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Abstract

Current long-context benchmarks primarily fo-
cus on retrieval-based tests, requiring Large
Language Models (LLMs) to locate specific in-
formation within extensive input contexts, such
as the needle-in-a-haystack (NIAH) benchmark.
Long-context generation refers to the ability
of a language model to generate coherent and
contextually accurate text that spans across
lengthy passages or documents. While recent
studies show strong performance on NIAH
and other retrieval-based long-context bench-
marks, there is a significant lack of bench-
marks for evaluating long-context generation
capabilities. To bridge this gap and offer a
comprehensive assessment, we introduce a syn-
thetic benchmark, LongGenBench, which is
designed to evaluate the long-context gener-
ation capabilities of large language models
(LLMs), with a particular focus on consistency
in logical flow. LongGenBench redesigning
the format of questions and necessitating that
LLMs respond with a single, cohesive long-
context answer. Upon extensive evaluation us-
ing LongGenBench, we observe that: (1) both
API accessed and open source models exhibit
performance degradation in long-context gen-
eration scenarios, ranging from 1.2% to 47.1%;
(2) different series of LLMs exhibit varying
trends of performance degradation, with the
GEMINI-1.5-FLASH model showing the least
degradation among API accessed models, and
the QWEN2 series exhibiting the least degra-
dation in LongGenBench among open source
models.

1 Introduction
1 Large Language Models (LLMs) have become
pivotal in tackling NLP downstream tasks such as
summarization and question answering that require
interpreting extensive context from books, reports,
and documents, sometimes spanning tens of thou-
sands of tokens (Raffel et al., 2020; Brown et al.,
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Figure 1: Performance Comparison of LLMs on
GSM8K and MMLU datasets using LongGenBench
to assess their long-context generation capabilities. It is
observed that mainstream LLMs exhibit performance
degradation when tasked with long-context generation.

2020; Chowdhery et al., 2022; Tay et al., 2022;
Touvron et al., 2023; Tang et al., 2023; Zhang et al.,
2023). Recent advances in long-context technology
in ML system field (Dao et al., 2022; Dao, 2024;
Jacobs et al., 2023; Xiao et al., 2024) and model ar-
chitecture design (Chen et al., 2023a; Xiong et al.,
2023; Chen et al., 2023b; Peng et al., 2024; Dong
et al., 2024) have significantly improved the abil-
ity of LLMs to process increasingly large input
context lengths (Liu et al., 2024a; Young et al.,
2024), such as Gemini-1.5-pro model can handle
the 1,500-page document (Reid et al., 2024). Al-
though previous studies (AI21, 2024; X.AI, 2024;
Reid et al., 2024; Anthropic, 2024; DeepSeek-AI,
2024) often employ synthetic tasks like passkey
retrieval (Mohtashami and Jaggi, 2023) and needle-
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in-a-haystack (NIAH) (Kamradt, 2023) to evaluate
the long-context capability of these LLMs, such
tasks primarily test retrieval skills and do not fully
assess other aspects of long-context generation.

Long-context generation refers to the ability of
a language model to generate coherent and contex-
tually accurate text that spans across a lengthy pas-
sage or document. This capability involves main-
taining the thematic continuity, logical flow, and
consistency of details over extended sequences of
text, which can include multiple paragraphs, pages,
or even entire documents.

To facilitate further research in this area, we
propose the Long-context Generation benchmark
(LongGenBench), a new benchmark specifically
designed to evaluate the long-context generation
capabilities of LLMs, with a particular focus on
consistency in logical flow. LongGenBench synthe-
sizes a dataset from current popular LLM bench-
marks, redesigns the input format, and includes
multiple questions within a single query. The
LongGenBench requires LLMs to generate a com-
prehensive long-context response that sequentially
addresses each question. To achieve better perfor-
mance in LongGenBench, LLMs need to maintain
consistency regardless of whether the previous gen-
eration part is correct or incorrect. In LongGen-
Bench, evaluating the quality of these long-context
responses is straightforward: simply compare the
generated answers with the ground truth.

Our study evaluates the performance of vari-
ous language models using the LongGenBench
approach across different datasets, specifically
LongGenBench-MMLU, LongGenBench-GSM8K,
and LongGenBench-CSQA. Figure 1 displays the
performance of four powerful API accessed mod-
els tested in both the baseline scenario, which in-
volves single-answer generation, and the LongGen-
Bench scenario, which focuses on long-context
generation. It is notable that the Gemini-1.5-Flash
model exhibits the lowest performance degradation
in long-context generation tasks, surpassing the
GPT-4o. Additionally, we conducted analyses on
open-source models, revealing a general correla-
tion between baseline performance and LongGen-
Bench performance. Models with higher baseline
scores tend to show smaller declines in long-
context generation tasks. Models like Qwen2-
72B-Instruct and DeepSeek-v2-Chat, both with
high baseline scores, also exhibit minimal perfor-
mance degradation. However, there are excep-
tions, such as LLaMA-3-70B-Instruct, which, de-

spite its high baseline performance, experiences
significant performance drops. Moreover, model
size influences performance, as larger models
within the same series, such as the LLaMA-3
and Qwen2 series, demonstrate smaller declines.
Different architectures show varying trends in
performance degradation; for example, LLaMA-
3-8B-Instruct shows a performance degradation
of 47.1% on GSM8K, while ChatGLM4-9B-Chat
only experiences a 10.8% drop, despite having sim-
ilar baseline performances. Consistency across
tasks is observed, with models like LLaMA-3-8B-
Instruct consistently showing significant drops on
all datasets, whereas models such as Qwen2-72B-
Instruct and DeepSeek-v2-Chat maintain minimal
declines across all datasets, underscoring their re-
silience in long-context generation tasks. These
findings highlight the varying capabilities of differ-
ent models to maintain accuracy over extended text
generation and provide valuable insights for future
model development and optimization.

Our contributions are as follows:
• We introduce LongGenBench, an effective ap-

proach for evaluating the long-context generation
capabilities of language models across multiple
datasets.

• We provide a comprehensive performance com-
parison between API accessed and open source
models under the LongGenBench framework, re-
vealing insights into how different models handle
long-context generation tasks.

