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Abstract
Leading models for the text-to-SQL task heav-
ily rely on proprietary Large Language Mod-
els (LLMs), posing concerns over data pri-
vacy. Closing the performance gap between
small open-source models and large propri-
etary models is crucial to mitigate this reliance.
To this end, we introduce a novel two-stage
fine-tuning approach that decomposes the task
into two simpler tasks. Through comprehen-
sive evaluation on three large cross-domain
datasets and two small LLMs, we show that
this approach improves execution accuracy by
3 to 7 percent, effectively aligning the perfor-
mance of open-source models with their pro-
prietary counterparts. Our proposed method
has achieved 60.31% execution accuracy on
BIRD hold-out test set, which is the highest
performance among methods using 7B parame-
ter models.

1 Introduction

Natural language interfaces for databases allow
users to derive insights from structured databases
using natural language instead of complex SQL
queries. Leading open-source methods (Pourreza
and Rafiei, 2024; Gao et al., 2023; Wang et al.,
2023) for this task heavily depend on proprietary
Large language models (LLMs) like GPT-4 and
GPT-3.5-turbo, which have demonstrated superior
performance in Text-to-SQL benchmarks (Yu et al.,
2018; Li et al., 2023c; Gan et al., 2021). How-
ever, this reliance on large proprietary models has
privacy and cost implications. For instance, many
large enterprises cannot share their customer data
with the model-providing companies due to pri-
vacy considerations. Additionally, cost is a factor,
especially for small businesses, in adopting these
models.

Recent attempts to utilize open-source LLMs
(Gao et al., 2023) and fine-tune them using
question-SQL query pairs have fallen short of the
zero-shot performance of GPT-3.5-turbo. Table

Model EX EM
Fine-tuning methods

Llama2 7B
(Gao et al., 2023) 66.7 63.9

Llama2 13B
(Gao et al., 2023) 67.0 62.7

Prompting methods
DAIL-SQL + GPT4
(Gao et al., 2023) 84.4 74.4
DIN-SQL + GPT4

(Pourreza and Rafiei, 2024) 74.2 60.1

Table 1: Performance comparison of the prompting
methods and finetuning methods on Spider validation
dataset. EX stands for Execution accuracy and EM
stands for Exact Match accuracy.

1 presents a performance comparison of the fine-
tuned open-source LLMs on the Spider develop-
ment set, contrasting with methods that employ
GPT-4’s prompting techniques. Our hypothesis is
that the task of text-to-SQL is too complex to be
mastered in a single stage using small LLMs. We
aim to address this disparity by introducing a novel
two-step decomposed fine-tuning method, employ-
ing two smaller LLMs. This approach, utilizing a
model with a parameter size of 7 billion, achieves a
performance comparable to methods using GPT-4
with few-shot learning and well-designed prompts.

We evaluate the performance of our proposed
method using three Text-to-SQL benchmarks: Spi-
der (Yu et al., 2018), BIRD (Li et al., 2023c), and
Spider-SYN (Gan et al., 2021), along with two 7B
LLMs: DeepSeek DeepSeek-AI (2024) and Mistral
Jiang et al. (2023). Our approach demonstrates a
performance improvement of approximately 3 to 7
percent in execution accuracy compared to the con-
ventional single-step fine-tuning method employed
in previous studies (Gao et al., 2023). This consis-
tent performance gain across these datasets high-
lights the generalizability of our method. More-
over, our fine-tuning strategy, utilizing a 7 bil-
lion parameter LLM, surpasses all previous open-
source methods on the Spider development set and
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achieves comparable results to the state-of-the-art
open-source methods using GPT-4 (Pourreza and
Rafiei, 2024; Gao et al., 2023) on the Spider test set.
On the hold-out BIRD test set, our method with
DeepSeek 7B surpasses all of the methods using
7B parameter models (Li et al., 2024) and ranked
second on the leaderboard among methods with
publicly available papers, with 60.31% execution
accuracy. All the necessary code to replicate the
results provided in our GitHub repository 1.

