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Abstract

The integration of large language model (LLM)
techniques in the field of medical analysis has
brought about significant advancements, yet the
scarcity of large, diverse, and well-annotated
datasets remains a major challenge. Medical
data and tasks, which vary in format, size,
and other parameters, require extensive pre-
processing and standardization for effective
use in training LLMs. To address these chal-
lenges, we introduce MEDINST, the Meta
Dataset of Biomedical Instructions, a novel
multi-domain, multi-task instructional meta-
dataset. MEDINST comprises 133 biomedical
NLP tasks and over 7 million training samples,
making it the most comprehensive biomedical
instruction dataset to date. Using MEDINST
as the meta dataset, we curate MEDINST32,
a challenging benchmark with different task
difficulties aiming to evaluate LLMs’ gener-
alization ability. We fine-tune several LLMs
on MEDINST and evaluate on MEDINST32,
showcasing enhanced cross-task generaliza-
tion.

1 Introduction

Recent advancements in large language models
(LLMs), such as GPT-4 (OpenAI, 2024), LLaMA-
3 (Meta, 2024) and Mistral (Jiang et al., 2023) have
demonstrated impressive performance across var-
ious open-domain NLP tasks. Rather than devel-
oping specialized, task-specific systems, there is
an increasing focus on rapidly adapting LLMs to
specific tasks through simple prompting techniques.
Studies have demonstrated that such prompted
LLMs can achieve and even outperforms the ca-
pabilities of specialized models in a variety of NLP
tasks (Radford et al.; Brown et al., 2020; Wei et al.,
2022; Sanh et al., 2022). Due to the high cost of
pre-training LLMs, instruction finetuning has be-
come the standard method for adapting base LLMs
to specific domains. Therefore, training domain-

specific LLMs has largely shifted to a data-centric
approach.

In recent years, the field of medical analysis has
experienced a transformative shift with the integra-
tion of large language model (LLM) techniques,
fundamentally expanding the landscape of diagnos-
tic and therapeutic strategies. The advancement
of this field relies heavily on the availability of
large, diverse, and well-annotated datasets, which
are crucial for training robust and effective ma-
chine learning (ML) models. Although specialized
biomedical models such as BioBERT (Lee et al.,
2020), ClinicalXLNET (Huang et al., 2019), BioM-
Transformers (Alrowili and Shanker, 2021) and
SciFive (Phan et al., 2021) have achieved a suc-
cess, they rely on task-specific modules and follow
a pre-train then fine-tune paradigm for specified
tasks (Liu et al., 2021; Wang et al., 2023a). In this
context, generalizing to unseen tasks is computa-
tionally expensive and time-consuming. Attempts
exist such as In-BoXBART (Parmar et al., 2022)
and BioMistral (Labrak et al., 2024) are finetuned
with biomedical instructions. However, the data
involved in training and evaluation are limited. Col-
lecting raw medical data and converting it into a
format suitable for LLM applications is often com-
plex and challenging. Medical data and tasks vary
significantly in format, size, and other parameters,
necessitating extensive preprocessing and standard-
ization. This task becomes even more intricate
when integrating multiple datasets from various do-
mains into a cohesive, standardized format. This
raises the necessity of a comprehensive biomedical
instruction meta-dataset.

To address the problem, we release MEDINST1,
an instruction dataset collection includes 133
biomedical NLP tasks in 12 categories such
as Named Entity Recognition (NER), Question-

1The code, models and data are available at https://
github.com/aialt/MedINST.
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Resource MEDINST SUP-NATINST (Wang et al., 2022) BoX (Parmar et al., 2022) BLURB (Gu et al., 2021)
(this work) (Biomedicine)

Has task instructions? ✓ ✓ ✓ ×
Has multi-task datasets? ✓ × × ×
Has examples? ✓ ✓ ✓ ×
Is public? ✓ ✓ ✓ ✓
Number of tasks 133 30 32 13
Number of instructions 133 30 32 -
Number of annotated task types 12 - 9 6
Avg. task definition length (words) 45.98 56.6 - -

Table 1: Comparison of MEDINST to several datasets in biomedical field.

Answering (QA), Relation Extraction (RE), etc. A
benchmark is set by curate a test set from the en-
tire collected dataset. In the experiment, multiple
scales of LLMs are finetuned on our training data
to demonstrate the generalization performance en-
hancement. Table 1 presents the comparison of
MEDINST to relevant datasets in biomedical field.
In summary, our contributions are:

• We release a novel dataset MEDINST, a
biomedical instruction meta-dataset that in-
volves 7M samples spanning 133 tasks among
12 categories.

• Using the meta dataset, we curate
MEDINST32, a challenging benchmark
for evaluating the cross-task generalization
ability of LLMs in the biomedical domain.

• We introduce instruction fine-tuned LLMs on
MEDINST based on LLaMA-3 and conduct
comprehensive evaluation and analysis across
multiple baselines.

