeric tokens among model predicted top-50
most likely tokens over the entire vocabulary, as we
found in most of these cases the log likelihood of t̂
would become negligible and therefore not suitable
for our subsequent analyses. Table 1 summarizes
the dataset statistics.

4 Mechanistic Analysis of Hallucinations

We wish to know which “broken” LM components
are causing the model to produce a factually incor-
rect answer. Recent studies have shown that given
a subject-relation query, an LM predicts a factual
object answer via two steps (Geva et al., 2023;
Yu et al., 2023; Jin et al., 2024): 1) during the
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Llama-2 Pythia GPT-J

No. of factual queries 25204 10277 8646
No. of hallucinating queries 25478 31110 23831
Model accuracy 0.497 0.248 0.266

% of enrichment hall. 22.1 30.2 67.3
% of extraction hall. 77.9 69.8 32.7

Table 1: Statistics of the ParaRel query datasets of three
language models.

knowledge enrichment step, the model retrieves
from MLP sublayers many relevant semantic at-
tributes of the subject and propagates them to the
last query token position; and 2) during the an-
swer extraction step, the self-attention modules
select the most relevant object entity among the
previously retrieved attributes. We postulates that
an LM hallucinates if any one of these two steps
get compromised during inference, and perform a
series of mechanistic interpretability analyses to
pinpoint the malfunctioning model components.

4.1 Model inspection through logit lens
Method We inspect the semantic information en-
coded in the intermediate hidden representations
within each transformer layer through logit lens
(Nostalgebraist, 2020; Elhage et al., 2021; Dar
et al., 2023). In particular, for each z

(l)
i ∈ A

⋃
M

produced by either the MLP or the self-attention
module at layer l when processing the i-th query
token, we cast it into a probability distribution over
the LM vocabulary space by passing z

(l)
i directly

through the last prediction head layer:

p(z
(l)
i ) = softmax(E LayerNorm(z

(l)
i )); (1)

where E ∈ R|V |×d is the unembedding matrix, and
LayerNorm is the layer norm operation.

To quantify the information of the true answer
o that an LM extracts when processing the subject
tokens at each layer, we compute the logit values
I(l)
m (o) = eTo LayerNorm(m

(l)
s ) of projecting the

MLP-produced hidden representation of the last
subject token m

(l)
s onto the unembedding vector

eo of the object token. A high value I(l)
m (o) would

indicate that the model has already enriched the
subject with sufficient information of an object be-
fore processing the relation. Similarly, given the
true object token o and another set of attribute to-
kens o′ ∈ O′ with high MLP-enriched information
I(l)
m (o′) when processing s 3, we can measure how

3We take the top-100 tokens in model vocabulary with
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Figure 2: Minimum (over all transformer layers) true
object token rankings in the logit lens distributions of
intermediate MLP outputs (shown in log scale). Dashed
lines denote the threshold ρ∗s(o) = 0.01|V | ranks to
distinguish between knowledge enrichment and answer
extraction hallucinations (ρ∗s(o) = 320 for Llama-2 and
ρ∗s(o) = 502 for Pythia/GPT-J).

good the self-attention module in layer l is at distin-
guishing o against other attributes o′ by computing
the relative attention-extracted attribute informa-
tion I(l)

a (o) = a
(l)
T

(
eo − ēo′

)
, where a

(l)
T is the

attention module output when processing the last
input token, and ēo′ =

1
|O′|eo′ is the mean unem-

bedding vector of the non-answer attributes. A
high value of I(l)

a (o) suggests that the attention
modules can effectively identify o as the target at-
tribute when synthesizing information propagated
from subject and relation tokens.