1.1 Related Works

Early efforts by the database community, such as
custom templates, marked initial advancements
but required substantial manual effort (Zelle and
Mooney, 1996). Recently, text-to-SQL methodolo-
gies have increasingly incorporated transformer-
based models, particularly sequence-to-sequence
architectures (Vaswani et al., 2017; Sutskever et al.,
2014).

Initial sequence-to-sequence models, such as
IRNet, utilized bidirectional LSTM architecture
and self-attention to encode database schema rep-
resentation (Guo et al., 2019). Advanced models
like RAT-SQL (Wang et al., 2019) and RASAT
(Qi et al., 2022) used relation-aware self-attention
mechanisms. Models like SADGA (Cai et al.,
2021) and LGESQL (Cao et al., 2021) adopted
graph neural networks to represent relational struc-
tures between database schema and queries.

The field has also benefited from recent method-
ological innovations in large language models
(LLMs). Early approaches leveraged the zero-shot
in-context learning capabilities of LLMs for SQL
generation (Rajkumar et al., 2022). Subsequent
models like DIN-SQL (Pourreza and Rafiei, 2024),
DAIL-SQL (Gao et al., 2023), MAC-SQL (Wang
et al., 2023), and C3 (Dong et al., 2023) have
enhanced performance through task decomposi-
tion and techniques like Chains of Thought (CoT)
(Wei et al., 2022), and self-consistency (Wang
et al., 2022). Concurrent with our work, Blar-SQL
(Domínguez et al., 2024) proposed a fine-tuning
approach for improving the performance of smaller
LLMs. However, their method showed significantly
lower performance compared to ours on the BIRD
benchmark, with roughly 9% percent gap on BIRD
development set.

1https://anonymous.4open.science/r/
DTS-SQL-2A42

2 Methodology

A notable development in LLMs is their post-
pretraining refinement, which enhances their align-
ment with preferred behaviors, as documented by
Mishra et al. (2021); Victor et al. (2022); Thop-
pilan et al. (2022). Common methods of align-
ment include Supervised Fine-Tuning (SFT) us-
ing human demonstrations, as reported by Ouyang
et al. (2022); Tunstall et al. (2023) and Reinforce-
ment Learning from Human Feedback (RLHF), as
detailed by Christiano et al. (2017); Ziegler et al.
(2019); Stiennon et al. (2020); Bai et al. (2022).

The absence of extensive datasets containing ei-
ther human or AI feedback (Lee et al., 2023) has led
to a predominant focus on supervised fine-tuning in
the text-to-SQL field. This approach necessitates a
collection of specific instructions or prompts along
with their corresponding outputs or responses. In
the following section, we will delve into the estab-
lished methods of supervised fine-tuning for LLMs
within the Text-to-SQL context. Subsequently, we
introduce our novel two-step fine-tuning approach,
designed to enhance the performance of models in
the Text-to-SQL domain.

2.1 Supervised fine-tuning for Text-to-SQL

In this section, we explore the supervised fine-
tuning process for Text-to-SQL tasks, as practiced
in the open-source community (Gao et al., 2023).
Given a set of databases Di comprising pairs of
questions qi and corresponding SQL queries si, the
goal is to fine-tune a large language model M us-
ing a set of training data T = {(qi, si, Di)}, where
qi and si represent the natural language question
and its associated SQL query on database Di. The
objective of supervised fine-tuning is to minimize
the empirical loss defined as:

min
M∗

1

|T |

|T |∑

i=1

L(M∗(σf (qi, Di)), si) (1)

where L is the next token prediction loss func-
tion used to measure the difference between the
SQL queries generated by the model and the ac-
tual, correct (ground truth) queries. The function
σf determines the formatting of the question, the
database schema, and the SQL queries. A key chal-
lenge during inference is that we do not know in
advance among all of the tables inside the database
which tables are relevant to a given question for
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generating accurate SQL queries. Therefore, a com-
mon approach in fine-tuning involves including the
all of the tables within the prompts together with
the question and SQL pairs. This method serves
a dual purpose: teaching the model to generate
the correct SQL query and to identify the relevant
tables from among all the provided tables. This
approach of training for two objectives simulta-
neously complicates the SQL generation task for
LLMs. Each task – generating SQL queries and
correctly linking to the relevant schema – demands
its own reasoning process. A significant proportion
of errors in large language models can be attributed
to incorrect schema linking, highlighting this as a
major challenge in the field (Pourreza and Rafiei,
2024; Dong et al., 2023).