• Our analysis uncovers critical relationships in
long-context generation tasks, including the
correlation between baseline performance and
LongGenBench performance, the impact of
model size on performance decline, and the
variation among different model architectures.
Our detailed experiments establish consistent
trends in performance degradation across differ-
ent LongGenBench tasks, highlighting the impor-
tance of model resilience in long-context genera-
tion.

2 Related Work

2.1 Long-context Language Models
Recent advancements in techniques such as effi-
cient attention, long-term memory, extrapolative
positional embedding, and context processing have
spurred the development of numerous long-context
LLMs (Huang et al., 2023). Efficient attention
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Figure 2: Illustrations of previous long-context benchmarks and our proposed approach. (a) Retrieval task: requires
LLMs to retrieve the magic information hidden within an unrelated long context. (b) Understanding task: requires
LLMs to comprehensively understand a long essay and answer the specific question. (c) Our approach: reconstructs
the format of the dataset, requiring LLMs to sequentially understand and respond to each question in a single
response. We run multiple iterations with different questions to evaluate the robustness of long-context generation
capabilities. The length of the generated responses aims to approach the token limit.

mechanisms like Flash attention (Dao et al., 2022;
Dao, 2024) and Ring attention (Liu et al., 2023)
have dramatically reduced memory demands for
processing extensive contexts. Moreover, sparse at-
tention methods, including shifted sparse attention
in LongLoRA (Chen et al., 2023b), dilated atten-
tion (Ding et al., 2023), and attention sinks (Han
et al., 2023; Xiao et al., 2024), further enhance
long-context capabilities. For long-term memory,
efficiency is achieved by caching previous contexts
using recurrent mechanisms (Zhang et al., 2024b;
Bulatov et al., 2023; Martins et al., 2022; Wu et al.,
2022; Mohtashami and Jaggi, 2023). Techniques
for extrapolative positional embedding include AL-
iBi (Press et al., 2022), xPOS (Sun et al., 2023), and
RoPE (Su et al., 2024), along with their variants
(Chen et al., 2023a; Xiong et al., 2023; Peng et al.,
2024; Liu et al., 2024b; Ding et al., 2024; Zhu et al.,
2023). In terms of context processing, key informa-
tion is retained through retrieval augmentation (Xu
et al., 2023; Wang et al., 2023; Tworkowski et al.,
2024) and prompt compression (Jiang et al., 2023).
Innovative architectural designs such as state-space
models (Gu et al., 2022; Fu et al., 2022; Poli et al.,
2023; Fu et al., 2023a; Gu and Dao, 2023; Dao and

Gu, 2024) and RWKV (Peng et al., 2023) are also
being developed to effectively manage long-context
inputs.

2.2 Evaluation for Long-context Language
Models

Numerous investigations into long-context model
benchmarks have primarily focused on retrieval
and understanding tasks. In the realm of retrieval
benchmarks, the datasets used are predominantly
synthetic, enabling precise control over experimen-
tal conditions, such as input token length, and min-
imizing the influence of varied parametric knowl-
edge from different training strategies. Recent re-
search has extensively focused on synthetic tasks
designed for retrieval (Kamradt, 2023; Mohtashami
and Jaggi, 2023; Li et al., 2023; Liu et al., 2024c;
Hsieh et al., 2024; Hu et al., 2024a,b; Zhang et al.,
2024a), with additional studies exploring the use of
long contexts for various types of reasoning (Tay
et al., 2021). For understanding benchmarks, Long-
Bench (Bai et al., 2023b) includes evaluations in
a bilingual context, covering long-document ques-
tion answering, summarization, and code comple-
tion tasks. ZeroSCROLLS (Shaham et al., 2023)
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and L-Eval (An et al., 2023) assess a wide array
of realistic natural language tasks, such as long-
document question answering and query-driven
summarization. ∞-Bench (Zhang et al., 2024c) of-
fers challenges that involve content spanning more
than 100,000 tokens.

3 LongGenBench

We propose LongGenBench, a synthetic bench-
mark that is an efficient, low-cost approach focused
on evaluating long-context generation in LLMs.

3.1 Motivation

Traditionally, evaluating LLMs for long-context
scenarios involves inputting lengthy essays into the
models, followed by either retrieval or comprehen-
sion questions as depicted in Figure 2(a) and (b).
The token length of these essays typically ranges
from {4K, 8K, 16K, 32K, 64K, 128K}, with ad-
vanced long-context LLMs like Gemini-1.5 (Reid
et al., 2024) being tested up to 1M tokens. However,
these benchmarks tend to focus predominantly on
the prompt tokens or input content, often neglect-
ing the completion tokens or output content and
the evaluation of performance regarding these as-
pects. Furthermore, traditional long-context bench-
marks such as the NIAH test are costly, with a
128K NIAH test consuming 8M tokens.

Algorithm 1 Pipeline of LongGenBench
Require: System Prompt S, Questions Q, Num-

ber of Questions K, Number of Iterations T ,
Language Model LLM

Ensure: Long-Context Responses R
1: R← ∅
2: for t← 0 to T − 1 do
3: Qt ← Q[t×K : (t+ 1)×K]
4: InputPrompt← S + concatenate(Qt)
5: Response← LM.gen(InputPrompt)
6: ParsedResponse← parse(Response)
7: R← R ∪ {ParsedResponse}
8: verify(ParsedResponse,Qt)
9: end for

10: return R

3.2 Problem Definition

In LongGenBench, the initial step involves re-
designing the input prompt format to enable LLMs
to generate long-context responses as illustrated
in Figure 2(c). We refine the system prompt and

restructure the question format so that K ques-
tions are sequentially concatenated after the system
prompt. Subsequently, the LLMs are expected to
adhere to this redesigned prompt and produce a
coherent long-context response that answers all
K questions. These responses are then parsed to
verify the answers to the K questions, where the
LLMs must maintain both the sequence and ac-
curacy to demonstrate improved performance in
LongGenBench. This process is repeated for T
iterations to assess the robustness of the LLMs’
long-context generation capabilities at each length,
with each iteration featuring unique questions.

