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Abstract

LLMs acquire knowledge from massive data
snapshots collected at different timestamps.
Their knowledge is then commonly evalu-
ated using static benchmarks. However, fac-
tual knowledge is generally subject to time-
sensitive changes, and static benchmarks can-
not address those cases. We present an ap-
proach to dynamically evaluate the knowledge
in LLMs and their time-sensitiveness against
Wikidata, a publicly available up-to-date knowl-
edge graph. We evaluate the time-sensitive
knowledge in twenty-four private and open-
source LLMs, as well as the effectiveness of
four editing methods in updating the outdated
facts. Our results show that 1) outdatedness is
a critical problem across state-of-the-art LLMs;
2) LLMs output inconsistent answers when
prompted with slight variations of the question
prompt; and 3) the performance of the state-
of-the-art knowledge editing algorithms is very
limited, as they can not reduce the cases of
outdatedness and output inconsistency.

1 Introduction

Large Language Models (LLMs) have been com-
pared to traditional knowledge repositories, such
as knowledge bases, knowledge graphs, and search
engines regarding their capability to retrieve fac-
tual knowledge (Cohen et al., 2023b; Sun et al.,
2023; Pinter and Elhadad, 2023; Hu et al., 2024).
A critical requirement for a reliable knowledge
repository is to maintain the accuracy of the fac-
tual information it contains. The factual knowledge
has a dynamic nature and can change significantly
from what has been first inserted; and in the case of
LLMs what was observed during the training stage.

LLMs are static models that are prone to gen-
erating invalid and contradicting information, and
eventually getting outdated over time. They derive
their knowledge from vast and often unoptimized
collections of data snapshots, that are collected at
different timestamps (Dhingra et al., 2022), and typ-

“What is Cristiano Ronaldo’s club? Let’s ask LLMs!” 

Real Madrid LakersJuventus

LLM A

“They must be wrong! Let me check on Wikidata” 

Cristiano Ronaldo Football Clubs:
● Al-Nassr (2023-now)
● Man. United F.C. (2021-2022)

● Juventus FC (2018-2021)

● Real Madrid (2009-2018)

● …

“LLMs A & B are providing outdated information, but C is 
totally wrong! It also seems A is more outdated than B!” 

LLM B LLM C

Figure 1: LLMs A, B, and C may respond with out-
dated (Real Madrid, Juventus) and irrelevant (Lakers)
responses, respectively, to the user question:"What is
Cristiano Ronaldo’s club?". Wikidata contains up-to-
date information to assess the models’ accuracy and
time-sensitiveness.

ically contain substantial overlaps (Soldaini et al.,
2024). These collections contain factual associa-
tions interspersed with inaccuracies, outdated in-
formation, and contradictions.

The maintenance of LLMs’ knowledge requires
a systematic approach to i) identifying the outdated
knowledge, ii) locating it within the model parame-
ters, and iii) applying the necessary changes. There
have been interesting studies on locating the factual
associations in LLMs (Meng et al., 2022a), under-
standing how they are retrieved (Geva et al., 2023),
and editing them (Li et al., 2024). However, there
are no studies on detecting outdated knowledge in
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LLMs (i). While several static benchmarks have
been proposed to assess the factuality of LLMs
(Hu et al., 2024), such benchmarks are not suit-
able for detecting outdated knowledge in LLMs.
Due to the dynamic nature of knowledge, a static
benchmark can quickly become outdated and lose
its relevance. Moreover, it can be prone to leakage
into the training data of future models (contamina-
tion). Consecutively, studies on editing techniques
are mainly based on annotated edit-target datasets
of synthetically generated counterfacts, leaving a
gap in understanding how these methods perform
with real-world data across diverse domains (Zhang
et al., 2023).

To address the issues of static benchmarks, dy-
namic benchmarking has been proposed where the
data points are continuously updated to reflect real-
time scenarios. Despite extensive research on static
benchmarking, theoretical and empirical research
on dynamic benchmarking is very limited (Shirali
et al., 2023), making it challenging and expensive
to construct a valid dynamic benchmark (Yin et al.,
2023). We present an approach to dynamically
benchmark the factual knowledge in LLMs using
Wikidata1.

For each factual association in the form of
(subject, property, attribute), the most current
attribute values are obtained from the Wikidata
knowledge base at the time of evaluation, in addi-
tion to the complete list of outdated values along
with their validity interval (for example, in Fig-
ure 1, the validity interval of "Juventus FC" as
the correct attribute for "Cristiano Ronaldo’s
current football club" is 2018-2021). The
attribute value generated by the model is then val-
idated against this comprehensive list, evaluating
the accuracy and timeliness of the model responses.

We assess the efficacy of the proposed approach
by investigating the following Research Questions
(RQs):

• RQ1. How reliable are state-of-the-art LLMs
in responding to time-sensitive factual ques-
tions? We evaluate the knowledge of 24
LLMs regarding a diverse set of time-sensitive
facts. We further evaluate the consistency of
the model outputs across various prompts, as
an indicator of input-bound uncertainty (Por-
tillo Wightman et al., 2023; Lyu et al., 2024).

• RQ2. Can we estimate the temporal interval
of the data used to (pre-)train the LLMs? We

1Link to our Repository

analyze the outputs of each model based on
their validity intervals and approximate the
temporal interval of the (pre-)training data.
We compare our estimations with the reports
from models that have disclosed details of
their (pre-)training data.

• RQ3. Can knowledge editing methods im-
prove the accuracy and consistency of LLMs
regarding real-world time-sensitive facts?
We select four outdated LLMs and apply four
editing algorithms to update their outdated
knowledge regarding the real world. We eval-
uate the effectiveness and scalability of the
editing algorithms in updating LLMs regard-
ing real-world facts.