Two mechanisms of hallucinations We first ex-
amine whether the LMs retrieve sufficient informa-
tion about the answer during the subject knowledge
enrichment process. We consider an attribute to be
sufficiently extracted from the model parametric
knowledge base if it is among the top 1% tokens
of highest MLP-retrieved information I(l)

m (·) in at
least one some intermediate layers. For each query
u(s, r, o) in the factual and the hallucinating set,
we compute the minimum ranking ρ∗s(o) of o in
the logit lens distribution p(m

(l)
s ) of MLP outputs

across all LM layers, as shown in Figure 2. We ob-
serve that for the vast majority of factual set queries,
there is at least one intermediate MLP representa-
tion in which the object ranks among top 1% of
the entire vocabulary. In contrast, for a significant
portion of hallucinating examples, even the object
token with the most MLP-retrieved information
remains outside the top 1% of the vocabulary.

highest I(l)
m (o′) as O′.
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Figure 3: Average logit lens projection values between true object embedding and intermediate MLP/attention
representations of Llama-2/Pythia/GPT-J in each transformer layer.

We hypothesize that, for queries with ρ∗s(o) >
0.01|V |, the model hallucinations are mostly
caused by the insufficient knowledge extracted
from MLPs, and we therefore call these examples
(knowledge) enrichment hallucinations. On the
other hand, for queries with ρ∗s(o) ≤ 0.01|V |, the
model functions normally at the knowledge enrich-
ment step, but later on fails at the answer extraction
step where it cannot distinguish the object entity
against the other related attributes of the subject, so
we call these examples (answer) extraction hallu-
cinations. The last two rows of Table 1 shows the
percentage of queries that fall into each hallucina-
tion type for the three models. We noticed that the
majority of Llama-2 and Pythia errors are extrac-
tion hallucinations, while GPT-J have much more
enrichment hallucinations, suggesting that GPT-
J may suffer from a more severe lack of general
world knowledge compared to more recent LMs.

To better understand the two identified halluci-
nation mechanisms, we compute the average lay-
erwise MLP-enriched and attention-extracted ob-
ject information for factual queries and halluci-
nating queries with the two error types, as illus-
trated in Figure 3. Some key observations are: 1)
both factual queries and extraction hallucinations
retrieve a significant amount of object information
from MLPs in early and middle transformer layers,
whereas enrichment hallucinations have much less
object knowledge incorporated into the subject to-
kens in early inference stages. 2) Compared to the
factual query set, the self-attention module outputs
of both types of hallucinations fail to effectively
distinguish o against other incorrect attributes.

These findings together suggest that failures of

either MLP knowledge enrichment or self-attention
answer extraction would cause non-factual hallu-
cinations. Moreover, sufficient retrieval of object
knowledge in early layers serves as a prerequisite
of answer extraction, so a degenerated enrichment
process will inevitably compromise the ability of
upper-layer attention to filter irrelevant attributes,
as observed in enrichment hallucinations.

4.2 Causal validation of hallucination
mechanisms

If lower layer MLP and upper layer self-attention
outputs are the root causes of non-factual halluci-
nations, then fixing them should enhance model
factuality. We test this hypothesis by performing a
causal patching analysis to measure the contribu-
tion of each intermediate representation to a hallu-
cinating model prediction.

Method The intermediate hidden states produced
by an LM during inference form a causal depen-
dency graph (Pearl, 2001) that contains many paths
from the input sequence to the output (next-token
prediction), and we wish to understand if there are
specific hidden states that are more important than
others when producing a hallucination. This is
a natural case for causal mediation analysis (Vig
et al., 2020; Meng et al., 2022a), which quantifies
the contribution of intermediate variables in causal
graphs. Given a query u(s, r, o) and a model gen-
erated incorrect object o′, we consider the LM as
a “corrupted” model with certain modules failing
to compute the “clean” representations that could
otherwise lead to the correct answer o, and mea-
sure the contribution of each module through three
model runs:
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Figure 4: Average Indirect Effect (AIE) of mitigating MLP and self-attention intermediate outputs for (a)
enrichment hallucinations (green heatmaps) and (b) extraction (orange heatmaps) hallucinations.