The Algorithm 1 gives a pseudocode outline for
the LongGenBench. The system prompt S con-
tains instructional information, while Q is a list
of questions from the original dataset. For each
iteration t, a batch of K questions, Qt, is selected
from Q within the range [t×K : (t+1)×K]. The
selected questions are concatenated to the system
S to form the InputPrompt. The language model
LLM generates a long-context response for the
given InputPrompt. The response is added to the
response set R, then parsed and verified for cor-
rectness and sequence. This process is repeated for
T iterations, with each iteration featuring a unique
set of questions. The final output is the set of long-
context responses R.

During the generation process, LLMs may accu-
mulate correct or incorrect reasoning steps, which
fall within the scope of LongGenBench’s evalu-
ation. These models might generate errors dur-
ing a single long-context session, and earlier mis-
takes can influence subsequent outputs. Assessing
a model’s performance in generating long texts in-
volves evaluating how effectively it manages and
mitigates these accumulated errors, and maintains
consistency in logical flow. LongGenBench ad-
dresses this challenge by requiring models to han-
dle and correct the impact of previous mistakes
within a single long-context generation.

The conditional probability that the LLM gen-
erates the next token, given the prompt and the
previously generated outputs, can be represented
as:

P (xi+1 | InputPrompt, x1, x2, . . . , xi)

Where x1, x2, . . . , xi are the tokens generated in
LongGenBench, the LLMs are required to produce
the output based on the InputPrompt and all previ-
ously generated tokens.
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3.3 Dataset Construction

LongGenBench synthesizes three datasets from
different domains: World Knowledge from
MMLU (Hendrycks et al., 2021), Arithmetic from
GSM8K (Cobbe et al., 2021), and Commonsense
Reasoning from CommonSenseQA (Talmor et al.,
2019). The MMLU dataset measures a model’s
ability to understand and reason across 57 diverse
categories, using accuracy as the primary evalua-
tion metric. The GSM8K dataset evaluates arith-
metic problem-solving skills through 8,000 grade-
school level math word problems, using the solving
rate as the main metric. CommonSenseQA tests
commonsense reasoning with multiple-choice ques-
tions based on ConceptNet, with accuracy as the
evaluation metric. Appendix A.3 provides details
on how the synthesis process occurs.

4 Expeirments Setting

In this section, we describe the details of the base-
line models and the LongGenBench approach, as
well as their implementation in the subsequent ex-
periments. All experiments were conducted three
times, using the mean score to ensure robustness.

MODEL
ACCESS

METHOD

CONTEXT

LENGTH

MAX OUTPUT

LENGTH

INPUT/OUTPUT

PRICE

GPT-3.5-TURBO API 16K 4K $0.5 /$1.5
GPT-4O API 128K 4K $5 /$15
GEMINI-1.5-FLASH API 1024K 8K $0.35 /$1.05
CLAUDE-3-HAIKU API 200K 4K $0.25 /$ 1.25

LLAMA-3-8B OPEN SOURCE 8K - -
LLAMA-3-70B OPEN SOURCE 8K - -
QWEN2-7B OPEN SOURCE 128K - -
QWEN2-57B OPEN SOURCE 64K - -
QWEN2-72B OPEN SOURCE 128K - -
CHATGLM4-9B OPEN SOURCE 128K - -
DEEPSEEK-V2 OPEN SOURCE 128K - -

Table 1: Comparison of context lengths for various
LLMs.

4.1 Models and Inference setup

We evaluated multiple LLMs using LongGen-
Bench, categorizing them into API accessed mod-
els and open-source models. For API accessed
models, we selected GPT-3.5-Turbo (Ouyang et al.,
2022; Brown et al., 2020), GPT-4o (OpenAI, 2024),
Gemini-1.5-Flash (Reid et al., 2024), and Claude-
3-Haiku (Anthropic, 2024). For open-source mod-
els, our selection included LLaMA-3-8B-Instruct,
LLaMA-3-70B-Instruct (Meta, 2024), Qwen2-
7B-Instruct, Qwen2-57B-A14B-Instruct, Qwen2-
72B-Instruct (Bai et al., 2023a), ChatGLM4-9B-
Chat (Zeng et al., 2022; Du et al., 2022), and
DeepSeek-v2-Chat (DeepSeek-AI, 2024). The

API accessed models are configured with a spe-
cific maximum output length, which constrains the
number of output tokens due to the computational
resources and commercial policies of each API
provider. Table 1 provides detailed statistics for
each model. For open-source models, we remove
the INSTRUCT or CHAT suffix. The prompt settings
and datasets follow the guidelines from the Chain-
of-Thought (Wei et al., 2022; Wang et al., 2022;
Diao et al., 2024; Fu et al., 2023b; Pan et al., 2024),
and API model access is provided through the offi-
cial website. We assessed all open-source models
using the vLLM framework (Kwon et al., 2023),
which offers efficient KV cache memory manage-
ment and a Flash attention (Dao et al., 2022; Dao,
2024) backend. All open source models run on
RTX4090 and RTX A6000 servers.

4.2 Task configurations

LongGenBench generates results for three
datasets, designated as LongGenBench-MMLU,
LongGenBench-GSM8K, and LongGenBench-
CSQA. Table 2 details the configurations for the
LongGenBench experiments. In this context, K
represents the number of questions that the LLM
must answer in a single response, while T denotes
the number of iterations, also known as query
times. The total number of questions addressed
is calculated using the formula K × T . To better
compare the long-context generation capabilities
between API accessed models and open source
models, the maximum output length is uniformly
set at 4096 tokens in the main experiments. For
LongGenBench-MMLU, the T value is considered
based on the number of categories. Categories
with excessively long input prompts are excluded.
In our main experiment, we arrange the questions
in ascending order based on their length, setting
the order within a single query from the shortest
to the longest length. A detailed ablation study of
this variant is discussed in Section 6.