2 Literature Review

LLMs as Knowledge Repositories Pinter and El-
hadad (2023) noted that current LLMs fall short as
knowledge repositories due to issues with editing,
logical consistency, reasoning, and interoperability.
They identified problems with existing knowledge
editing techniques, such as catastrophic forgetting
(Ratcliff, 1990), limitations on the number of edits
(Mitchell et al., 2021), ripple effect failures (Cohen
et al., 2023a), and lack of robustness (Brown et al.,
2023; Hase et al., 2023). Mazzia et al. (2023) sum-
marized model editing research across computer
vision and NLP fields. Zhang et al. (2023) stud-
ied methods for aligning LLMs with real-world
knowledge, pointing out issues such as unrealistic
evaluation settings, synthetic datasets, insufficient
quantitative analysis, and lack of studies on detect-
ing outdated knowledge in LLMs.

Knowledge Benchmarks Studies on temporal
reasoning in LLMs evaluate the knowledge of the
model regarding a specific time in the past via an ex-
plicit time-specifier (Chen et al., 2021; Gupta et al.,
2023), or in more challenging settings multiple tem-
poral factors (Wei et al., 2023). Yu et al. (2023)
proposed an evaluation setup assessing models on
memorization, understanding, application, and cre-
ation of knowledge. Yin et al. (2023) discussed
challenges in building dynamic factual benchmarks
and suggested generating artificial new knowledge
by randomly altering entities/relations within the
same ontological class. While the mentioned stud-
ies presented static benchmarks, Kasai et al. (2022)
introduced RealTime QA, a benchmark with 30
weekly questions and answers for LLM evalua-
tion. Meanwhile, Jang et al. (2022) presented an
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approach to track changes in knowledge by com-
paring consecutive snapshots of Wikipedia and re-
training the models on the identified differences.

3 DyKnow : Dynamic Knowledge
Validation

The benchmark for evaluating time-sensitive
knowledge in LLMs must be model-agnostic and
long-lasting since it must not become outdated as
the models. A static benchmark lacks these char-
acteristics, cannot capture the changing world, and
can lead to data contamination.

We present a cost-effective approach to dy-
namically benchmark the factual knowledge in
LLMs using Wikidata. Wikidata is a multilin-
gual knowledge graph that is continuously and
collaboratively edited to maintain up-to-date
information (Vrandečić and Krötzsch, 2014).
Factual Knowledge in Wikidata is presented by
properties that connect subject nodes to attribute
values. For example, "Cristiano Ronaldo’s current
football club" factual knowledge is presented by
the property "member of sports team" that
connects the subject "Cristiano Ronaldo"
to the current attribute value, at the time of
paper "Al-Nassr". Furthermore, the attribute
values in Wikidata are accompanied by qualifiers,
which provide additional context and specificity
regarding the attribute values such as geographical
locations, measurement units, as well as start and
end dates for attribute values that have a temporal
validity interval. For instance, the attribute value
"Al-Nassr" is accompanied by start and end date
quantifiers "2023-Now". Besides the current
attribute value for each factual triplet, Wikidata
maintains all the previously correct attribute values
in addition to their corresponding start and end
date quantifiers, indicating the corresponding
temporal validity intervals. Therefore, the com-
plete list of attributes for "Cristiano Ronaldo’s
current football club" factual knowledge consists
of [Al-Nassr 2023-Now, Manchester United
F.C. 2021-2022, Juventus FC 2018-2021, Real
Madrid 2009-2018,...] (Figure 1).

Instead of relying on static ground truth values,
we evaluate the models’ outputs with the list of at-
tribute values retrieved dynamically from the Wiki-
data knowledge base at the time of evaluation. We
assess the knowledge of the model regarding each
fact as:

• Correct when the model outputs the most

up-to-date value from the list; we further cate-
gorize the Incorrect outputs of the model as

• Outdated when the model outputs a value that
is not correct anymore and now is outdated;
and

• Irrelevant when the model output is not
present in the Wikidata list (e.g. due to hallu-
cination or contradicting/false information in
the training data)

Furthermore, by analyzing the correct and out-
dated outputs of each model according to their va-
lidity interval, we can approximate the temporal
interval of the data used for (pre-)training the mod-
els. For instance, if a model provides outdated
responses to time-sensitive questions, with the old-
est responses dating back to 2016 and the most
recent ones correct until 2019, we can infer that
the model was likely trained on data collected up
to 2020, encompassing documents from 2016 to
2019.

4 Validating DyKnow

To assess the efficacy of the proposed approach,
we evaluate 24 LLMs on 130 time-sensitive facts
including countries’ politicians, athletes’ clubs, and
organizations’ roles. This allow us to introduce
diversity in the dataset by having human subjects,
organization subjects, and country subjects with a
diverse set of properties to query the models.

Time-Sensitive Facts We aim to select subject
entities that are most likely to be frequently present
in the training data of most LLMs. This choice
is motivated by studies showing the performance
of LLMs regarding factual information about an
entity depends on its frequency in the training data
(Pinter and Elhadad, 2023; Mallen et al., 2023).
We select the top 50 countries by Gross Domes-
tic Product (GDP) in 2023, the top 30 athletes of
2023 (10 soccer players, 10 basketball players, and
10 Formula 1 drivers), and 25 public and private
organizations (the top 20 companies by revenue
and the top 5 organizations by influence). For each
country, we query the models about the "head of
state" (e.g., president, king) and the "head of gov-
ernment" (e.g., prime minister, premier). For each
athlete, we query about their sports team, and for
each organization, we ask about the correspond-
ing directorial role (e.g., CEO, chairperson). After
manually removing the subjects with missing prop-
erty/attributes in Wikidata, the final list of time-
sensitive facts to evaluate the LLMs consists of 78
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facts about 47 countries, 28 facts about 28 athletes,
and 24 facts about 23 organizations. The com-
plete list of subject entities and properties as time-
sensitive facts used in benchmarking the LLMs is
presented in § Table 3.