2 Related Work

2.1 Instruction Finetuning

Instruction finetuning involves training models to
follow specific instructions, often resulting in im-
proved generalization and the ability to perform a
wider range of tasks (Wei et al., 2022). There are al-
ready numerous open-domain instruction datasets
and finetuned models. NATURAL INSTRUCTIONS

is curated from samples of different NLP datasets
and the crowdsourcing instructions used to anno-
tate them. FLAN 2021 (Wei et al., 2022) and
2022 (Longpre et al., 2023) provide extensive pub-
licly available set of tasks and methods for in-
struction tuning. FLAN models are trained on
the collection and exhibits strong generalization
performance on a variety tasks. The InstructGPT
(Ouyang et al., 2022) model benefits in part from
a substantial dataset of prompts gathered through
various synthetic data augmentation methods. How-
ever, this dataset is not publicly accessible. SUPER-

NATURAL INSTRUCTIONS (Wang et al., 2022) is
established as a benchmark of 1,616 diverse NLP
tasks along with expert-written instructions. The
collection covers 76 distinct task types, providing
a rigorous benchmarking of generalization perfor-
mance of LLMs. The corresponding trained model
Tk-INSTRUCT outperforms InstructGPT despite
being an order of magnitude smaller. Self-Instruct
(Wang et al., 2023b) provides a new approach for
instruction fine-tuning. It involves bootstrapping
off the generations of pre-trained language models
to improve the instruction-following performance
of themselves. After the great success of Chat-
GPT (OpenAI, 2022), many efforts have been made
to use data generated by ChatGPT to train their
own large language models (LLMs). Alpaca (Taori
et al., 2023) is finetuned from LLaMA (Touvron
et al., 2023) on 52k instruction-following instances
generated by Text-davinci-003. Compared to open-
domain instruction datasets, instruction datasets in
the biomedical field are relatively scarce. MedAl-
paca (Han et al., 2023) utilizes a data collection of
160k entries from a reformatted medical NLP task
and a crawl of internet resources. ChatDoctor (Li
et al., 2023) is trained using 100k patient-doctor
dialogues from an online medical consultation plat-
form. Similar to Alpaca, AlpaCare (Zhang et al.,
2024) uses medical related instruction demonstra-
tions generated by ChatGPT to train on LLaMA.
By prompting ChatGPT to conduct self-chat, Baize
(Xu et al., 2023) collect the dialogues to train a
specialized model for healthcare. Additionally,
BioMistral (Labrak et al., 2024) and PMC-LLaMA
(Wu et al., 2023) use medical-related corpora to pre-
train their respective base models, followed by fine-
tuning with an instruction dataset. All these models
are only finetuned on a limited number of tasks,
making them prone to failure when confronted
with new tasks. Our dataset focuses on biomed-
ical domain, offering comprehensive instruction-
following demonstrates spanning 133 tasks in 12
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task categories, facilitating LLMs generalizing to
unseen tasks.

2.2 Biomedical Benchmarks

Biomedical workshops, such as BioNLP (Kim
et al., 2009) and BioCreative (Hirschman et al.,
2005), often employ task-specific benchmark
datasets. With the rise of LLMs, there are higher
expectations for the comprehensive capabilities of
medical models. As a result, evaluating them on a
single task is no longer sufficient. BLUE (Biomed-
ical Language Understanding Evaluation) (Peng
et al., 2019) took the first step by constructing a
benchmark that includes 10 datasets covering 5
different task types. Building on this foundation,
BLURB (Biomedical Language Understanding and
Reasoning Benchmark) (Gu et al., 2021) expanded
the dataset to 13, encompassing 7 different types.
Instruction datasets exist for few and zero-shot eval-
uations. Agrawal et al. (2022) introduce 3 datasets
for clinical information extraction by reannotating
the CASI datset. SUPER-NATURAL INSTRUCTION

(Wang et al., 2022) delivers 1600+ open-domain
NLP tasks, among which 30 tasks are related to
medicine and healthcare. Tailored for biomedicine,
BoX (Parmar et al., 2022) provides 32 tasks in
the scope of 9 categories. BigBIO (Fries et al.,
2022) focuses on the process of constructing meta-
datasets, providing unified schema for 126 existing
datasets across various tasks and offering tools for
building new datasets. However, it does not contain
instructions and the datasets are not in text genera-
tion format. Our dataset offers an extensive instruc-
tion benchmark including 32 tasks representing a
comprehensive evaluation of LLM performance in
biomedical fields.

3 MEDINST: Meta Dataset of
Biomedical Instructions

We curate MEDINST by collecting 98 well-
adopted biomedical datasets from 12 task cate-
gories and reformulating them into 133 tasks. All
tasks are regarded as text generation task and the
data are formatted to instruction-following samples.
The instructions are human annotated and tailored
for each dataset/task. Figure 1 (a) depicts a visual-
ization of the dataset composition of MEDINST.