5 Result

5.1 API Accessed Models

Table 3 displays the performance of various models
on the GSM8K and MMLU datasets under two sce-
narios: Baseline and LongGenBench. The Delta
column shows the change in performance when
applying LongGenBench relative to the Baseline,
with negative values indicated by a downward tri-
angle symbol (∇) signifying performance degra-
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MODEL

LONGGENBENCH

GSM8K MMLU CSQA
K T K T K T

GPT-3.5-TURBO 35 20 40 55 80 20
GPT-4O 35 20 40 55 80 20
GEMINI-1.5-FLASH 35 20 40 55 80 20
CLAUDE-3-HAIKU 30 20 40 55 80 20

LLAMA-3-8B-INSTRUCT 30 20 30 52 40 20
LLAMA-3-70B-INSTRUCT 30 20 30 52 40 20
QWEN2-7B-INSTRUCT 30 20 30 52 40 20
QWEN2-54B-A14B-INSTRUCT 30 20 30 52 40 20
QWEN2-72B-INSTRUCT 30 20 30 52 40 20
CHATGLM4-9B-CHAT 30 20 30 52 40 20
DEEPSEEK-V2-CHAT 30 20 30 52 40 20

Table 2: Configuration details for the LongGenBench
experiment. The table shows the number of questions
in one query (K) and the number of iteration times (T ).

dation. The results demonstrate that all models
undergo a performance degradation when evalu-
ated under the LongGenBench conditions. No-
tably, GPT-3.5-Turbo and Claude-3-Haiku exhibit
the largest Delta on both LongGenBench-MMLU
and LongGenBench-GSM8K, indicating significant
challenges in managing long-context generation.
Conversely, the Gemini-1.5-Flash model exhibits
the smallest performance degradation, suggesting
greater robustness and enhanced consistency in han-
dling long-context scenarios.

MODEL
GSM8K (%)

BASELINE ↑ LONGGENBENCH↑ DELTA∆

GPT-3.5-TURBO 75.1 55.3 -19.8∇
GPT-4O 91.1 75.6 -15.5∇
GEMINI-1.5-FLASH 86.2 85.0 -1.2∇
CLAUDE-3-HAIKU 76.6 55.3 -21.3∇

(a) Performance on GSM8K dataset

MODEL
MMLU (%)

BASELINE↑ LONGGENBENCH↑ DELTA ∆

GPT-3.5-TURBO 70.0 56.3 -13.7∇
GPT-4O 88.7 79.7 -9.0∇
GEMINI-1.5-FLASH 79.0 74.7 -4.3∇
CLAUDE-3-HAIKU 75.0 48.6 -26.4∇

(b) Performance on MMLU dataset

Table 3: Comparison of baseline and LongGen per-
formance on GSM8K and MMLU datasets with API
accessed models.

Figure 3 shows the accuracy distribution of API
accessed models in LongGenBench-GSM8K. The
x-axis represents the question index within a sin-
gle long-text response, with the maximum index
being K. The y-axis indicates the accuracy of the
model’s responses to these questions. The analysis
reveals how the accuracy varies across different
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Figure 3: Generation accuracy distribution of API ac-
cessed models in LongGenBench-GSM8K.

questions for models like GPT-3.5-Turbo, GPT-4o,
Gemini-1.5-Flash, and Claude-3-Haiku when they
are required to generate answers for K questions
simultaneously. The results indicate that all mod-
els experience a decline in accuracy as the ques-
tion index increases. Notably, GPT-3.5-Turbo and
Claude-3-Haiku show a more significant decline,
suggesting that these models struggle more with
maintaining high accuracy over longer sequences
of questions. In contrast, Gemini-1.5-Flash main-
tains relatively higher accuracy, indicating better
robustness in handling long-text generation tasks.

5.2 Open Source Models
The results presented in Table 4 provide a compar-
ative analysis of the performance of various open-
source models on the GSM8K and MMLU datasets
under baseline conditions and using the LongGen-
Bench approach. Several key observations can be
made from these results:

Correlation Between Baseline and LongGen-
Bench: There appears to be a general correla-
tion between the baseline performance and the de-
gree of performance degradation observed with
the LongGenBench approach. Models with higher
baseline performance tend to exhibit smaller perfor-
mance drops. For example, Qwen2-72B-Instruct
and DeepSeek-v2-Chat models, which have high
baseline scores, show relatively small Delta values
across both datasets. However, there are exceptions,
such as LLaMA-3-70B-Instruct, which despite its
high baseline performance, exhibits a significant
performance drop on both datasets. Additionally,
LLaMA-3-8B-Instruct, Qwen2-57B-Instruct, and
ChatGLM4-9B-Chat models have the same base-
line score on GSM8K, yet their Delta values differ
substantially (47.1%, 8.4%, and 10.8%, respec-
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MODEL
GSM8K (%)

BASELINE↑ LONGGENBENCH↑ DELTA∆

LLAMA-3-8B-INSTRUCT 79.6 32.5 -47.1∇
LLAMA-3-70B-INSTRUCT 93.0 83.2 -9.8∇
QWEN2-7B-INSTRUCT 82.3 63.9 -18.4∇
QWEN2-57B-A14B-INSTRUCT 79.6 71.2 -8.4∇
QWEN2-72B-INSTRUCT 91.1 85.7 -5.4∇
CHATGLM4-9B-CHAT 79.6 68.8 -10.8∇
DEEPSEEK-V2-CHAT 92.2 86.5 -5.7∇

(a) Performance on GSM8K dataset

MODEL
MMLU (%)

BASELINE↑ LONGGENBENCH↑ DELTA ∆

LLAMA-3-8B-INSTRUCT 68.4 50.4 -18.0∇
LLAMA-3-70B-INSTRUCT 82.0 71.2 -10.8∇
QWEN2-7B-INSTRUCT 70.5 59.4 -11.1∇
QWEN2-57B-A14B-INSTRUCT 75.4 66.7 -8.7∇
QWEN2-72B-INSTRUCT 82.3 75.8 -6.5∇
CHATGLM4-9B-CHAT 72.4 63.0 -9.4∇
DEEPSEEK-V2-CHAT 77.8 72.0 -5.8∇

(b) Performance on MMLU dataset

Table 4: Comparison of baseline and LongGen per-
formance on GSM8K and MMLU datasets with open
source models.

tively).