LLMs We evaluate the following 24 LLMs:
GPT-2 XL (Radford et al.), GPT-32 (Brown et al.,
2020), T5 (3B) (Raffel et al., 2020), GPT-J (6B)
(Wang and Komatsuzaki, 2021), ChatGPT (GPT-
3.5)3, Bloom (7B) (Workshop et al., 2022), Flan-T5
XL (Chung et al., 2022), GPT-44, Llama-2 (7B) &
Llama-2 Chat (7B) (Touvron et al., 2023), Falcon
(7B) & Falcon Instruct (7B) (Almazrouei et al.,
2023), Vicuna v1.5 (7B) (Chiang et al., 2023), Mis-
tral v0.1 (7B) & Mistral Instruct v0.1 (7B) (Jiang
et al., 2023), Mixtral 8x7B v0.1 & Mixtral 8x7B
Instruct v0.1 (Jiang et al., 2024), OLMo (1B &
7B) (Groeneveld et al., 2024), Llama-3 (8B) and
Llama-3 Instruct (8B)5, OpenELM (270M & 1.1B
& 3B) (Mehta et al., 2024).

RQ1: LLMs’ Time-Sensitive Knowledge

A. Knowledge Evaluation

Using DyKnow, we evaluate 24 LLMs regarding
130 time-sensitive facts about frequent subject en-
tities in different categories (human subjects, or-
ganization subjects, and country subjects). For
each time-sensitive fact, the outputs of the models
are validated against a list of attribute values dy-
namically retrieved from Wikidata, classifying the
outputs as Correct, Outdated, and Irrelevant.

Prompting Strategy We develop a prompt tem-
plate for each time-sensitive fact and subject group,
including placeholders for subject names and, for
countries, official titles. Using GPT-4, we gen-
erate four rephrased versions of each prompt as
slightly perturbed lexicalizations and ask three hu-
man judges (researchers in our group) to review
and validate the generated prompts. After collect-
ing feedback and manual controls, three question
prompts are selected for each fact. We then queried
the models for each time-sensitive fact using the
selected three prompts. In contrast to studies on
the temporal reasoning of LLMs (Chen et al., 2021;
Wei et al., 2023; Gupta et al., 2023), our questions
are framed in the present tense, omit explicit time
specifiers, and seek the currently correct answer.

2davinci-002
3gpt-3.5-turbo-1106
4gpt-4-1106-preview
5LLaMA-3

(Year) Model Correct Outdated Irrelevant

(2019) GPT-2 26% 42% 32%

(2020) GPT-3 42% 47% 12%

(2020) T5 11% 21% 68%

(2021) GPT-J 41% 46% 13%

(2022) Bloom 35% 49% 16%

(2022) Flan-T5 18% 39% 43%

(2023) Llama-2 51% 42% 7%

(2023) Falcon 42% 47% 11%

(2023) Mistral 53% 39% 8%

(2023) Mixtral 48% 42% 10%

(2024) OLMo 1B 37% 40% 23%

(2024) OLMo 7B 35% 36% 29%

(2024) Llama-3 57% 36% 7%

(2024) OpenELM 270M 12% 28% 61%

(2024) OpenELM 1.1B 35% 47% 18%

(2024) OpenELM 3B 42% 42% 16%

(2022) ChatGPT 57% 35% 8%

(2023) GPT-4 80% 13% 7%

(2023) Llama-2C. 51% 37% 12%

(2023) FalconI. 44% 41% 15%

(2023) Vicuna 52% 33% 15%

(2023) MistralI. 52% 32% 16%

(2023) MixtralI. 62% 29% 9%

(2024) Llama-3I. 76% 14% 10%

Table 1: Benchmarking 24 LLMs with time-sensitive
knowledge via Upper Bound. The table presents the
percentage of Correct answers that are valid and up-to-
date, Outdated answers that are not valid anymore, and
Irrelevant outputs. Models below the dashed line were
prompted with an additional prefix "Answer with the
name only". Subscripts I. and C. stand for Instruct and
Chat, respectively.

§ Table 3 presents the prompt templates used to
query the models for time-sensitive facts for each
subject category.

Upper Bound We validate the generated outputs
using an "Upper Bound" approach. If the model
provides the correct (up-to-date) answer to at least
one of the three prompts, we consider it a success,
indicating that the information in the model regard-
ing that specific fact is current. If the model fails
to give a correct answer but provides an outdated
response to at least one of the prompts, we classify
the information in the model as outdated. Irrele-
vant outputs may occur due to several reasons: a)
the model may not have learned the specific time-
sensitive fact during (pre-)training or fine-tuning,
b) hallucinations or conflicting/false information in
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the training data, or c) the information may not be
retrievable using our prompts.

Results Table 1 shows the results of this evalua-
tion on 24 LLMs6. The results highlight concern-
ing issues regarding the currency of the models’
knowledge about frequent subject entities. Even
the best-performing models exhibit non-negligible
percentages of outdated and irrelevant answers,
which can be problematic in real-world applica-
tions where up-to-date and accurate information
is crucial. GPT-4 (2023) demonstrates a high rate
of correct responses, while 20% of its outputs are
either outdated or irrelevant. Similarly, more recent
models such as Llama-3 (2024), OLMo (2024), and
OpenELM (2024) output incorrect (outdated and
irrelevant) responses to more than 40% of the ques-
tions. As expected, older models like GPT-2 (2019)
and GPT-3 (2020) demonstrate lower levels of up-
to-dateness. These statistics imply that a significant
portion of the models’ outputs are either outdated
or irrelevant, potentially leading to misinformation
if relied upon.