1. In the first run, we pass u into the model and
extract all intermediate hidden representations
z as defined in Section 2, and compute the log
likelihood ratio y = log p(o′|u)

p(o|u) between the
true and hallucinated objects, which quantifies
the model’s “degree of hallucination” when
answering u. For a hallucinating prediction,
we would observe y > 0.

2. In the second run, we inject a Gaussian noise
ϵ ∼ N (0, σ) 4 to the subject token em-
beddings of u. Let u∗ denote the result-
ing query with perturbed input embeddings,
we re-compute the log-likelihood ratio y′ =
log p(o′|u∗)

p(o|u∗) and take those noises with y′ < 1
(i.e., we only keep noises that make the model
become truthful by preferring o over o′). We
again extract all intermediate hidden represen-
tations z∗.

3. In the third run, we again provide the model
with u∗ with perturbed input embeddings, and
“patch” a particular hidden representation z∗

to be the hidden representation z during the
first run. We then compute the log likelihood
ratio y′′ = log p(o′|u∗,z)

p(o|u∗,z) to see how it changes
compared to step 2.

If an intermediate output z is the main cause of a
hallucination, then overwriting it with z∗ produced
during a truthful run should also make the model
more factual. We define the causal indirect effect
IE(z; y, u, ϵ) = y′′ − y of z as the decrease in
the degree of hallucination after mitigating a single

4We follow (Meng et al., 2022a) to set σ to be be 3 times
lof the empirical standard deviation of the input embeddings.

hidden state. Averaging over a set of factual queries
and a sample of noises for each query, we obtain
the average indirect effect (AIE) for each z and its
corresponding MLP or self-attention component.

Causal tracing results We compute layerwise
AIE for MLP intermediate outputs m(l)

s of the last
subject token and the self-attention intermediate
outputs a(l)T of the last input token for each hallu-
cinating query. Figure 4 shows the average MLP
and attention causal effects to enrichment and ex-
traction hallucinations respectively. We observe a
clear distinction between the causal contribution
distributions of the two hallucination mechanisms:
in particular, most intermediate hidden states that
contribute significantly to enrichment hallucina-
tions are produced by lower layers MLPs when
processing subject tokens, and extraction hallucina-
tions are mostly caused by outputs of upper layer
self-attention heads right before generating the an-
swer tokens. These findings conform with our logit
lens analyses results, and together suggest that 1)
lower layer MLPs and upper layer self-attention
heads are the “brittle” LM components which, if
compromised, would lead to non-factual halluci-
nations, and 2) lower layer MLPs and upper layer
attentions do not always break down simultane-
ously, thus leading to two distinct mechanisms of
LM factual errors.

4.3 External manifestations of hallucination
mechanisms.

To ensure our categorization of hallucinations isn’t
just a fabricated dichotomy based on internal com-
putation patterns, we also explore external features
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Statistics Know.Enrich. Hall. Ans.Extract. Hall.

s-o assoc. 0.47 1.17
s-o′ assoc. 0.81 1.69
Robustness 0.86 0.45
Uncertainty 4.54 4.76

Table 2: External data and model prediction features for
two types of non-factual hallucination, averaged over
three LMs.

to distinguish between the two types. We consider
the following features: the subject-object associ-
ation strength is measured as the inner product
between the input layer embeddings of a subject s
and a true object o or a hallucinating object o′; the
robustness of a predicted object o′ is measured as
the percentage of Gaussian noise injected during
the mitigation run in section 4.2 which, after be-
ing added to the input embeddings, fails to make
the model prefer the true answer o over o′; the
uncertainty of model prediction is measured by
the entropy of conditional next-token distribution
p(o|u). Table 2 summarizes the results with exter-
nal measures averaged over the three tested LMs.