Impact of Model Size on Performance Degrada-
tion: Observing models within the same series
but with different sizes, such as the LLaMA-3 se-
ries and the Qwen2 series, reveals a trend where
larger models generally exhibit smaller Delta val-
ues. This suggests that increasing model size can
mitigate performance degradation in long-context
generation tasks. For instance, within the LLaMA-
3 series, LLaMA-3-70B-Instruct shows a much
smaller Delta compared to LLaMA-3-8B-Instruct
across both datasets.

Variation Among Different Model Architec-
tures: Different model architectures demonstrate
varying trends in performance degradation. For
models within the 7 ∼ 9B parameter range, such
as LLaMA-3-8B-Instruct, Qwen2-7B-Instruct, and
ChatGLM4-9B-Chat, there are notable differences
in Delta values despite similar baseline perfor-
mances. For example, LLaMA-3-8B-Instruct has a
Delta of 47.1% on GSM8K, while ChatGLM4-9B-
Chat has a Delta of only 10.8%, indicating signifi-
cant variation in how different architectures handle
long-context generation tasks.

Consistency Across Tasks for Individual Models:
Individual models exhibit consistent trends in per-
formance degradation across different LongGen-
Bench tasks. For instance, LLaMA-3-8B-Instruct
consistently shows the largest Delta values on both
datasets, indicating a significant drop in perfor-

mance when generating long-context responses.
Conversely, Qwen2-72B-Instruct and DeepSeek-
v2-Chat consistently show minimal Delta values,
suggesting better resilience in long-context tasks.

These findings underscore the importance of con-
sidering both model architecture and size when
evaluating the performance of LLMs in long-
context generation tasks. The LongGenBench ap-
proach effectively highlights the varying capabili-
ties of different models to maintain accuracy over
extended text generation, providing valuable in-
sights for further model development and optimiza-
tion.

Figure 4 illustrates the accuracy distribution of
open-source models in LongGenBench-GSM8K.
The results indicate that all models exhibit a de-
cline in accuracy as the question index increases.
Notably, LLaMA-3-8B-Instruct experiences more
significant performance degradation, suggesting
that this model struggles more with maintaining
high accuracy in long-context generation tasks.
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Figure 4: Generation accuracy distribution of open
source models in LongGenBench-GSM8K.

5.3 Length Distribution
Figure 5 illustrates the output length distribution
for various models in the LongGenBench-GSM8K
task, with experimental configurations as detailed
in Table 2. Most models produce output lengths
close to or exceeding 3500 characters, although
none exceed the 4096-character limit. This data
demonstrates that LongGenBench effectively facil-
itates long-context generation in LLMs.

6 Ablation Studies

Hyperparameters of LongGenBench To gain
deeper insights into LongGenBench, we conducted
an ablation study focusing on two critical hyper-
parameters: reconstructive processing and the or-
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Figure 5: Output Length Distribution in LongGenBench-
GSM8k.

dering of K questions within a single query. For
reconstructive processing, we compared the base-
line format with the LongGenBench format. The
baseline format follows the CoT (Wei et al., 2022)
setting, featuring eight question-answer pairs in
sequence. In contrast, the LongGenBench format
presents eight questions in advance followed by the
corresponding eight answers, with the K questions
being addressed subsequently. Regarding the or-
der of K questions, we evaluated three sequences:
the original order from the dataset, ascending or-
der from shortest to longest, and descending order
from longest to shortest. This ablation study was
performed using GPT-3.5-Turbo and Gemini-1.5-
Flash on the GSM8k dataset, with the number of
iterations set at T = 20. Table 5 presents the re-
sults of this hyperparameter ablation study, demon-
strating that both hyperparameters are crucial for
LongGenBench to effectively evaluate the long-
context generation capabilities of LLMs.

Model Format Order
LongGenBench

GSM8K

GPT-3.5-TURBO

Baseline Ascending 53.2
LongGenBench Ascending 55.3
LongGenBench Descending 51.3
LongGenBench Normal 47.3

GEMINI-1.5-FLASH

Baseline Ascending 82.8
LongGenBench Ascending 85.0
LongGenBench Descending 84.3
LongGenBench Normal 85.0

Table 5: Performance comparison of different hyperpa-
rameter settings.

Evaluating Long Input Comprehension To
address the potential concern that performance

degradation in LongGenBench may be due to the
model’s inability to comprehend long inputs rather
than its ability to generate long outputs, we con-
ducted additional experiments. Specifically, we
designed a set of experiments where the model
is provided with a long input containing multiple
questions but is required to answer only one spec-
ified question at a time. This "long input + short
output" setting helps isolate the model’s compre-
hension ability from its generation capacity.

For this experiment, we again used GPT-3.5-
Turbo and Gemini-1.5-Flash on the GSM8k dataset.
We provided the models with a long input sequence
of K questions but instructed them to respond to
only one randomly selected question per query.
This setup was repeated for T = 20 iterations to en-
sure robust evaluation.The results, shown in Table
6, indicate that both models maintain high accu-
racy when required to produce short outputs from
long inputs. This supports the hypothesis that the
primary challenge in LongGenBench lies in the
generation of long outputs rather than comprehen-
sion of long inputs.

Model
Long Input + Long Input + Performance
Short Output Long Output Drop

GPT-3.5-Turbo 74.3 55.3 -19.0
Gemini-1.5-Flash 86.1 85.0 -1.1

Table 6: Comparison of model performance in long
input + short output versus long input + long output
settings.

7 Conclusion

In this study, we introduced LongGenBench, an
effective framework designed to evaluate the long-
context generation capabilities of language models
(LLMs) across multiple datasets. Our experiments
included both API accessed and open source mod-
els, offering a comprehensive comparison of their
performance in long-context generation tasks. The
results indicate a correlation between baseline per-
formance and LongGenBench performance, with
higher baseline models generally exhibiting smaller
declines. Additionally, model size and architecture
significantly influence resilience, with larger mod-
els and specific architectures demonstrating greater
robustness and consistent trends across different
LongGenBench tasks. These findings highlight the
importance of considering both model architecture
and size when evaluating LLMs in long-context
generation tasks. The LongGenBench framework
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effectively showcases the varying capabilities of
different models, providing valuable insights for
further model development and optimization.