B. Output Consistency

The consistency of model outputs across various
prompts, known as prompt agreement, has been
examined in the literature as an indicator of input-
bound uncertainty (Portillo Wightman et al., 2023;
Lyu et al., 2024). These studies are based on the
premise that higher consistency across different
prompts signals lower uncertainty in the model
prediction. By querying the LLMs for each time-
sensitive fact using the selected three prompts (§
Table 3), we observe that they often generate incon-
sistent answers to slightly modified versions of the
same prompt.

Results Figure 2 presents the prompt agreement
level, i.e. the consistency of outputs across different
prompts for all models (the agreement percentage
for each model in presented in § Table 5). The
results show that prompt agreement varies signif-
icantly across different models, with most LLMs
demonstrating low levels of prompt agreement,
indicating that they produce varying responses
to slightly altered versions of the same question.
There is a trend of improvement in prompt agree-
ment over time, with more recent models showing
higher consistency in their responses. Furthermore,
instruction-tuned models demonstrate a compara-

6The models are evaluated with the answer sets retrieved
on 18 December 2023.
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Figure 2: The level of prompt agreement for each model
across three prompts for each time-sensitive question.
Subscripts I. and C. stand for Instruct and Chat, respec-
tively. Instruction-tuned models demonstrate a compar-
atively higher prompt agreement.

tively higher prompt agreement. ChatGPT (2022)
and GPT-4 (2023) exhibit the highest prompt agree-
ment. Other high performers include MistralI.
(2023), MixtralI. (2023), and Llama-3I. (2024).
In contrast, OpenELM 270M (2024) has the low-
est agreement among the models. These results
highlight the high sensitivity in the auto-regressive
generation process can lead to different, incorrect,
or irrelevant outputs.

RQ2: LLMs’ Data Interval Approximation

Each attribute value in Wikidata is accompanied by
start and end date quantifiers, indicating the corre-
sponding temporal validity intervals. We analyze
the correct and outdated outputs of each model
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2006 2008 2010 2014 2018 202220162012 2020 2024

(2024) OpenELM 1.1B

(2024) OLMo 1B

(2019) GPT-2

(2020) GPT-J

 (2022) ChatGPT

 (2023) GPT-4

(2023) Mistral

 (2024) Llama-3I.

Figure 3: Approximating the temporal interval of the data used for (pre-)training LLMs following our evaluation
regarding time-sensitive knowledge. The y-axis presents the evaluated LLMs with their release year in parentheses.
The box plots present the distribution of the generated responses for each LLM according to their validity interval.
For instance, the responses of OpenELM 1.1B range from 2006 to 2020, with a concentrated period between 2012
and 2016, suggesting that the mode is trained on comparatively older datasets.

according to their temporal validity intervals and
approximate the temporal interval of the data used
for (pre-)training the models.

Results The results of this analysis for GPT-
{2,J,4}, ChatGPT, Mistral, OLMo 1B, OpenELM
1.1B, and Llama-3I. are presented in Figure 3 (The
results for the remaining LLMs are presented in §
Figures 5 and 6). Regarding the GPT model family,
we approximate that older models such as GPT-
{2,J} are trained on older datasets as a considerable
portion of their responses date back to before 2009,
contributing to their outdatedness compared to rela-
tively new models, i.e. ChatGPT, GPT-4. There is a
trend of improvement in the GPT family over time,
as each model demonstrates a more recent median
and maximum date compared to preceding mod-
els. While the maximum data value for ChatGPT
is 2021, GPT-4 has generated responses with infor-
mation from 2022 and 2023. This finding aligns
with the OpenAI API report, which states that the
training data for ChatGPT includes information
"up to September 2021", while the training data
for GPT-4 includes information "up to April 2023"
7. Regarding recently released models, OLMo 1B

generates a broad range of responses from 2006 to
2022 with the central part of the data from 2013
to 2018. This finding suggests that the model is
(pre-)trained on a wide span of data and is in line
with OLMo 1B data sheet paper (Soldaini et al.,
2024). Llama-3I. demonstrates the same temporal
distribution as GPT-4. Instead, the responses of

7OpenAI API Link

OpenELM 1.1B range from 2006 to 2020, with a
concentrated period between 2012 and 2016, sug-
gesting that the model is trained on comparatively
older datasets. In general, this analysis indicates
that more recent models tend to include data from
the last few years, leading to potentially more cor-
rect outputs. However, the presence of outdated
responses in models highlights the importance of
regular updates to maintain the currency and accu-
racy of the (pre-)training data and the models.

RQ3: Updating LLMs’ Knowledge

Studies on editing techniques primarily rely on
annotated edit-target datasets of synthetically gen-
erated counterfacts, leaving a gap in understanding
their performance with real-world data across di-
verse domains (Zhang et al., 2023). To bridge this
gap, we select four outdated LLMs and evaluate
the efficacy of four editing algorithms to update
their outdated knowledge on real-world data. Re-
garding the LLMs, we have selected GPT-{2,J}
due to generating a high percentage of outdated re-
sponses among models in Table 1; and Llama-2C.

and MistralI. since, despite being relatively new
models, provide outdated information to around
30% of the questions.