3.1 Tasks

Figure 1 (b) shows the number of samples in-
cluded in each task categories. We adopted 12

categories of tasks, where each may have several
sub-categories. The categories are as follows:

Named Entity Recognition (NER) NER is a
task in natural language processing that involves
identifying and classifying key information entities.
In the biomedical field, NER involves detecting
and extract key entities such as diseases, drugs,
genes, and other relevant biological terms within
biomedical texts. In MEDINST, 56 NER datasets
are collected, including the most commonly used
BC5CDR (Li et al., 2016), JNLPBA (Collier et al.,
2004), LINNAEUS (Gerner et al., 2010), etc. We
have created a unified instruction template for the
NER task and made variations based on the spe-
cific requirements of each dataset. We have divided
the NER task into two sub-categories, differing in
output format. Sub-category 1 requires labeling
each word in the input text using the BIO format,
while Sub-category 2 requires directly outputting
all detected entities that meet the criteria. In Sub-
category 1, the input for each instance is a single
sentence, whereas in Sub-category 2, the input is an
entire passage. This adds diversity to the NER task
and creates different levels of difficulty, thereby
enhancing the model’s stability in handling vari-
ous output requirements and understanding longer
texts.

Named Entity Disambiguation (NED) The
NED task involves determining the correct identity
of named entities in a text by linking them to a
specific entry in a knowledge base. Most of the
NER datasets contain annotations for entity disam-
biguation. The NED task has also been repurposed
into two difficulty levels. The AskAPatient and
TwADR datasets (Limsopatham and Collier, 2016)
are used to create simpler tasks, where the input in-
cludes a specified biomedical entity and its context,
and the requirement is to output its identifiers in
the corresponding database. Other dataset such as
BioRelEx (Khachatrian et al., 2019), CPI (Döring
et al., 2020), MedMentions (Mohan and Li, 2019),
etc. have been reformatted into more challenging
tasks, requiring the extraction of relevant biomed-
ical entities from the given text and providing the
corresponding identifiers for each entity. In addi-
tional, MeDAL dataset (Wen et al., 2020) has also
been included in the NED task, which is a medical
text dataset curated for abbreviation disambigua-
tion. We include a total of 23 datasets in the NED
task category.
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Figure 1: MEDINST overview.

NER RE NED QA COREF EE TE STS TXTCLASS TRANSL SUM TEXTPAIRCLASS ALL

#
D

at
as

et MEDINST
Train 56 24 21 13 13 10 8 7 5 3 2 1 163
Dev 30 11 10 8 10 7 5 1 4 1 1 - 88
Test 37 9 12 10 2 1 8 1 5 1 1 - 87

MEDINST32
Train 43 21 19 10 11 9 5 6 3 2 1 1 131
Dev 19 9 9 6 8 6 5 - 2 - - - 64
Test 13 3 2 3 2 1 3 1 2 1 1 - 32

# Instruction/Task 49 23 19 9 7 9 3 3 5 3 2 1 133

Table 2: Dataset statistics across various categories.

Instruction
Given a pair of texts, consisting of a claim and the evidence,
determine whether the evidence supports, refutes, or is neutral 
regarding the claim. Respond with one of the following: 
'Supports', 'Refutes', or 'Neutral'.

Input
Claim: N95 masks are better than clothe masks.
Evidence: However, wearing N95 respirators can prevent 73 more (95% CI 46-91) 
clinical respiratory infections per 1000 HCWs compared to surgical masks (2 RCTs; 
2594 patients; low quality of evidence).
Output
Supports

Instance

Input Explanation
Task Definition
Output Format

Figure 2: Instruction and instance example.

Relation Extraction (RE) RE involves identi-
fying and categorizing the relationships between
entities within a given text. We utilize 24 datasets
for RE task, including AnEM (Ohta et al., 2012),
BioNLP 2011 REL (Pyysalo et al., 2011), etc. We
simplified the task by listing all the possible rela-
tion types in the instruction for each dataset. The
language model is prompted to extract all possible
triples from the input text.

Coreference Resolution (COREF) COREF is
the task of determining which words or phrases in
a text refer to the same entity. We used 13 datasets
for this task category, most of which come from
the BioNLP Shared Task. In addition, the MLEE
(Pyysalo et al., 2012) and PDR (Kim et al., 2019)
datasets have also been included.

Question-Answering (QA) Multiple types of
QA are collected, including yes/no, yes/no/maybe,
factoid, multi-choice, etc. In this category, 10
datasets are employed and reformatted. For
multiple-choice QA, we write out the full options in
the output rather than assigning letters or numbers
to each option.

Textual Entailment (TE) Determining whether
two texts contradict each other and whether a state-
ment aligns with the facts is crucial in the med-
ical field. In this category, we re-format 6 fact-
checking datasets, FEVER (Thorne et al., 2018),
HealthVer (Sarrouti et al., 2021), SciFact (Wadden
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et al., 2020), PubHealth (Kotonya and Toni, 2020),
etc., into claim-evidence pairs. These datasets
range from the general scientific domain to spe-
cific medical domains, such as COVID-19. More-
over, MEDIQA-RQE (Ben Abacha et al., 2019)
is incorporated as a question entailment task, i.e.
determine whether the meaning of one question
can be inferred from another question. As a classic
task in the TE category, the premise-hypothesis en-
tailment task is represented by the SciTail dataset
(Khot et al., 2018).

Text Classification (TXTCLASS) The text clas-
sification task involves assigning predefined cate-
gories or labels to a given piece of text based on
its content. Although the input and output formats
for text classification tasks are relatively fixed, the
definitions and objectives of each task are highly
diverse. Therefore, it is challenging to use a tem-
plate to standardize this type of instruction. To
ensure the quality of the instructions, each task
within this category is entirely crafted manually.
We collect 5 datasets, SciCite (Cohan et al., 2019),
Hallmarks-of-Cancer (Baker et al., 2016), BC7-
LitCovid (Chen et al., 2022), MedDialog (Zeng
et al., 2020) and GEOKhoj-v12, for this category.