2.2 Decomposed Supervised Fine-tuning

We propose a two-stage fine-tuning process, which
separates schema linking and SQL generation, aim-
ing to enhance overall performance.

2.2.1 Schema-linking Fine-tuning
Schema linking involves identifying the pertinent
columns and tables in a database in response to nat-
ural language queries. It has been demonstrated to
enhance cross-domain generalizability (Lei et al.,
2020) and has been a part of the pipeline for both
early seq-to-seq models (Cao et al., 2021; Guo
et al., 2019; Xu et al., 2021) and recent in-context
learning methods using LLMs (Pourreza and Rafiei,
2024; Wang et al., 2023). However, it has not been
treated as a separate module for fine-tuning LLMs.
In this work, we treat schema linking as a distinct
task and explicitly fine-tune LLMs to identify rel-
evant tables and columns when presented with a
natural language query. Given a training dataset
T = {(qi, si, Di)}, we extract all of the columns
and tables used in the SQL queries and create a
new dataset of T = {(qi, Ti, Ci, Di)} where Ti

and Ci represent lists of tables and columns used
in the SQL query si. The primary objective dur-
ing supervised fine-tuning for schema linking is
to minimize the empirical loss, as defined by the
following equation:

min
M∗

1

|T |

|T |∑

i=1

L(M∗(σs(qi, Di)), Ci, Ti) (2)

Here, L represents the next token prediction loss,
comparing the predicted column and table names

with the actual ground truth names. Since our ob-
jective is to predict the set of relevant tables and
columns, and order does not matter in set predic-
tion but can affect the next token prediction loss,
we always sort the schema in the prompt. By doing
so, we ask the model to predict the schema in al-
phabetically sorted order to incorporate order in the
prediction. Additionally, since the number of to-
kens required to include all columns and tables can
exceed the context window size of smaller LLMs,
we first extract the ground truth tables. Then, we
sort the remaining tables based on their embedding
similarity to the question’s embedding. We con-
tinue adding tables in order of similarity until we
reach the context window limit or there are no more
tables to include. To avoid introducing any order
bias, we shuffle the tables in the schema at the final
step.

2.2.2 SQL Generation Fine-tuning
After identifying the appropriate tables for SQL
generation, the next step is to utilize a model that
constructs the SQL query based on the question and
the schema of the correct tables. Since we have
already identified the potentially correct tables us-
ing the schema-linking module, there is no need to
include all tables in the input for the SQL genera-
tion model. In contrast to previous approaches for
fine-tuning LLMs, we extract the relevant tables
from the training dataset T = {(qi, si, Di)} corre-
sponding to the ground truth SQL queries. We then
fine-tune the LLM while minimizing the following
loss function:

min
M∗

1

|T |

|T |∑

i=1

L(M∗(σg(qi, Ti)), si) (3)

The loss function is same as the loss function
defined in Section 2.1. This decomposition of the
Text-to-SQL training process allows LLMs to be
trained with a singular objective. By segregat-
ing the schema-linking and SQL query generation
tasks, we improve the training process, enabling
more focused and effective fine-tuning.