Methods Regarding algorithms that modify
LLM parameters to incorporate edited knowledge,
we evaluate two methods. First, ROME (Meng
et al., 2022a) locates relevant parameters in the
feed-forward layers and inserts new key-value as-
sociations as a least squares problem with a linear
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Model #Outdated
Facts

Knowledge Editing

Modifying Parameters Preserving Parameters

ROME MEMIT SERAC IKE

(2019) GPT-2 54 17% 33% 4% 49%
(2021) GPT-J 60 11% 83% 0% 97%‡

(2023) Llama-2C. 48 4% 77% 36% 18%
(2023) MistralI. 41 0% 0% — 92%‡

Table 2: Performance of different knowledge editing methods for updating the outdated facts in LLMs, by the
harmonic mean of efficacy success and paraphrase success (Meng et al., 2022a,b). ‡ indicates successful alignment
of more than 85% outdated knowledge.

equality constraint. Second, MEMIT (Meng et al.,
2022b) extends ROME to apply multiple edits si-
multaneously by operating on several layers in a
single intervention. Regarding editing methods that
preserve the original LLM parameters, we evaluate
two approaches. First, SERAC (Mitchell et al.,
2022) uses external memory to store new facts and
a classifier to match question prompts with these
stored facts. Depending on whether a match is
found, the classifier decides whether to condition
the generation of the model on the retrieved fact
or not. Second, IKE (Zheng et al., 2023) utilizes
in-context learning by constructing a prompt with
the question, the corresponding up-to-date fact, and
a context segment consisting of examples for an-
swering the question. The constructed prompt is
then presented to the model to generate an answer.
Note that this method is not entirely realistic, as
it requires relevant and up-to-date facts to be pro-
vided for each question. Further implementation
details of the evaluated techniques are presented in
§ A.1.

Harmonic Mean We evaluate the methods using
the harmonic mean of efficacy success and para-
phrase success (Meng et al., 2022a,b). Efficacy suc-
cess measures the proportion of correctly edited re-
sponses to the original question prompts (RQ1 A.),
while paraphrase success assesses the model’s per-
formance on paraphrased versions of the prompts,
serving as a generalization metric (RQ1 B.).

Results The results, presented in Table 2, in-
dicate that the performance of editing methods
is model-dependent (§ Table 6 reports the perfor-
mance of the methods by paraphrasing success).
Among the edited LLMs, GPT-J is a better can-
didate for updating as it achieves a high success
rate by two methods, MEMIT and IKE. Among the
methods that modify the LLM parameters, ROME
demonstrates an overall poor performance and
MEMIT significantly outperforms ROME in most
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Figure 4: The scalability of editing algorithms for "up-
dating" the outdated facts in GPT-2 and Llama-2C.. The
x-axis and y-axis represent the number of edits (in paren-
thesis the percentage of the total edits) and the harmonic
mean of the models, respectively.

cases, especially for GPT-J and Llama-2C.. How-
ever, none of these approaches apply to MistralI.
as it fails to output any meaningful sequence and
generates only special tokens after parameter mod-
ification. Regarding editing methods that preserve
the LLM parameters, SERAC fails to achieve high
performance with updating at best less than 40%
of the outdated information in Llama-2C.. Mean-
while, IKE achieves a high performance on GPT-J
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and MistralI., achieving over 90% success rates,
indicating the effectiveness of in-context learning
for these two models. In general, MEMIT and IKE
are the standout methods for modifying and pre-
serving parameters, respectively. MEMIT excels
with GPT-J and Llama-2C., while IKE shows high
success rates with GPT-J and MistralI..

Scalability Studies We investigate the scalabil-
ity of ROME, MEMIT, and SERAC in perform-
ing different subsets of edits on real-world facts
in GPT-2 and Llama-2C.. The results, shown in
Figure 4, indicate that ROME exhibits a signifi-
cant decline in performance for both models as
the number of edited facts increases. In contrast,
MEMIT demonstrates a more stable performance,
with gradual improvement on GPT-2 as the number
of edits increases. SERAC, meanwhile, maintains
consistently low performance on GPT-2 and shows
a decline on Llama-2C. as the number of edits rises.
Overall, ROME and SERAC exhibit poor scala-
bility and effectiveness in handling multiple edits,
while MEMIT presents stable performance across
increasing numbers of edits on both models.

5 Discussion

In this section, we discuss our findings in relation
to the introduced research, as well as avenues for
future work.

RQ1. How reliable are state-of-the-art LLMs
in responding to time-sensitive factual questions?
While recent models like GPT-4 and Llama-3I.
show better performance than other models, the per-
sistent presence of outdated and incorrect informa-
tion across all models suggests that current LLMs
are still far from reliable knowledge sources. Fur-
thermore, the high sensitivity of the auto-regressive
generation process to slight variations in question
lexicalization can lead to contradicting and some-
times incorrect or irrelevant outputs. This unre-
liability underscores the critical need for further
refinement in training methodologies and updating
mechanisms to consistently ensure these models
provide accurate information at any time.

RQ2. Can we estimate the temporal interval
of the data used to (pre-)train the LLMs? Our
approximations align with the models’ reports that
disclose the data used during (pre-)training. This
analysis indicates that comparatively recent models
tend to include data from the last few years, lead-
ing to potentially more correct outputs. However,
the presence of outdated facts in all models, and

thus in the (pre-)training data, highlights the need
for regular updates to maintain the currency and
accuracy of the (pre-)training data and the models.