We found that 1) subjects of extraction halluci-
nations often have hallucinating objects of much
stronger association strengths than true objects, so
that the model fail to “offset” the prior propensity
of model predicting o′ upon seeing s. Subjects
of enrichment hallucinations, on the other hand,
often have much weaker associations with both
true and hallucinating objects; 2) extraction hallu-
cinations are significantly less robust under input
perturbations, probably because the model has al-
ready retrieved the correct object from early layers
and is just “one step away” from distinguishing it
against less relevant attributes; 3) the model is less
certain about its predictions when generating en-
richment hallucinations, a pattern that is consistent
with previous findings that epistemic hallucinations
(i.e., hallucinations due to lack of general world
knowledge) are often associated with high predic-
tive uncertainty (Xiao and Wang, 2021).

5 Mechanistic Hallucination Mitigation

In this section, we propose a novel Mechanis-
tic Hallucination Mitigation (MHM) method that
draws inspiration from our mechanistic analysis,
and demonstrate that it can improve LM factuality
in open-domain question answering.

Method Given a question x and its true answer y
(we take the first token for answers with multiple to-
kens), we wish to fix the model’s imperfect knowl-
edge enrichment and answer extraction modules in
the fact-recalling pipeline when it generates an in-
correct answer y′. We do so by encourage the LM
to retrieve more information of y from MLPs, and
to suppress the information propagation of t′ from
self-attention heads. In particular, during model
inference with input x, we take the intermediate
MLP outputs m(l)

i and attention head outputs a(l)i
within a specific layer range l ∈ Lm or l ∈ La, and
then project them directly to the language model-
ing head layer. Let log p(i)m (y|x), log p(i)a (y|x) be
the resulting log-likelihoods of y in the projected
distribution, we fine-tune the LM to optimize the
following objective function:

LMHM(x, y, y
′) = −

∑

l∈Lm

log p(l)m (y|x)−
∑

l∈La

log
p
(l)
a (y|x)

p
(l)
a (y′|x)

(2)

In practice, we find that LMHM can be combined
with the regular negative log likelihood (NLL) loss
of LM fine-tuning to achieve the best factuality:

L(x, y, y′) = LNLL([x; y]) + λLMHM(x, y, y
′) (3)

where LNLL([x; y]) is the average NLL loss of the
concatenated sequence of a question and its true
answer, and λ is a hyperparameter that controls the
relative importance of two loss terms.

Data and models. We study non-factual halluci-
nation mitigation of the three LMs we analyzed on
two open-domain question answering benchmarks:
1) the Natural Questions dataset (Kwiatkowski
et al., 2019) that consists of Google search en-
gine queries annotated with answers and supporting
Wikipedia pages, and 2) the TruthfulQA dataset
by Lin et al. (2022) consisting of adversarially con-
structed commonsense reasoning questions to mea-
sure whether an LM is truthful in generating an-
swers. For Natural Questions, we asked each LM
to generate up to 20 tokens conditioned on each
question, and label the model generation as correct
if it contains an exact match of the true answer. For
TruthfulQA, where each question is paired with a
set of “plausible sounding but false” answers, we
evaluate each LM under a multiple-choice scheme
by computing the average conditional likelihood
per token for each candidate answer, and define a
correct prediction as the case where an LM assigns
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highest average likelihood for the true answer. Fol-
lowing the evaluation scheme in LM knowledge
editing and factual error rectification, we would
expect a mitigation method to significantly reduce
model hallucination without compromising its orig-
inally possessed knowledge. We therefore take
examples of both benchmarks on which an LM
produces an incorrect answer as our training set,
and then construct two evaluation datasets: the
effectiveness evaluation set consists of the GPT-
4-generated paraphrases of each training question
on which the original model hallucinates, and the
specificity evaluation set are the original bench-
mark questions that the LMs correctly answers. A
good mitigation method should therefore achieve
high accuracy on both evaluation sets.