3 Experiments

3.1 Models
Our methodology was evaluated using two recent
LLMs from distinct architectures, namely Mis-
tral 7B (Jiang et al., 2023) and DeepSeek 7B
(DeepSeek-AI, 2024). Mistral 7B, not specifi-
cally pretrained for code generation, surpasses
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Model EX EM
DAIL-SQL + GPT-4

(Gao et al., 2023) 86.6 -
DIN-SQL + GPT-4

(Pourreza and Rafiei, 2024) 85.3 60
DTS-SQL + DeepSeek 7B

Ours 84.4 73.7
C3 + ChatGPT + Zero-Shot

(Dong et al., 2023) 82.3 -
RESDSQL-3B + NatSQL

(Li et al., 2023a) 79.9 72
DTS-SQL + Mistral

Ours 77.1 69.3
Graphix-3B + PICARD

(Li et al., 2023b) - 74

Table 2: The comparison of different methods on test
set of Spider.

many counterparts in its scale category (Jiang et al.,
2023). Details about the hyperparameters are in-
cluded in Appendix A.4.

3.2 Datasets
We conducted our evaluation using three cross-
domain, challenging Text-to-SQL datasets: (1) Spi-
der, introduced by Yu et al. (2018), includes 160
schemas allocated for training and development,
while the remaining 40 are set aside for testing
purposes. (2) Spider-Syn (Gan et al., 2021) modi-
fies the Spider dataset by replacing schema-related
words with synonyms and removing explicit men-
tions of schema links in the questions. (3) BIRD (Li
et al., 2023c) is a pioneering, cross-domain dataset
that examines the impact of extensive database
contents on text-to-SQL parsing with over 12,751
unique question-SQL pairs and 95 databases. De-
tails about the metric used for evaluation is pro-
vided in Appendix A.3. For the Spider results, we
trained the models on the official Spider training
set, and for the BIRD results, we fine-tuned the
models on the BIRD training set.

3.3 Results
3.3.1 Spider test set
As depicted in Table 2, our method employing
DeepSeek 7B, when tested on the Spider test
dataset, achieves results comparable to state-of-
the-art open-source methods in terms of execution
accuracy and exact set match accuracy.

3.3.2 Spider dev set
In Table 3, we offer a detailed comparison between
our method and various other baseline approaches.
For the baselines, we selected diverse methods
from different families of approaches that are using

Model EX EM
Instruction tuning methods

DTS-SQL + Mistral 7B
(our) 78.6 73.3

DTS-SQL + DeepSeek 7B
(our) 85.5 79.1

Llama2 7B
(Gao et al., 2023) 66.7 63.9

Llama2 13B
(Gao et al., 2023) 67.0 62.7

Prompting methods
DIN-SQL + GPT4

(Pourreza and Rafiei, 2024) 74.2 60.1
DIN-SQL + CodeX

(Pourreza and Rafiei, 2024) 69.9 57.2
DAIL-SQL + GPT4
(Gao et al., 2023) 84.4 74.4

C3 + GPT-3.5
(Dong et al., 2023) 81.8 -

Table 3: Performance of different methods with LLMs
on the dev set of Spider.

LLMs and are available as open source. Our two-
stage decomposed approach with DeepSeek 7B
attained state-of-the-art performance on the Spider
development set, surpassing all previous methods
that utilized prompting techniques and fine-tuning.
Additionally, the results of our two-stage method
on Spider-SYN dataset is provided in Table 7 in
appendix.

To validate that the performance gain is stem-
ming from the decomposition proposed in this work
or from the base LLMs, we also compared our two-
stage method using the same models with vanilla
fine-tuning. In Table 4, we showcase the results of
our two-stage fine-tuning method on the develop-
ment set of Spider. The performance is compared
against two distinct scenarios: firstly, a one-stage
scenario where the model is fine-tuned on all tables
without employing our two-stage approach, and
secondly, a perfect schema linking scenario where
we provide the ground truth tables to our fine-tuned
SQL generators. This latter scenario is denoted
as the ’Upper Bound’ in the table. Our two-stage
model’s performance is measured by initially us-
ing our fine-tuned schema linker model to identify
potentially relevant tables, which are then provided
as context to the SQL generator model.