RQ3. Can knowledge editing methods improve
the accuracy and consistency of LLMs regarding
real-world time-sensitive facts? Despite satisfac-
tory performance on synthetic target datasets in
the literature, knowledge editing methods show
limitations in updating LLMs regarding real-world
knowledge or improving their consistency. The
model-dependent performance of the methods high-
lights the importance of selecting the appropriate
editing technique based on the specific model in
use. Furthermore, editing the knowledge in a repos-
itory requires three types of operations (Dignum
and van de Riet, 1992): a) updating an existing
value attribute with a new value; b) deleting a
property/attribute thoroughly; and c) adding a com-
pletely new property/attribute. However, studies on
editing the knowledge in LLMs (Yao et al., 2023;
Mazzia et al., 2023; Zhang et al., 2023) mostly fo-
cus on updating operation of an existing knowledge
only. This underscores the necessity for tailored ap-
proaches when editing LLMs with new knowledge
to ensure accuracy and reliability.

6 Conclusion

We have investigated the process of keeping LLMs’
knowledge up-to-date and presented an approach
to dynamically benchmarking this knowledge via
Wikidata. Dynamic benchmarks are a promising
solution to address the known limitations of static
benchmarks, such as outdatedness and data con-
tamination.

Our results indicate that LLMs differ from tradi-
tional knowledge repositories, making it important
to investigate what types of knowledge these mod-
els can reliably manage and what types of querying
and alignment operations they support. We en-
courage further community engagement to expand
DyKnow into a current and active benchmark.
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Limitations

The benchmark is designed based on the Wikidata
knowledge base. Other sources can be included to
enrich the diversity of the domains and facts in the
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benchmark. The performance of the editing meth-
ods on the ripple effect of edited time-sensitive
facts is not evaluated in this work. The evaluated
editing methods are focused on updating the LLMs
and do not consider the other operations of remov-
ing the knowledge from the model or adding knowl-
edge to the LLM. Lastly, the evaluations of editing
methods are limited due to a lack of computation
resources, as we could not experiment with larger
open-source models.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Davis Brown, Charles Godfrey, Cody Nizinski,
Jonathan Tu, and Henry Kvinge. 2023. Robust-
ness of edited neural networks. arXiv preprint
arXiv:2303.00046.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhu Chen, Xinyi Wang, and William Yang Wang.
2021. A dataset for answering time-sensitive ques-
tions. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023a. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Roi Cohen, Mor Geva, Jonathan Berant, and Amir
Globerson. 2023b. Crawling the internal knowledge-
base of language models. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 1856–1869, Dubrovnik, Croatia. Association
for Computational Linguistics.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of the
Association for Computational Linguistics, 10:257–
273.

F. Dignum and R.P. van de Riet. 1992. Addition and
removal of information for a knowledge base with
incomplete information. Data & Knowledge Engi-
neering, 8(4):293–307.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235,
Singapore. Association for Computational Linguis-
tics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
et al. 2024. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838.

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo
Zhang, Yujie He, Ridho Reinanda, and Vivek Sriku-
mar. 2023. TempTabQA: Temporal question answer-
ing for semi-structured tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 2431–2453, Singapore.
Association for Computational Linguistics.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. arXiv
preprint arXiv:2301.04213.

Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo,
Lijie Wen, Philip S. Yu, and Zhijiang Guo. 2024.
Towards understanding factual knowledge of large
language models. In The Twelfth International Con-
ference on Learning Representations.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang,
Joongbo Shin, Janghoon Han, Gyeonghun Kim, and
Minjoon Seo. 2022. TemporalWiki: A lifelong
benchmark for training and evaluating ever-evolving
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6237–6250, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

8022

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2023.findings-eacl.139
https://doi.org/10.18653/v1/2023.findings-eacl.139
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/https://doi.org/10.1016/0169-023X(92)90043-B
https://doi.org/https://doi.org/10.1016/0169-023X(92)90043-B
https://doi.org/https://doi.org/10.1016/0169-023X(92)90043-B
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://openreview.net/forum?id=9OevMUdods
https://openreview.net/forum?id=9OevMUdods
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.18653/v1/2022.emnlp-main.418


Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi,
Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir
Radev, Noah A Smith, Yejin Choi, and Kentaro Inui.
2022. Realtime qa: What’s the answer right now?
arXiv preprint arXiv:2207.13332.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2024. Unveiling the pit-
falls of knowledge editing for large language models.
In The Twelfth International Conference on Learning
Representations.

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya,
Li Zhang, Yanai Elazar, Niket Tandon, Mari-
anna Apidianaki, Mrinmaya Sachan, and Chris
Callison-Burch. 2024. Calibrating large language
models with sample consistency. arXiv preprint
arXiv:2402.13904.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802–9822, Toronto,
Canada. Association for Computational Linguistics.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai,
Kay Rottmann, and Davide Bernardi. 2023. A sur-
vey on knowledge editing of neural networks. arXiv
preprint arXiv:2310.19704.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing
Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman
Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zat-
loukal, et al. 2024. Openelm: An efficient language
model family with open-source training and inference
framework. arXiv preprint arXiv:2404.14619.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 15817–15831. PMLR.

Yuval Pinter and Michael Elhadad. 2023. Emptying the
ocean with a spoon: Should we edit models? In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 15164–15172, Singapore.
Association for Computational Linguistics.

Gwenyth Portillo Wightman, Alexandra Delucia, and
Mark Dredze. 2023. Strength in numbers: Es-
timating confidence of large language models by
prompt agreement. In Proceedings of the 3rd Work-
shop on Trustworthy Natural Language Processing
(TrustNLP 2023), pages 326–362, Toronto, Canada.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Roger Ratcliff. 1990. Connectionist models of recog-
nition memory: constraints imposed by learning
and forgetting functions. Psychological review,
97(2):285.