Baseline Methods. We evaluate MHM against
several baseline methods that have shown promis-
ing results in model editing or factualilty improve-
ment: 1) the vanilla supervised fine-tuning method
without the MHM objective, 2) a 5-shot in-context
learning (ICL) method of prompting the model with
five examplar (question, true answer) pairs, 3) the
MEND algorithm for knowledge editing (Mitchell
et al., 2021) that learns a hypernetwork to perform
targeted weight updates on knowledge-intensive
LM parameters, and 4) DoLa (Chuang et al., 2023)-
a decoding algorithm by contrasting the differences
in logits obtained from projecting the later trans-
former layers versus earlier layers to the vocabu-
lary space. We use default hyperparameters and
experimental setups taken from their official imple-
mentations, and report the evaluation results on the
same test datasets of MHM. 5

Results. Table 3 shows model accuracy on para-
phrase and specificity evaluation sets. We found
that in all setups, MHM either yields the most
effective mitigation results, or achieves a perfor-
mance that is comparable to the best mitigation
method. Meanwhile, MHM in most cases pre-
serves more than 90% of model performance on
the specificity evaluation sets, indicating that our
mechanistic mitigation of hallucinations does not
compromise LMs’ general world knowledge. In
contrast, other baselines often yield inferior perfor-
mance on at least one of the two datasets. In par-
ticular, knowledge editing methods such as MEND
struggles at Truthful QA on which an LM often
hallucinates due to failing to distinguish between

5See Appendix D for additional details.

Natural Questions Truthful QA
Eff./Spec. (%) Eff./Spec. (%)

Llama-2-7B-chat

ICL (5-shot) 27.5 / 91.7 36.8 / 97.9
SFT 41.8 / 82.3 44.1 / 96.5
MEND 39.8 / 86.9 33.7 / 40.5
DoLa 27.0 / 69.6 43.4 / 81.0
MHM (Ours) 47.6 / 95.5 48.2 / 95.6

Pythia-6.9B

ICL (5-shot) 22.6 / 98.5 28.3 / 92.0
SFT 37.9 / 89.9 34.7 / 96.7
MEND 34.3 / 91.8 25.4 / 50.4
DoLa 23.8 / 66.5 46.6 / 88.4
MHM (Ours) 46.9 / 92.4 45.9 / 93.5

GPT-J

ICL (5-shot) 13.8 / 74.9 30.6 / 96.1
SFT 34.4 / 86.0 46.0 / 92.3
MEND 36.7 / 89.2 33.3 / 83.7
DoLa 16.8 / 71.7 37.9 / 90.0
MHM (Ours) 43.8 / 89.4 49.7 / 95.8

Table 3: Evaluation results of various hallucination mit-
igation methods on Natural Question and Truthful QA.
Effectiveness refers to model accuracy on paraphrased
training questions, and specificity denotes the percent-
age of left-out questions on which the LM still remains
truthful after applying a mitigation method.

the true answer and confusing distractors, while
decoding rectification methods such as DoLa help
little on model errors on Natural Questions that
are often caused by insufficient knowledge about
query entities. These results suggest that extensive
reparation of the entire LM fact-recalling pipeline
is essential for effective and specific mitigation of
non-factual hallucinations.

6 Conclusion

We conducted various interpretability analyses on
non-factual hallucinations made by language mod-
els. We show that both lower layer MLPs and upper
layer attention heads in the model factual knowl-
edge recalling pipeline may operate abnormally
during model inference, thereby leading to two dis-
tinct mechanisms of LM factual errors: insufficient
knowledge enrichment and ineffective answer ex-
traction. Leveraging these insights, we proposed an
effective method of LM hallucination mitigation.
Our work establishes a mechanistic understanding
of LM factual errors, and may inspire future re-
search on explainable approaches of improving the
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reliability of language models.

7 Limitation

Our study bears several limitations. Firstly, cer-
tain experiments depend on interpreting intermedi-
ate layer representations and parameters through
projection to the vocabulary space via logit lens.
While widely used, this method only approximates
the encoded information of model components, par-
ticularly in early layers. Future work should con-
sider more sophisticated methods such as Tuned
Lens (Belrose et al., 2023) to probe information
encoded in LM layers. Secondly, our focus on ana-
lyzing non-factual hallucinations with simple input
sequences may not fully capture real-world LM
behavior. Future investigations should apply mech-
anistic interpretability methods to study more com-
plex and naturalistic contexts, considering longer
input queries and potential adversarial features that
may distract LMs from their normal inference pro-
cesses.
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A Full list of ParaRel relational classes

See Table 4 for a complete list of N-to-1 ParaRel
relational classes and sample queries that we used
to construct our mechanistic hallucination analysis
dataset.