8 Limitations

Our study has several limitations. Firstly, the exper-
iments were conducted on a limited set of models
and datasets, which may not fully represent the
diversity of available LLMs and tasks. Secondly,
we did not explore experiments with larger K val-
ues due to constraints on the maximum output to-
kens imposed by API accessed models. Lastly,
we did not include experiments with long-context
techniques, which may help mitigate the observed
performance degradation. These limitations sug-
gest that further research is needed to generalize
our findings across a broader range of models and
more extended context scenarios.
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A Experiment Setup and
Hyperparameters

A.1 Baseline Setting
The baseline scores referenced in section 5 are de-
rived from official reports to ensure the use of the
highest available baseline scores.

A.2 Dataset
The statistics of the datasets used in our study are
reported in Table 7.

DATASET # TRAIN # TEST

GSM8K (COBBE ET AL., 2021) 7,473 1,319
MMLU (HENDRYCKS ET AL., 2021) - 14,079
CSQA* (TALMOR ET AL., 2019) 9,741 1,221

Table 7: The statistics of datasets. # TRAIN and # TEST
denote the number of training and test samples respec-
tively. *: CSQA do not have publicly available test set
labels, so we simply follow the setting by (Wei et al.,
2022) to evaluate the performance of the development
set.

Table 8 below compares the number of instances
in LongGenBench with other long-text bench-
marks, demonstrating that LongGenBench has a
comparable data size in the long-context bench-
mark field.

DATASET # TEST

LONGGENBENCH 16K
LONGBENCH (BAI ET AL., 2023B) 5K
∞-BENCH (ZHANG ET AL., 2024C) 5K
ZEROSCROLLS (SHAHAM ET AL., 2023) 4K
L-EVAL (AN ET AL., 2023) 2K

Table 8: Comparison of the number of test instances
in LongGenBench with other long-text benchmarks,
demonstrating that LongGenBench has a comparable
data size in the long-context benchmark field.

A.3 LongGenBench Format
Table 12 compares the baseline method with the
LongGenBench approach in terms of chat tem-
plates used for model interactions. In the base-
line method, the system prompt is followed by a
series of chain-of-thought (CoT) questions and an-
swers, ending with a real question. In contrast,
the LongGenBench approach involves concatenat-
ing multiple Chain of Thought (CoT) questions
and answers, followed by several real questions, to
prompt the model for long-context responses. This

method helps evaluate the model’s ability to gen-
erate coherent and accurate long-context answers
across a series of related questions. Additionally, it
is easily adaptable to existing benchmarks, allow-
ing for more comprehensive assessments of long-
context generation capabilities.

Table 9 presents the system prompt for LongGen-
Bench, which is designed to be straightforward,
guiding the LLM to answer each question sequen-
tially.

A.4 API Models

In our experiments, we utilized specific versions
of various API accessed models to evaluate their
performance on LongGenBench. Table 10 provides
the details of the models and their respective ver-
sions used in our study.

These versions were selected based on their
availability and state-of-the-art performance at the
time of experimentation. Each model was tested us-
ing the LongGenBench framework to assess their
capabilities in handling long-context generation
tasks. The results presented in this paper reflect the
performance of these specific versions, providing a
comprehensive comparison across different models
and their configurations.

B Additional Experiments

B.1 API Accessed Models

Figure 6 and Table 11 present the generation
accuracy distribution for API accessed models
in LongGenBench-MMLU and LongGenBench-
CSQA. The x-axis represents the question index
within a single long-text response, with the max-
imum index being K. The y-axis indicates the
accuracy of the model’s responses to these ques-
tions. The analysis demonstrates how the accuracy
varies across different questions for models like
GPT-3.5-Turbo, GPT-4o, Gemini-1.5-Flash, and
Claude-3-Haiku when they are required to gener-
ate answers for K questions simultaneously. The
results reveal that all models experience a decline
in accuracy as the question index increases, with
GPT-3.5-Turbo and Claude-3-Haiku showing more
significant declines. Conversely, Gemini-1.5-Flash
and GPT-4o maintains relatively higher accuracy,
indicating better robustness in handling long-text
generation tasks. Since these models do not pro-
vide official results for CSQA, we use our repli-
cated baseline score.
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LongGenBench System Prompt Exemplars

Answer each question step by step, adhering to the format shown in the examples provided. Start each response with
’Answer_’ and introduce the final response with ’The answer is’. Do not repeat the question. Ensure that you respond to
all the questions presented, regardless of their number.

Table 9: LongGenBench System Prompt Exemplars

Model Version

GPT-3.5-Turbo GPT-3.5-Turbo-0125
GPT-4o GPT-4o-2024-05-13
Gemini-1.5-Flash Gemini-1.5-Flash-Preview-0514
Claude-3-Haiku Claude-3-Haiku-20240307

Table 10: Specific versions of API models used in the
experiments.

MODEL
CSQA (%)

BASELINE↑ LONGGENBENCH↑ DELTA ∆

GPT-3.5-TURBO 75.57 61.88 -13.87∇
GPT-4O 85.75 77.88 -7.87∇
GEMINI-1.5-FLASH 83.87 82.25 -1.62∇
CLAUDE-3-HAIKU 66.75 55.25 -11.50∇

Table 11: Comparison of baseline and LongGen perfor-
mance on CSQA datasets with API models.
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Figure 6: Generation accuracy distribution of
API accessed models in LongGenBench-MMLU and
LongGenBench-CSQA.

In addition to the main experiments, we con-
ducted an extended evaluation using the Gemini-
1.5-Flash model, which supports a longer maxi-
mum output length 8K tokens. For this extended

evaluation, we set the value of K in the range
40, 50, 60, 70, 80, 90 and fixed the number of it-
erations T at 10. This allowed us to investigate the
impact of larger K values on model performance in
the LongGenBench-GSM8K experiment. Figure 7
shows the performance scores as K increases from
40 to 90, with the number of iterations T set to 10.
A red dashed line indicates the baseline score of
86.2 for comparison.
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Figure 7: Performance of Gemini-1.5-Flash in
LongGenBench-GSM8K with larger K values.