Semantic Similarity (STS) The Semantic Simi-
larity task aims at measuring how similar the mean-
ings of two pieces of text are to each other. Orig-
inally a regression task with similarity scores as
outputs, we have redefined it as a classification task
by categorizing the similarity scores of all datasets
into six integer levels from 0 to 5, where 0 indi-
cates completely unrelated and 5 indicates highly
similar. This task category includes 7 datasets,
e.g. Bio-SimVerb, Bio-SimLex (Chiu et al., 2018)
BIOSSES (Soğancıoğlu et al., 2017), MQP (Mc-
Creery et al., 2020), etc.

Event Extraction (EE) EE task requires identi-
fying and categorizing events, such as biological
processes or interactions, within biomedical texts.
The Event Extraction (EE) task is typically com-
plex, with events in documents often containing
nested structures. To format the EE task as a text
generation task, we simplify it according to the
BioNLP 2009 Core Event Detection subtask (Kim
et al., 2009). We only detect events within a given
range of types and their primary arguments. Note
that primary arguments must be a biomedical entity

2https://github.com/ElucidataInc/
GEOKhoj-datasets/tree/main/geokhoj_v1

within the text; we do not consider cases where
primary arguments refer to another event.

Translation (TRANSL) We have included the
MuchMore (Buitelaar et al., 2003), ParaMed (Liu
and Huang, 2021) and SciELO (Soares et al., 2018)
datasets translated from German, Chinese, and
Spanish into English.

Text Pair Classification (TEXTPAIRCLASS)
For this category, we employ a sentiment analy-
sis dataset, the Medical-Data3 , which analyzing
the sentiment in a text where a drug is mentioned to
determine whether the sentiment towards the drug
is positive, negative, or neutral.

Summarization (SUM) Summarization is also
crucial for the application of LLMs in the biomedi-
cal field. In this category, we use the MeQSum
(Ben Abacha and Demner-Fushman, 2019) and
Multi-XScience (Lu et al., 2020) datasets. MeQ-
Sum presents patient questions, often in the form
of lengthy texts, and the task requires capturing
the main concern of these questions and provid-
ing a concise rewrite. Multi-XScience is a multi-
document summarization task, which requires gen-
erating a related work section for a given article
based on its abstract and the abstracts of some cited
references.

The complete dataset collection details are listed
in the Appendix E.

3.2 Instruction Construction
All instructions are written according to a unified
schema to ensure their quality. An instruction in-
cludes the following elements:

Input Explanation The instruction first specifies
the structure of the input. For example, for NER,
the given input is typically a sentence or a passage;
for QA tasks, the input can be a question alone, a
question with context, or a question with context
and options. We describe the elements included
in the input for each dataset’s task individually,
avoiding the use of generalized descriptions.

Task Definition The instructions include an ex-
planation of the task and the specific actions the
model needs to perform. The task definition is tai-
lored to the content of each dataset and specifies
any optional parameters. For example, the defi-
nition for the SciCite (Cohan et al., 2019) task is

3https://www.kaggle.com/datasets/arbazkhan971/
analyticvidhyadatasetsentiment

8225

https://github.com/ElucidataInc/GEOKhoj-datasets/tree/main/geokhoj_v1
https://github.com/ElucidataInc/GEOKhoj-datasets/tree/main/geokhoj_v1
https://www.kaggle.com/datasets/arbazkhan971/analyticvidhyadatasetsentiment
https://www.kaggle.com/datasets/arbazkhan971/analyticvidhyadatasetsentiment


"Classify the intent of the citation within this con-
text. Intents are: [background, method, result]."
avoiding vague instructions like "Classify the text
into [background, method, result]."

Output Format Here we specify the format of
the output. In MedINST, we adopt formats cor-
responding to the complexity of the output con-
tent. For open text generation, the output is gener-
ally plain text; for classification tasks, multiple
labels are separated by commas; for tasks like
NER, where the output biomedical entities may
contain various special characters, we enclose them
in square brackets. For complex outputs, the in-
struction will provide a template example of the
output format.

After drafting instructions according to the
abovementioned elements, we further proofread
them to make them more concise and aligned with
natural human instructions, avoiding rigid, struc-
tured descriptions. Appendix B presents the exam-
ples of instructions.

3.3 MEDINST32 Benchmark Construction
Using the MEDINST as a meta dataset, we care-
fully curate MEDINST32, a challenging bench-
mark that covers 32 tasks with different diffi-
culties to evaluate LLMs’ performance across
various medical-related tasks comprehensively.
Unlike previous works, the tasks selected for
MEDINST32 encompass different difficulty lev-
els, including knowledge difficulty and instruction
difficulty. Specifically, knowledge difficulty as-
sesses the model’s amount of biomedical knowl-
edge, such as understanding levels of biomedical
terms and their relationships, while instruction dif-
ficulty evaluates the model’s understanding and
adherence to instructions. We divide difficulty into
four categories and choose tasks from simplest
(e.g., acronym completion) to hardest (e.g., RE,
EE). Moreover, two positive examples are offered
for each tasks. See more details in Appendix A.