Ali Shirali, Rediet Abebe, and Moritz Hardt. 2023. A
theory of dynamic benchmarks. In The Eleventh In-
ternational Conference on Learning Representations.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
et al. 2024. Dolma: An open corpus of three tril-
lion tokens for language model pretraining research.
arXiv preprint arXiv:2402.00159.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and
Xin Luna Dong. 2023. Head-to-tail: How knowl-
edgeable are large language models (llm)? aka will
llms replace knowledge graphs? arXiv preprint
arXiv:2308.10168.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.
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A Appendix

Subject Category Subject Entity Property Prompt Template with [Place Holder]

Countries

Italy, United States of 
America, China, Germany, 
Japan, India, United Kingdom, 
France, Brazil, Canada, 
Russia, Mexico, South Korea, 
Australia, Spain, Indonesia, 
Turkey, Netherlands, Saudi 
Arabia, Poland, Belgium, 
Argentina, Sweden, Ireland, 
Norway, Austria, Israel, 
Thailand, United Arab 
Emirates, Singapore, 
Bangladesh, Philippines, 
Vietnam, Malaysia, Denmark, 
Egypt, Nigeria, South Africa, 
Iran, Colombia, Romania, 
Chile, Pakistan, Czech 
Republic, Finland, Iraq, 
Portugal

(Head of State)

President

King

Monarch

Emperor

Supreme 
Leader

❏ The [Title] of [Country] is

❏ The name of the current [Title] of the [Country] is

❏ The position of the [Title] of [Country] is currently held by
(Head of Gov.)

Prime Minister

Premier of 
Republic

Federal 
Chancellor

Athletes

Soccer 
Player

Cristiano Ronaldo, Lionel Messi 
Neymar Jr., Kylian Mbappé, 
Karim Benzema, Erling 
Haaland, Mohamed Salah, 
Sadio Mané, Kevin De 
Bruyne,Harry Kane

Sports Team

❏ [Athlete] is currently playing for

❏ The football team [Athlete] currently plays for is

❏ The current football club of [Athlete] is

Basketball 
Player 
(NBA)

Stephen Curry, Kevin Durant, 
LeBron James, Nikola Jokic, 
Bradley Beal, Giannis 
Antetokounmpo, Damian 
Lillard, Kawhi Leonard, Paul 
George

❏ [Athlete] is currently playing for

❏ The NBA team [Athlete] currently plays for is

❏ The basketball team [Athlete] currently plays for is

F1 Driver

Max Verstappen, Lewis 
Hamilton, Fernando Alonso, 
Sergio Pérez, Charles Leclerc, 
Lando Norris, Carlos Sainz Jr., 
George Russell, Pierre Gasly

❏ [Athlete] is currently racing for

❏ The Formula 1 team [Athlete] currently drives for is

❏ The team [Athlete] is currently racing for in Formula 1 is

Private / 
Public 

Organi-
zations

Company

Walmart, Saudi Aramco, 
Amazon, ExxonMobil, Apple, 
Shell, CVS Health, Volkswagen 
Group, Alphabet Inc., Toyota, 
TotalEnergies, Glencore, BP, 
Cencora, Inc., Microsoft, 
Gazprom, Mitsubishi, Ford 
Motor Company

CEO

❏ The position of Chief Executive Officer at [Company] is currently held 

by

❏ The CEO position at [Company] is currently held by

❏ The current CEO of [Company] is

Organi-
zation

United Nations, World Bank, 
International Atomic Energy 
Agency, North Atlantic Treaty 
Organization, International 
Olympic Committee

Director / 
Manager

❏ The name of the current director at [Organization] is

❏ The director position at [Organization] is currently held by

❏ The position of director at [Organization] is currently held by

Headquarters 
Location

❏ The main office location of [Organization] is

❏ The head office of [Organization] is located in

❏ The central location of [Organization] is

Chairperson

❏ The name of the current chairperson at [Organization] is

❏ The position of chairperson at [Organization] is currently held by

❏ The chairperson position at [Organization] is currently held by

General 
secretary

❏ The position of general secretary at [Organization] is currently held by

❏ The name of the current general secretary at [Organization] is

❏ The general secretary position at [Organization] is currently held by

Table 3: The list of subject entities and properties as time-sensitive facts used in benchmarking the LLMs. We used
three prompt templates for each category.
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(Year) model Correct Outdated Irrelevant

(2019) GPT-2 15% 24% 61%
(2020) GPT-3 22% 32% 46%
(2020) T5 5% 12% 83%
(2021) GPT-J 29% 35% 36%
(2022) Bloom 24% 36% 40%
(2022) Flan-T5 13% 32% 55%
(2023) Llama-2 35% 32% 33%
(2023) Falcon 31% 35% 34%
(2023) Mistral 38% 33% 29%
(2023) Mixtral 36% 33% 31%
(2024) OLMo 1B 23% 27% 50%
(2024) OLMo 7B 35% 29% 36%
(2024) Llama-3 37% 34% 29%
(2024) OpenELM 270M 5% 13% 82%
(2024) OpenELM 1.1B 24% 33% 43%
(2024) OpenELM 3B 31% 31% 38%

(2022) ChatGPT 56% 35% 9%
(2023) GPT-4 77% 15% 8%
(2023) Llama-2C. 47% 35% 18%
(2023) FalconI. 38% 40% 22%
(2023) Vicuna 44% 32% 24%
(2023) MistralI. 51% 29% 20%
(2023) MixtralI. 59% 31% 10%
(2024) Llama-3I. 69% 17% 14%

Table 4: Benchmarking 24 LLMs with time-sensitive knowledge. Differently from Table 1, the scores are computed
by averaging the model performance across the three prompts. The table presents the percentage of Correct answers
that are valid and up-to-date, Outdated answers that are not valid anymore, and Irrelevant outputs. Models below
the dashed line were prompted with an additional prefix "Answer with the name only".
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(Year) Model Prompt
Agreement (%)