B.2 Open Source Model

Figure 8 and Table 13 illustrates the genera-
tion accuracy distribution for open source mod-
els in LongGenBench-MMLU and LongGenBench-
CSQA. Similar to the API accessed models, the
x-axis represents the question index, and the y-
axis represents the accuracy of responses. The
results indicate that all open source models ex-
hibit a decline in accuracy as the question index
increases. Notably, LLaMA-3-8B-Instruct experi-
ences significant performance degradation, suggest-
ing that this model struggles with maintaining high
accuracy in long-context generation tasks. In con-
trast, larger models such as LLaMA-3-70B-Instruct
and Qwen2-72B-Instruct demonstrate greater re-
silience, maintaining higher accuracy across longer
sequences of questions. Since these models do
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Method Template

Baseline {System Prompt}
{CoT Question_1}{CoT Asnwer_1}
· · ·
{CoT Question_8}{CoT Asnwer_8}
{Real Question}

LongGenBench {System Prompt}
{CoT Question_1}· · · {CoT Question_8}
{CoT Asnwer_1}· · · {CoT Asnwer_8}
{Real Question_1} · · · {Real Question_K}

Table 12: Model chat templates.

not provide official results for CSQA, we use our
replicated baseline score.

MODEL
CSQA (%)

BASELINE↑ LONGGENBENCH↑ DELTA ∆

LLAMA-3-8B-INSTRUCT 73.70 69.50 -4.20∇
LLAMA-3-70B-INSTRUCT 81.82 80.13 -1.69∇
QWEN2-7B-INSTRUCT 78.13 77.25 -0.88∇
QWEN2-57B-A14B-INSTRUCT 80.26 80.75 +0.49∆
QWEN2-72B-INSTRUCT 87.75 85.50 -2.25∇
CHATGLM4-9B-CHAT 85.42 82.37 -3.05∇
DEEPSEEK-V2-CHAT 84.77 82.87 -1.9∇

Table 13: Comparison of baseline and LongGen perfor-
mance on CSQA datasets with open source models.
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Figure 8: Generation accuracy distribution of
open source models in LongGenBench-MMLU and
LongGenBench-CSQA.

B.3 Cost

In this section, we compare the costs between the
Needle-In-A-Haystack (NIAH) test and LongGen-
Bench. For NIAH, costs are calculated for a
128K token test. For LongGenBench, calcu-
lations are based on the same K and T val-
ues used in the GPT-4o configuration, as speci-
fied in Table 2, and applied across the datasets
LongGenBench-GSM8K, LongGenBench-MMLU,
and LongGenBench-CSQA. The pricing is based on
the GPT-4o rates, which are $5 per million input
tokens and $15 per million output tokens.

As shown in Table 14, the NIAH test incurs a
significantly higher cost compared to LongGen-
Bench. Specifically, the NIAH test requires 8192K
input tokens and 0.1K output tokens, resulting in
a total cost of $40. In contrast, LongGenBench re-
quires 300K input tokens and 340K output tokens,
resulting in a much lower total cost of $6.6.

Method Input Tokens Output Tokens Price

NIAH 8192K 0.1K $40
LongGenBench 300K 340K $6.6

Table 14: Comparison of Costs Between Needle-In-A-
Haystack (NIAH) and LongGenBench Tests

C Exemplars Generated by LLMs Using
LongGenBench

Tables 15 and 16 provide examples of responses
generated by LLMs using LongGenBench, where
each model generated K answers in a single long-
context response. These examples demonstrate that
the models can remember the content and sequence
of the K questions and maintain consistency in
logical flow during generation.
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D Licenses

For the evaluation dataset, all the datasets,
including GSM8K (Cobbe et al., 2021),
MMLU (Hendrycks et al., 2021), CSQA (Talmor
et al., 2019) are released under MIT license.
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Exemplars

Answer_1:
Terry eats 2 yogurts a day, so in 30 days, he eats 30 ∗ 2 = 60 yogurts. Since yogurts are on sale at 4 for $5.00, he spends
60/4 ∗ $5.00 = $75.00 on yogurt over 30 days.

Answer_2:
There are 25 oranges in total, and 20% of them are unripe, so 20% of 25 is 0.20 ∗ 25 = 5. 1 is bad and 2 are sour, so
from 25− (1 + 2 + 5) = 25− 8 = 17 Therefore, 17 oranges are good.

Answer_3:
There are 6 clusters with 6 ∗ 20 = 120 raspberries. Together with the 67 individual fruit, there are 120 + 67 = 187
raspberries in total.

Answer_4:
Lloyd produces 252 eggs per day, so in a week, he produces 252 * 7 = 1764 eggs. He sells them for $2 per dozen, so he
sells 1764/12 = 147 dozens per week. Therefore, his weekly income from eggs is 147 ∗ $2 = $294.

Answer_5:
If there are twice as many boys as girls in the school and there are 60 girls, then there are 2 ∗ 60 = 120 boys. With 5
students to every teacher, there are 60 + 120 = 180 students. Therefore, there are 180 / 5 = 36 teachers.

. . . . . .

Answer_24:
Each school sent 2 teams with 5 players and 2 coaches, so each school sent 2 ∗ (5 + 2) = 14 people. With 4 schools,
there are therefore 4 ∗ 14 = 56 people in total.

Answer_25:
If Dana spends 1/3 of 6 hours running, she runs 1/3 ∗ 6 = 2 hours. She travels at a rate of 3 ∗ 2 = 6 miles per hour. If
she spends 2/3 of 6 hours walking, she walks 2/3 ∗ 6 = 4 hours. She travels at 1/4 ∗ 3 = 0.75 miles per hour, so she
walks 4 ∗ 0.75 = 3 miles. In total, she travels 2 ∗ 6 + 4 ∗ 3 = 12 + 12 = 24 miles in 6 hours.