4 Experiments

4.1 Setup
Problem Formulation. We combine the train-
ing sets to train multi-task biomedical models.
Given an instruction Instt for a task t, and the
dataset (Xt, Yt), multi-task models learns a map
Mt : (Instt, x) → y, where (x, y) ∈ (Xt, Yt).
After learning a set of maps M1,M2, ...,MT , the
multi-task models can generalize to unseen tasks

i ∈ {T + 1, T + 2, ..., T + N} and approxi-
mate the maps Mi, where Mi : (Insti, x) → y,
(x, y) ∈ (Xi, Yi).

Training Data. Our goal is to test the generaliza-
tion ability of LLMs on unseen tasks after instruc-
tion tuning multiple biomedical tasks. Once we
have selected the 32 tasks in MEDINST32 (Sec.
3.3), we use the training set of the remaining tasks
from MEDINST for multi-task fine-tuning. Since
the MEDINST training set is too large and a large
number of training instances per task do not help
generalization in instruction finetuning (Wang et al.,
2022), we sample 100K samples to train our multi-
task biomedical LLMs, denoted as MI32. We se-
lect an equal number of samples from each task
category to ensure balance across all tasks.

Evaluation setup. Following Wang et al. (2022),
we limit the test set for large size datasets aim-
ing at efficient evaluation. We observe that mod-
els not fine-tuned on MedINST sometimes strug-
gled to output according to the instructions, posing
challenges for post-processing and metric calcu-
lation. To ensure a fair comparison, we use few-
shot prompts for baseline models during evaluation.
Each test task is provided with two examples to
help zero-shot models output in the standard for-
mat. Appendix C details the implementation of
training and evaluation.

Model. We fine-tune the instruction-tuned
LLaMA-3 (8B; Meta, 2024) and MMed-LLaMA-3
(8B; Qiu et al., 2024) on the aforementioned
MI32 training set and derive LLaMA3-MI32 and
MMedL3-MI32, respectively. Additionally, we
fine-tune LLaMA-3 on the 100K samples from
MEDINST, where the training sets of the datasets
in MI32 are exposed to the model, to produce
LLaMA3-MI, as an oracle model.

Baselines. As a direct comparison, we compare
our LLaMA3-MI32 fine-tuned on MI32 with its
base version, LLaMA3. Since MMed-LLaMA-3
is a foundation model that has not been instruc-
tion fine-tuned, to make a fair comparison, we use
MMed-LLaMA-3-EnIns (Qiu et al., 2024), which
is fine-tuned on the English medical instruction
dataset from PMC-LLaMA (Wu et al., 2023). We
denote it as MMedL3-EnIns. In addition, we com-
pare BioMistral, an open-source LLM further pre-
trained on PubMed Central utilizing the instruc-
tion fine-tuned version of Mistral-7B (Jiang et al.,
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2023) and GPT-4o, an advanced variant of GPT-
4, excels in the biomedical domain with enhanced
capabilities for understanding and generating com-
plex medical and scientific texts.

Metrics. Inspired by BLURB (Gu et al., 2021),
we select appropriate metrics for each task in
MEDINST32, including Rouge-L, Entity F1
(Entity-level F1), Label F1 (Label-level F1), MSE
(Mean Squared Error) and EM (Exact Match).
Entity-level F1 measures the overlap between the
entities detected by the models and the ground truth,
which is calculated by each data sample. Label-
level F1 is calculated from the entire dataset to
measure the similarity between the model’s predic-
tions and the labels.

4.2 Results

Table 3 presents the evaluation results of our mod-
els and baselines on MEDINST32. As an ora-
cle model, MMedL3-MI demonstrated excellent
performance across various difficulty levels, out-
performing GPT-4o in 25 tasks. This highlights
the significant impact of the MEDINST dataset in
enhancing the overall performance of models on
biomedical tasks.

The two zero-shot models, LLaMA3-MI32 and
MMedL3-MI32, showed significant generaliza-
tion improvements over their base models in most
unseen tasks. They respectively outperformed GPT-
4o in 15 and 13 tasks. However, surprisingly,
MMedL3-MI32, which used MMed-LLaMA-3
(further pretrained on biomedical corpora) as its
base model, lagged behind LLaMA3-MI32 in 22
tasks. This indicates that using further pretrain-
ing to specialize a general LLM to the biomedical
domain may not be as effective as instruction fine-
tuning, especially considering the substantial com-
putational resources required for pretraining. This
also underscores the necessity of building a com-
prehensive biomedical instruction meta-dataset.

MMedL3-EnIns was fine-tuned on 500K medi-
cal question-answering data, which includes train-
ing data from MedQA and PubMedQA that ap-
peared in MEDINST32. Despite using few-shot
prompting, its performance on MEDINST32 was
still unsatisfactory. It even significantly lagged be-
hind in QA tasks, especially in MedQA, achieving
only a 15.40 accuracy. This highlights the necessity
of reformulating tasks to improve model general-
ization capabilities: training models to output in a
single format alone increases the risk of overfitting.
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Figure 3: Training sample and model parameter scale analy-
sis.