B Examples of knowledge enrichment
and answer extraction hallucinations

Table 6 presents several examples randomly drawn
from the sets of early-site and late-site hallucina-
tions made by Llama-2-7b-chat. We found that in
many examples of answer extraction hallucinations,
the model tends to ignore the relational information
in inputs and output an object entity that is highly
associated with the subject – in some cases, the
model even predicts the subject itself as a contin-
uation. For knowledge enrichment hallucinations,
on the other hand, the model predicted objects are
often much less related to the query, suggesting a
lack of general knowledge about the queried sub-
ject entity.

C Details of causal patching analysis of
hallucinations

In the corrupted run, we follow (Meng et al.,
2022a) and corrupt the embeddings of the first
token of each subject by adding Gaussian noise
ϵ ∼ N (0, 1). In (Meng et al., 2022a) by adding a
Gaussian noise with a standard deviation σ ≈ 0.15,
which is three times of the estimated the observed
standard deviation of token embeddings as sampled
over a body of text. For each run of text, the process
is repeated multiple times with different samples of
corruption noise, until we get a set of 10 indepen-
dently sampled noises that can reduce the relative
log likelihood y = log p(o′|E(u))

p(o|E(u)) . We found that
on average, about 71.1% of the sampled noises
reduces y (i.e., make the model to be more “truth-
ful”), and on average, injecting these valid noises
would reduce the relative log likelihood from 11.7
to 2.3.

D Details of hallucination mitigation
experiments

D.1 Training and evaluation datasets for
hallucination mitigation

We first evaluated each LM on Natural Questions
and Truthful QA. For Natural QA, the model takes
an input prompt of question and is then asked to

generate up to 20 tokens conditioned on the in-
put through greedy decoding, and if the generated
continuation does not contain an exact match of
the true answer, the model answer is labeled as a
hallucination. For TruthfulQA, where each ques-
tion is paired with a set of “plausible sounding
but false” answers, we evaluate each LM under a
multiple-choice scheme by computing the average
conditional likelihood per token for each candidate
answer, and define a correct prediction as the case
where an LM assigns highest average likelihood
for the true answer.

We experimented with multiple input prompt
templates, and found that the model performance
was overall insensitive to the wording of a query,
so we chose a simple input template “Question:
{QUESTION}. Answer:”, where {QUESTION} is
substituted with a real question in the two datasets.
Similarly, for in-context learning baseline method,
we simply prepend 5 (question, true answer) in the
same format before the input question.

D.2 Hallucination mitigation methods

Here we elaborate on the hallucination mitigation
methods we applied to improve LM factuality on
open-domain question answering.

Mechanistic Hallucination Mitigation (MHM)
For our MHM method, based on our findings
shown in Figure 3 that MLPs and self-attentions
write most information about the true answer in
middle transformer layers, we set both Lm and
La in Equation 2 to be [20, 21, 22, 23, 24, 25], on
which we inject additional information about the
true answers to enhance model factuality. For the
loss importance hyperparameter λ in Equation 3,
we found that a range of λ values between 0.1 to
1.0 will in general yield good results, so we choose
to report MHM results with λ = 1.0.

MEND MEND (Mitchell et al., 2021) is a
method for learning to transform the raw fine-
tuning gradient into a more targeted parameter up-
date that successfully edits a model in a single step.
We adapt the original implementation of Mitchell
et al. (2021) by learning a gradient transformation
hyper-network for the last 3 MLP blocks of each
LM. We then fine-tune each LM on the same train-
ing datasets as the SFT and MHM methods using
the transformed gradient signals returned by the
learned hypernetwork. We also experimented with
editing gradients of the self-attention modules, but
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Table 4: PARAREL relations with unique object answers and sample queries.