Answer_26:
The final price of Stephen’s groceries is 25% + $3.00 + $4.00 = $13.00 more than $40.00, so the final price is
$40.00 + $13.00 = $53.00.

Answer_27:
In the first half of the year, Aleena pays $140 ∗ 6 = $840. After the discount, in the second half of the year, she pays
10% ∗ $140 ∗ 6 = $84 less, so she pays $840− $84 = $756. Thus, the total amount she paid for the streaming service
by the end of the year is $840 + $756 = $1596.

Answer_28:
The truck and driver weigh 3755 pounds, leaving a maximum capacity of 5000 − 3755 = 1245 pounds. So up to
1245/15 = 83 boxes can be loaded onto the truck.

. . . . . .

Answer_32:
Sophia travels 100 miles on 4 gallons of gas, so she uses 100/4 = 25 miles per gallon. On one tank of 12 gallons, she
will be able to drive 25 ∗ 12 = 300 miles.

Answer_33:
For repairing 6 truck tires, the revenue is 6 ∗ $60 = $360. For repairing 4 car tires, the revenue is 4 ∗ $40 = $160. The
difference in revenue is $360− $160 = $200 more.

Answer_34:
Meredith spent 4 hours on each blog article, so 5 articles took 5 ∗ 4 = 20 hours on Monday. On Tuesday, she wrote 2/5
more articles, which is 2/5∗5 = 2, making a total of 5+2 = 7 articles. Then on Wednesday, she wrote twice the number
of articles as on Tuesday, so 7∗2 = 14 articles. All in all, Meredith spent 20+(7∗4)+(14∗4) = 20+28+56 = 104
hours writing articles in the three days.

Answer_35:
If Polly holds the sapphire gemstone, she can throw the gold javelin three times as far, so she can throw it 400∗3 = 1200
feet. Therefore, holding the sapphire gemstone, she can stand 1200− 1000 = 200 feet outside the reach of the dragon’s
flames and still hit the dragon.

Table 15: Exemplars for GPT-3.5-Turbo generated response from LongGenBench-GSM8K.
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Exemplars

Answer_1:
Let’s think step by step. Bubblesort has O(n2) running time in both worst and average cases. Mergesort has O(nlogn)
running time in both worst and average cases. Heapsort has O(nlogn) running time in both worst and average cases.
Quicksort has O(n2) running time in the worst case and O(nlogn) running time on average. The answer is (D).

Answer_2:
Let’s think step by step. Insertion sort is heavily dependent on the initial ordering of the input. Quicksort is heavily
dependent on the initial ordering of the input. Merge sort is least dependent on the initial ordering of the input, because
its performance is consistent regardless of the ordering of the input. Selection sort is also heavily dependent on the initial
ordering of the input. The answer is (C).

Answer_3:
Let’s think step by step. We can think of a K-ary tree as being composed of one nonterminal root node, K nonterminal
child nodes of the root, K2 nonterminal child nodes of each of those nodes, etc. Thus, a K-ary tree of depth N is
composed of: 1+K+K2 + ....+KN nonterminal nodes and (KN − 1)/(K− 1) total nodes. As the depth of the tree
increases, the proportion of nonterminal nodes relative to the total number of nodes approaches: (1 +K +K2 + ....+

KN )/((KN − 1)/(K− 1)) = ((K(N +1)− 1)/(K− 1))/((KN − 1)/(K− 1)) = (K(N +1)− 1)/(KN − 1) =

(K(N +1)− 1)/(KN − 1) ∗ (K/K) = (K(N +2)−K)/(K(N +1)−K) = (K(N +1)− 1)/(KN − 1)+ 1 =

(1 +K +K2 + ....+K(N + 1))/(1 +K +K2 + ....+KN ) which as N increases approaches: K/(K − 1). The
answer is (B).

Answer_4:
Let’s think step by step. We can see that {AND, OR} is not complete because we cannot express NOT. We can see that
{AND, NOT} and {NOT, OR} are both complete. We can also see that {NAND} is complete because NAND can express
all other boolean operations. The answer is (C).

. . . . . .

Answer_19:
Let’s think step by step. The IP protocol is primarily concerned with routing packets through the network. It defines the
format of packets and the addressing scheme used to route packets between different networks. The answer is (A).

Answer_20:
Let’s think step by step. TCP protocol is responsible for reliable delivery of large (multi-packet) messages between
machines that are not necessarily directly connected. It provides a reliable connection-oriented service, ensuring that
packets arrive in the correct order and are not lost. The answer is (C).

Answer_21:
Let’s think step by step. A common divisor must divide both integers. The set of common divisors of two integers is a
subset of the divisors of each integer. Thus, the set {-6,-2, -1, 1, 2, 6} could possibly be the set of all common divisors of
two integers. The answer is (A).

. . . . . .

Answer_38:
Let’s think step by step. If the owner is allowed to delete a file, dangling links may result. This is true, because if the
owner deletes the file, the link count in the shared file node will be decremented. However, the links to the file in other
users’ directories will still point to the shared file node. If the owner deletes the file, these links will become dangling
links. The answer is (C).

Answer_39:
Let’s think step by step. Giving priorities to processes and ordering the wait queues by priority will not deal effectively
with the problem of deadlock. This is because deadlock can occur even if processes have priorities and wait queues are
ordered by priority. For example, consider a system with two processes, P1 and P2, and two resources, R1 and R2. P1
holds R1 and requests R2, while P2 holds R2 and requests R1. Deadlock will occur even if P1 has a higher priority than
P2. The answer is (A).

Answer_40:
Let’s think step by step. Indirect representation noticeably increases compilation time. This is false, because indirect
representation does not noticeably increase compilation time. Direct representation decreases the time needed to access
components of a variable. This is true, because direct representation allows for faster access to components of a variable,
as the compiler does not need to dereference a pointer to access the components. When the storage size of some private
component of a variable changes, indirect representation minimizes the number of recompilations of source modules that
must be performed. This is true, because indirect representation allows for changes to the size of private components
without requiring recompilation of source modules that use the variable. The answer is (D).

Table 16: Exemplars for Gemini-1.5-Flash generated response from LongGenBench-MMLU.
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