4.3 Ablation Analysis

We design experiments to explore the impact of
the number of training samples and model param-
eters on finetuning performance. We employ the
same strategy to sample 5K and 50K instances from
the MI32 training set for training two additional
MMedL3-MI32 models for comparison. Addition-
ally, we trained both 4B and 14B versions of Phi-3
using the 50K dataset.

In Figure 3, we calculate the average Rouge-L
score for each task category to measure the per-
formance of the models. In (a), it can be seen
that as the number of training samples increases,
the model’s overall performance improves. How-
ever, performance deteriorates with increased sam-
ple size in tasks such as summarization (SUM)
and event extraction (EE). This is because as sam-
pling expands, the proportion of smaller datasets
decreases, leading to data imbalance, which causes
uneven learning progress across different tasks.
Part (b) demonstrates unexpected results regarding
the scale of model parameters. Phi-3-14B performs
less than the 4B version in three core tasks for the
biomedical field: NER, RE, and EE. A possible
reason is that larger models require more data to
be fully optimized and achieve generalization per-
formance on unseen biomedical tasks. Specialized
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Category Dataset Difficulty Level Metric
Model

LLaMA3 BioMistral MMEDL3-EnIns GPT-4o LLaMA3-MI32 MMEDL3-MI32 LLaMA3-MI†

(Few Shot) Ours (Zero Shot)

NER

NCBI-disease 2 Label-F1 51.67 24.00 30.59 47.57 78.55 78.20 84.61
BC5CDR 2 Label-F1 58.68 33.86 28.77 75.11 81.28 73.57 87.39

AnEM 3 Entity-F1 8.20 3.66 1.72 37.44 32.03 31.38 49.44
BioNLP-2009 2 Entity-F1 30.33 22.24 19.71 57.83 76.06 78.61 80.74

BioNLP-2011-GE 2 Entity-F1 29.60 20.97 14.40 57.43 76.29 79.89 80.39
BioNLP-2011-ID 3 Entity-F1 32.83 18.45 21.19 68.59 51.80 50.80 76.26

BioNLP-2011-REL 2 Entity-F1 30.14 22.73 20.26 59.01 75.93 78.66 80.41
BioNLP-2013-CG 3 Entity-F1 24.46 10.49 8.63 57.59 56.36 51.61 72.32
BioNLP-2013-GE 2 Entity-F1 16.98 15.49 13.29 43.74 71.59 71.25 71.32

BioNLP-2013-GRO 4 Entity-F1 10.34 4.14 2.91 37.79 12.48 12.86 35.13
BioNLP-2013-PC 3 Entity-F1 31.96 19.45 19.57 68.75 62.94 61.38 82.05

BioRED 3 Entity-F1 29.38 16.45 16.33 60.73 74.01 72.45 78.76
tmVar-v3 3 Entity-F1 16.34 8.96 0.39 42.08 58.46 56.77 63.22

QA
BioASQ-Task-B-yesno 1 Label-F1 91.62 67.57 91.82 93.52 93.10 86.19 93.87

PubMedQA-labeled 2 Label-F1 50.85 23.73 48.28 56.11 53.81 53.65 59.94
MedQA 2 EM 49.25 24.51 15.40 81.93 47.68 45.72 53.26

TE
SciFact 2 Label-F1 42.09 36.33 33.69 92.61 85.85 84.14 95.06

ManConCorpus 2 Label-F1 66.66 29.92 51.83 60.09 68.20 68.57 69.14
CoVERt 1 Label-F1 82.24 47.77 55.87 93.76 91.15 93.49 96.93

TXTCLASS Hallmarks-of-Cancer 2 Entity-F1 45.33 54.77 11.93 42.40 44.01 32.65 45.84
MedDialog 1 Label-F1 91.34 86.02 56.52 98.77 96.72 77.67 100.00

NED MeDAL 2 EM 21.6 15.90 17.00 59.40 28.90 30.00 36.60
tmVar-v3-NED 4 Entity-F1 0.18 0.05 0.00 7.45 2.84 0.78 1.10

RE
AnEM-RE 4 Entity-F1 2.56 0.00 5.13 25.64 0.20 1.54 16.24

BC5CDR-RE 4 Entity-F1 4.28 6.27 3.34 9.46 14.21 13.69 27.93
BioInfer-RE 4 Entity-F1 18.74 9.73 8.86 17.49 28.06 26.23 32.83

COREF AnEM-COREF 1 Entity-F1 34.52 14.29 21.43 82.20 100.00 100.00 100.00
MLEE-COREF 1 Entity-F1 54.17 26.55 25.66 79.97 99.12 98.23 95.72

SUM Multi-XScience 2 Rouge-L 13.28 11.61 10.36 12.78 11.61 11.57 14.51

EE MLEE-EE 4 Entity-F1 0.96 0.19 0.09 9.88 30.47 28.61 27.48

STS BIOSSES 1 MSE↓ 2.05 4.15 4.15 0.6 1.05 2.15 1.20

TRANSL ParaMed 2 Rouge-L 47.51 50.49 46.49 63.08 49.01 49.65 59.32

Table 3: Test results of various models on MEDINST32. † indicates that the training sets of LLaMA3-MI includes the
corresponding training sets of the datasets used by MEDINST32, whereas other models have not seen the MEDINST32 dataset.
↓ represents that a lower score is better, while for other metrics, a higher score is better. The best and second-best results for each
row are highlighted in bold and underlined, respectively. For the baselines, we use a few-shot prompt, providing two examples in
the instruction. For the fine-tuned models, we use a zero-shot prompt.