3.4 BIRD results
To further validate the robustness of our proposed
method, we also evaluated the performance of our
proposed method on BIRD benchmark test and de-
velopment sets. As shown in Table 5, our proposed
method with DeepSeek 7B achieved the second
highest performance among all published works
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Model Tuning EX EM
Mistral 7B FT Tuning 71.9 70.9
Mistral 7B DTS-SQL 78.6 73.3
Mistral 7B Upper bound 86.6 80.7

DeepSeek 7B FT Tuning 82.1 69.0
DeepSeek 7B DTS-SQL 85.5 79.1
DeepSeek 7B Upper bound 90.3 84.2

Table 4: Performance of the LLMs with different tuning
methods on Spider development set. FT stands for Full
tables finetuning, Upper bound performance is the per-
formance which we can achieve with a perfect schema
linking.

Model Test EX Dev EC
SFT CodeS-15B
(Li et al., 2024) 60.37 58.47

DTS-SQL + DeepSeek (Ours) 60.31 55.8
MAC-SQL + GPT-4
(Wang et al., 2023) 59.59 57.56

SFT CodeS-7B
(Li et al., 2024) 59.25 57.17

DAIL-SQL + GPT-4
(Gao et al., 2023) 57.41 54.76

DIN-SQL + GPT-4
(Pourreza and Rafiei, 2024) 55.90 50.72

Blar-SQL
(Domínguez et al., 2024) - 46.68

Table 5: The comparison of different methods on test
set and development set of the BIRD benchmark.

on the test set, which shows the effectiveness of
our method to achieve comparable results with pro-
prietary LLMs or even surpass them with a small
LLM.

3.4.1 Schema-linking Performance
As discussed in Section 2, our approach employs
two LLMs: one for schema linking and another for
SQL query generation. The schema-linking model
plays a pivotal role in our pipeline, as inaccuracies
in table detection could hinder the SQL genera-
tor’s ability to formulate the correct SQL queries.
We fine-tuned two models, based on the Deepseek
and Mistral models, for schema linking. Evalua-
tion metrics, including exact set match, precision,
and recall, were used to assess their performance.
Detailed information about these models on two
distinct datasets can be found in Table 6.

Model Dataset EX PR RE
DeepSeek Spider 93.1 98.4 97.7

Mistral Spider 91.1 97.5 97.8
DeepSeek Spider-SYN 87.6 94.6 94.7

Mistral Spider-SYN 85.3 91.2 90.5

Table 6: Performance of the schema-linker model on
Spider and Spider-SYN dev sets. PR stands for Preci-
sion, RE is recall, and EX is exact set match accuracy.

Figure 1: Precision, recall, and exeact set match performance
of the schema-linking model on different number of tables

To further investigate the relationship between
schema-linking performance and the effect of
schema size, we conducted an analysis of preci-
sion, recall, and exact set match accuracy for the
DeepSeek schema-linking model on the Spider test
set with varying numbers of tables. The results,
shown in Figure 1, indicate that exact set match
accuracy generally decreases as the number of ta-
bles increases. However, the schema-linking model
consistently maintains precision and recall values
above 0.96, even with more than 14 tables.

4 Discussion

While our two-step approach has achieved com-
parable performance to larger models like GPT-
4 on three large cross-domain datasets, there is
still significant room for improvement, particu-
larly for the schema-linking models. Currently, our
schema-linking models achieve roughly 90% exact
set match accuracy. However, as noted in Table 4,
the substantial gap between the upper bound perfor-
mance of the SQL generator and that of DTS-SQL
calls for further research into the schema-linking. .

5 Conclusion

Before our research, small open-source models
lagged behind large proprietary models in perfor-
mance on the text-to-SQL task. Our two-stage
fine-tuning approach breaks down the task into two
simpler components, enabling small open-source
models to rival larger ones. Subsequent efforts
could focus on enhancing the performance of these
stages and exploring improved methods for trans-
ferring the output of one stage to the next.