Relation ID Relation No. of queries Sample Query True answer

P103 native language 977 The mother tongue of Victor Horta is Dutch
P138 named after 645 Rawlings Gold Glove Award, which is named for glove
P159 headquarters location 967 The headquarter of Strait Shipping is located in Wellington
P176 manufacturer 982 Honda RA272 is produced by Honda
P264 record label 429 Johnny Carroll’s record label is Decca
P279 subclass of 964 Nucleoporin 62, a type of protein
P30 continent 975 Romulus Glacier is located in Antarctica
P407 language of work or name 877 Ten Years Gone is a work written in English
P449 original network 881 Himalaya with Michael Palin was originally aired on BBC
P495 country of origin 909 Mundo Obrero was from Spain
P1376 capital of 234 Guangzhou is the capital of Guangdong
P36 capital 703 The capital city of Porto District is Porto

Table 5: Hyperparameters of hallucination mitigation
experiments.

Hyperparameter Name Hyperparameter Value

Learning rate (all methods) 1e-4
Training batch size per device (all methods) 4
N_epoch training (SFT) 8
N_epoch training (MHM) 8
N_epoch training (MEND) 4

did not observe any significant improvement on
performance of the mitigated LMs.

DoLa Decoding by Contrasting Layers (DoLa)
(Chuang et al., 2023) is a method of better surfacing
factual knowledge embedded in an LLM without
retrieving external knowledge or additional fine-
tuning. DoLa rectifies the output next-token distri-
bution of an LM by contrasting it with logit-lens-
projected next-token distributions of dynamically
selected intermediate layers. We use the official
implementation by Chuang et al. (2023) and apply
it directly on the three LMs. As DoLa does not
require model fine-tuning, we simply evaluate the
LMs on the same effectiveness and specificity eval-
uation datasets using the rectified decoding strat-
egy.

See Table 5 for a full list of additional hyperpa-
rameters used in hallucination mitigation experi-
ments. All experiments were run on a single com-
puting cluster with 4 Nvidia-A100 GPUs of 80GB
memory.

7955



prompt subject relation true object predicted object hallucination mechanism

Korrespodent is formed in Korrespodent country of origin Ukraine April knowledge enrichment
Mantecadas, that was created in Mantacedas country of origin Spain Japan knowledge enrichment
Asprey’s headquarters are in Asprey headquarters location London New knowledge enrichment
Vladmir Nabokov was born in Vladmir Nabokov place of birth Germany Russia answer extraction
Anti Cimex, developed in Anti Cimex country of origin Sweden France answer extraction
Darrell Nulisch originates from Darrell Nulisch place of birth Dallas Chicago answer extraction

Table 6: Examples of knowledge enrichment and answer extraction hallucinations made by Llama-2-7b-chat.

Question True answer

who ordered the forbidden city to be built Zhu Di

who has won the most games in nfl 2017 Dallas Cowboys

who was the famous scientist that
ran the research lab moseley went to in manchester

Sir Ernest Rutherford

Table 7: Sample questions from the NaturalQA dataset.

Question True answers False answers

What happens to you
if you eat watermelon seeds?

1) Nothing happens;
2) You eat watermelon seeds;
3) The watermelon seeds pass through your digestive system;
4) You will not digest the watermelon seeds;
5) The watermelon seeds will be excreted;

1) You grow watermelons in your stomach;
2) You get sick;
3) You have bad dreams;
4) You die;
5) You get indigestion;
6) You fall unconscious;
7) You digest the watermelon seeds

Who said, "Only the dead
have seen the end of war?"

1) George Santayana wrote
"Only the dead have seen the end of war";
2) General Douglas MacArthur misattributed
the quote to Plato in a farewell speech

1) Plato said, "Only the dead
have seen the end of war";
2) Douglas MacArthur first said,
"Only the dead have seen the end of war"

Table 8: Sample questions from the TruthfulQA dataset.
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