Method MMLU

An CK CB CM MG PM Avg.

BioMistral 48.89 66.42 63.19 58.38 70.00 58.46 60.88
MMedL3 65.19 70.19 72.22 55.49 74.00 66.91 67.03

MMedL3-EnIns 68.15 64.91 71.52 59.53 76.00 72.79 68.32
LLaMA3 67.41 76.60 80.56 67.63 82.00 72.06 73.92

MMedL3-MI (Ours) 64.44 67.92 71.53 58.96 74.00 66.54 66.76
LLaMA3-MI (Ours) 68.15 75.47 75.00 67.63 83.00 77.21 74.38

Table 4: Multiple-choice accuracy evaluation on MMLU-
Medicine, a subset of MMLU benchmark. The subjects used
are anatomy (An), clinical knowledge (CK), college biology
(CB), college medicine (CM), medical genetics (MG) and
professional medicine (PM).

tasks such as Named Entity Recognition (NER),
Relation Extraction (RE), and Event Extraction
(EE) in the biomedical field are more susceptible
to overfitting on small data sets compared to more
general tasks like summarization (SUM).

4.4 Evaluation on Public English Benchmarks

The Massive Multitask Language Understanding
(MMLU; Hendrycks et al., 2021) is a benchmark
that evaluates language models across various QA
tasks and subjects. We train MMedL3-MI us-
ing the same 100K dataset that was used to train

LLaMA3-MI. The models are tested on 6 medical-
related subtasks of MMLU. Table 4 exhibits the
result. As seen, LLaMA3-MI and MMedL3-MI
perform similarly to the baseline model on MMLU-
Medicine. Additionally, note that LLaMA3-MI
and MMedL3-MI are multitask models in the
biomedical field, capable of handling various other,
more challenging biomedical tasks.

5 Conclusion

In this paper, we introduce an instruction meta-
dataset MEDINST comprising 133 biomedical
tasks across 12 task categories and a challenging
benchmark MEDINST32 for evaluating multitask
biomedical models. Through various experiments,
we train multiple biomedical models and demon-
strate their strong generalization performance on
biomedical tasks using our dataset. Due to resource
constraints, we trained only on a small subset and
8B models. Using the full dataset and larger mod-
els may lead to further improvements, which is left
for future work. Our work lays the foundation for
developing better-performing biomedical LLMs.
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Limitations

We identify our limitations as follows.
First, due to computational resource constraints,

we conducted our experiments with limited data
and model sizes. We used the LoRA technique to
finetune our model, which might limit the learning
outcomes. Full-parameter finetuning could poten-
tially yield better results. In future work, we will
continue to explore ways to further enhance the
performance of LLMs on biomedical-related tasks.

Currently, the MedINST dataset only includes
single-turn dialogues, which may limit the model’s
ability to generalize to multi-turn dialogue tasks.
Therefore, in the future, we plan to incorporate
multi-turn instruction samples.

Additionally, the current dataset is primarily
in English, with other languages featured in the
TRANSL tasks, so another direction for future
work is to continue expanding the multilingual
data.
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Gizem Soğancıoğlu, Hakime Öztürk, and Arzucan
Özgür. 2017. BIOSSES: A semantic sentence simi-
larity estimation system for the biomedical domain.
Bioinformatics, 33(14):i49–i58.

8231

https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2301.13688
https://doi.org/10.18653/v1/2020.emnlp-main.648
https://doi.org/10.18653/v1/2020.emnlp-main.648
https://doi.org/10.18653/v1/2020.emnlp-main.648
https://doi.org/10.48550/arXiv.2008.13546
https://doi.org/10.48550/arXiv.2008.13546
https://doi.org/10.48550/arXiv.2008.13546
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.48550/arXiv.1902.09476
https://doi.org/10.48550/arXiv.1902.09476
https://doi.org/10.48550/arXiv.1902.09476
https://openai.com/blog/chatgpt
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.48550/arXiv.2204.07600
https://doi.org/10.48550/arXiv.2204.07600
https://doi.org/10.48550/arXiv.2204.07600
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://arxiv.org/abs/2106.03598
https://arxiv.org/abs/2106.03598
https://doi.org/10.1093/bioinformatics/bts407
https://doi.org/10.1093/bioinformatics/bts407
https://arxiv.org/abs/2402.13963
https://arxiv.org/abs/2402.13963
https://doi.org/10.48550/arXiv.2110.08207
https://doi.org/10.48550/arXiv.2110.08207
https://doi.org/10.48550/arXiv.2110.08207
https://doi.org/10.18653/v1/2021.findings-emnlp.297
https://doi.org/10.18653/v1/2021.findings-emnlp.297
https://doi.org/10.1093/bioinformatics/btx238
https://doi.org/10.1093/bioinformatics/btx238


Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018. FEVER:
A large-scale dataset for Fact Extraction and
VERification. https://arxiv.org/abs/1803.05355v3.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models. Preprint,
arxiv:2302.13971.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or Fiction: Verify-
ing Scientific Claims. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7534–7550, On-
line. Association for Computational Linguistics.