Limitations

This paper has placed its primary emphasis on en-
hancing the performance of both stages of fine-
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tuning small large language models for Text-to-
SQL task. However, there remains scope for further
investigation and comparison of various techniques
for schema-linking. Exploring approaches like re-
trieval methods or in-context learning when applied
in conjunction with larger models such as GPT-4
for the schema-linking task could yield valuable
insights into identifying the most effective method-
ologies for schema-linking.
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Model Tuning EX EM
Mistral 7B FT Tuning 67.0 63.9
Mistral 7B DTS-SQL 71.1 64.6
Mistral 7B Upper bound 81.9 74.5

DeepSeek 7B FT Tuning 70.4 56.6
DeepSeek 7B DTS-SQL 76.2 68.9
DeepSeek 7B Upper bound 85.5 78.1

Table 7: Performance of the LLMs with different tuning
methods on Spider-SYN dev set. FT stands for Full
tables finetuning, Upper bound performance is the per-
formance which we can achieve with a perfect schema
linking.

A Appendix

A.1 Spider-SYN dataset

To assess the efficacy of our proposed method, we
evaluated its performance on the development set
of Spider-SYN. Although Spider-SYN possesses a
distinct training set, we opted to test our fine-tuned
models directly on its development set, without
any additional tuning on the Spider-SYN training
set. The same performance gain is observed on this
dataset (see Table 7) even though the model was
not directly trained in this dataset.

A.2 Error Analysis

In this section, following the exact same setting
used in (Pourreza and Rafiei, 2024) for error analy-
sis, we sampled 400 queries from the development
set of Spider, and compared our two stage fine-
tuning approach with the vanilla full finetuning to
evaluate the effect of our proposed method. As it
is illustrated in figure 3, our method consistently
improve the error cases across different classes of
errors with the largest improvement on Schema
linking class of errors. Additionally, having a sepa-
rate schema linking module also improved the error
cases for other classes like queries with GROUP
BY or NESTED errors, which shows the impor-
tance of schema linking to help the LLM generate
the query by removing the confusing tables.

A.3 Metrics

For Spider, we used exact set match accuracy (EM)
and execution accuracy (EX). EM involves com-
paring the components of SQL queries, such as se-
lect, where, having, group by, and order by clauses,
focusing on the matching of columns and predi-
cates without considering the order. EX determines
equivalence between a model-generated query and
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Figure 2: Error analysis on 400 queries from the Spider
development set, comparing our DTS-SQL method with
vanilla Full fineutning (FF) method.

a reference query if they produce identical results
across various database instances. For BIRD, we
used two metrics: valid efficiency score (VES),
which evaluates SQL query performance by consid-
ering both accuracy and execution, and execution
accuracy. We achieved a similar ranking compared
to other models on VES, but due to its high variance
and dependence on the computational environment,
we exclude it from the current analysis.

A.4 Hyperparameters
The two LLMs, schema-linking generator and SQL
generator, were trained on Nvidia Tesla A100
GPUs, employing a batch sizes of 64 and 32 with a
learning rate of 1*e-5 and 5*e-5 respectively. To
enhance the training efficiency, we incorporated
Flash Attention techniques as detailed in (Dao et al.,
2022; Dao, 2023).

A.5 Prompt
In conducting all our experiments on both models,
we adhered to a standardized prompt format to en-
sure consistency and facilitate reliable comparisons.
The chosen prompt format is well-established as ef-
fective in the Text-to-SQL domain, as demonstrated
in prior research by Gao et al. (2023). In this for-
mat, we provided information about the foreign
key constraints, primary keys, and column types.
Furthermore, to guide the models in understanding
how data is stored within the database, our prompt
incorporated three sample rows, showcasing data
entries.

The specific prompt used for our experiments is
as follows:

Figure 3: The prompt used for SQL generation. The
database schema is where we put the tables representa-
tions.

Figure 4: The prompt used for Schema linking. The
database schema is where we put the tables representa-
tions.

Figure 5: A sample table representation. All of the table
in a database are represented as above and used in the
prompts.
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