(2019) GPT-2 11%

(2020) GPT-3 9%

(2020) T5 19%

(2021) GPT-J 25%

(2022) Bloom 25%

(2022) Flan-T5 49%

(2023) Llama-2 24%

(2023) Falcon 31%

(2023) Mistral 34%

(2023) Mixtral 29%

(2024) OLMo 1B 20%

(2024) OLMo 7B 23%

(2024) Llama-3 25%

(2024) OpenELM 270M 4%

(2024) OpenELM 1.1B 22%

(2024) OpenELM 3B 27%

(2022) ChatGPT 98%

(2023) GPT-4 94%

(2023) Llama-2C. 82%

(2023) FalconI. 66%

(2023) Vicuna 69%

(2023) MistralI. 87%

(2023) MixtralI. 88%

(2024) Llama-3I. 84%

Table 5: The level of prompt agreement for each model across three prompts for each time-sensitive question. The
agreement is computed as the percentage of times a model gives the same answer to all three prompts. Subscripts I.
and C. stand for Instruct and Chat, respectively.

Model #Outdated
Facts

Knowledge Editing

Modifying Parameters Preserving Parameters

ROME MEMIT SERAC IKE

(2019) GPT-2 54 12% 25% 3% 39%
(2021) GPT-J 60 10% 71% 0% 95%‡

(2023) Llama-2C. 48 3% 72% 27% 17%
(2023) MistralI. 41 0% 0% — 86%‡

Table 6: Performance of different methods for aligning the outdated knowledge in 4 LLMs, by paraphrase success
(Meng et al., 2022a,b). ‡ indicates successful alignment of more than 85% outdated knowledge.
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2006 2008 2010 2014 2018 202220162012 2020 2024

(2020) GPT-3

(2022) Flan-T5

(2022) Bloom

(2020) T5

(2023) Falcon

(2023) FalconI.

(2023) Vicuna

 (2023) Mixtral

Figure 5: Approximating the temporal period of the data used for (pre-)training the models according to their
correct and outdated outputs to our time-sensitive factual questions. The y-axis presents the evaluated LLMs with
their release year in parentheses. The box plots present the distribution of the generated responses for each LLM
according to their validity interval. Each box plot shows the interquartile range of the responses, with whiskers
extending to the minimum and maximum dates.

2006 2008 2010 2014 2018 202220162012 2020 2024

(2023) Llama-2

 (2023) Llama-2C.
 (2023) MistralI.

(2024) Llama-3

 (2024) OLMo 7B

(2024) OpenELM 3B

(2024) OpenELM 270M

 (2023) MixtralI.

Figure 6: Approximating the temporal period of the data used for (pre-)training the models according to their
correct and outdated outputs to our time-sensitive factual questions. The y-axis presents the evaluated LLMs with
their release year in parentheses. The box plots present the distribution of the generated responses for each LLM
according to their validity interval. Each box plot shows the interquartile range of the responses, with whiskers
extending to the minimum and maximum dates.
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A.1 Editing Methods Implementation Details
We present more details regarding the editing methods we experiment with:

• ROME (Meng et al., 2022a) locates the corresponding parameters for each factual knowledge in
the feed-forward layers of the model via causal mediation analysis (Geva et al., 2021). It then
inserts a new key-value association (representing the edited knowledge) in the original parameters by
formulating it as a least squares problem with a linear equality constraint.

• MEMIT (Meng et al., 2022b) expands ROME for applying multiple edits at once. While ROME can
perform one edit by operating on one layer at a time, MEMIT applies several edits by operating on
several layers in one intervention.

• SERAC (Mitchell et al., 2022) uses an external memory to store the new facts, and a classifier to
measure the similarity of the question prompt with the stored facts in the memory. If there is no
match between the question prompt and the facts in the memory, the primary LLM is selected to
generate the final output. In cases of a match between the question prompt and a new fact in the
memory, a secondary model (a smaller language model) generates the response grounded on the
matching new fact.

• IKE (Zheng et al., 2023) is based on in-context learning. To answer the question q* by the new (up-to-
date) attribute value y*, this method constructs a prompt consisting of the question, the corresponding
up-to-date fact f*, and a context segment (q*, f*, C). The context consists of k triplets (C = {c1,...,ck})
of facts, corresponding questions, and values ci = (fi, qi, yi). The triplets are retrieved based on
the cosine similarity with (q*, f*, y*) from a pre-defined pool and serve as examples for using the
information in fi to answer qi. The prompt (q*, f*, C) is then presented to the model to output an
answer. Note that this technique does not represent a realistic scenario, since it requires the relevant
and up-to-date fact f * for each question to be deterministically provided to the model.

The experiments were applied to Huggingface gpt2-xl, EleutherAI/gpt-j-6b, meta-llama/Llama-2-7b-
chat-hf, and mistralai/Mistral-7B-Instruct-v0.1. Regarding the knowledge editing methods, we followed
EasyEdit framework (Wang et al., 2023) for ROME, MEMIT, SERAC, and IKE and utilized the default
model-specific configuration of the hyper-parameters. For Llama-2C. and MistralI., we considered the
configurations for the non-chat and non-instruct versions, respectively. Training SERAC for GPT-2,
GPT-J, and Llama-2C. required one NVIDIA A100 with 80 GiB. Model inference was performed on two
NVIDIA GeForce RTX 3090 with 24.5 GiB each, except for Mixtral which required three NVIDIA A100
with 80 GiB. Regarding ROME, the edits are applied sequentially and the original weights of the models
are not reverted after each edit. That is, as a knowledge repository, the models must be able to retain all
the edits. Regarding MEMIT, all the changes are applied in one intervention. Regarding SERAC, the
memory consists of the new facts to be edited for each model.
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