Benyou Wang, Qianqian Xie, Jiahuan Pei, Zhihong
Chen, Prayag Tiwari, Zhao Li, and Jie fu. 2023a. Pre-
trained Language Models in Biomedical Domain: A
Systematic Survey. Preprint, arxiv:2110.05006.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. Preprint,
arxiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Ku-
mar Pal, Mehrad Moradshahi, Mihir Parmar, Mi-
rali Purohit, Neeraj Varshney, Phani Rohitha Kaza,
Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia,
Shailaja Keyur Sampat, Savan Doshi, Siddhartha
Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit,
Xudong Shen, Chitta Baral, Yejin Choi, Noah A.
Smith, Hannaneh Hajishirzi, and Daniel Khashabi.
2022. Super-NaturalInstructions: Generalization
via Declarative Instructions on 1600+ NLP Tasks.
Preprint, arxiv:2204.07705.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
Language Models Are Zero-Shot Learners. Preprint,
arxiv:2109.01652.

Zhi Wen, Xing Han Lu, and Siva Reddy. 2020. MeDAL:
Medical Abbreviation Disambiguation Dataset for
Natural Language Understanding Pretraining. In
Proceedings of the 3rd Clinical Natural Language

Processing Workshop, pages 130–135, Online. Asso-
ciation for Computational Linguistics.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Yanfeng Wang, and Weidi Xie. 2023. PMC-LLaMA:
Towards Building Open-source Language Models for
Medicine. Preprint, arxiv:2304.14454.

Canwen Xu, Daya Guo, Nan Duan, and Julian
McAuley. 2023. Baize: An Open-Source Chat Model
with Parameter-Efficient Tuning on Self-Chat Data.
Preprint, arxiv:2304.01196.

Guangtao Zeng, Wenmian Yang, Zeqian Ju, Yue Yang,
Sicheng Wang, Ruisi Zhang, Meng Zhou, Jiaqi
Zeng, Xiangyu Dong, Ruoyu Zhang, Hongchao Fang,
Penghui Zhu, Shu Chen, and Pengtao Xie. 2020.
MedDialog: Large-scale Medical Dialogue Datasets.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9241–9250, Online. Association for Computa-
tional Linguistics.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang
Chen, Zekun Li, and Linda Ruth Petzold.
2024. AlpaCare:Instruction-tuned Large Lan-
guage Models for Medical Application. Preprint,
arxiv:2310.14558.

8232

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.48550/arXiv.2110.05006
https://doi.org/10.48550/arXiv.2110.05006
https://doi.org/10.48550/arXiv.2110.05006
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
https://arxiv.org/abs/2304.14454
https://arxiv.org/abs/2304.14454
https://arxiv.org/abs/2304.14454
https://arxiv.org/abs/2304.01196
https://arxiv.org/abs/2304.01196
https://doi.org/10.18653/v1/2020.emnlp-main.743
https://doi.org/10.48550/arXiv.2310.14558
https://doi.org/10.48550/arXiv.2310.14558


A Instruction Benchmark Construction

To comprehensively evaluate the model’s perfor-
mance across various medical-related tasks, we
selected 32 tasks from each task category in the
MEDINST dataset to establish a new biomedical
benchmark, MEDINST32. The tasks selected for
benchmarking encompass different levels of diffi-
culty. This includes two aspects: knowledge dif-
ficulty and instruction difficulty. Knowledge dif-
ficulty assesses the amount of biomedical knowl-
edge the model possesses, such as understanding
categories of biomedical terms and their relation-
ships. For basic-level assessment, we chose tasks
like acronym completion (MeDAL). Intermediate-
level tasks include various NER, QA, TE, and
TXTCLASS tasks. Finally, we included more chal-
lenging tasks like RE, EE, and tasks in NED that
involve annotating identifiers. Instruction difficulty
evaluates the model’s understanding and adherence
to instructions. This dimension was not considered
in previous benchmark datasets. For example, in
multichoice QA tasks, previous works often labeled
each option as A, B, C, etc., and the model only
needed to respond with the corresponding label. In
our QA task construction, we require the model to
output the selected option as it is, which increases
the task difficulty and reduces the chance of the
model bypassing with simple letter responses. Ad-
ditionally, we construct different instructions for
similar tasks. For instance, in NER tasks, we de-
veloped two types of instructions: one requiring
the model to repeat each word in the text in a BIO
format and label them one by one, and the other
asking the model to directly extract all biomedical
entity mentions and annotate their categories.

For each task in MEDINST32, we provide two
positive examples. For tasks that have a training set,
we select two examples from their training set. If a
task does not have a training set, we find the most
similar task from all the test set tasks in MEDINST
and select from there. During selection, we strive
to ensure that the two examples are diverse in con-
tent. For instance, in classification tasks, we choose
examples with different labels.

We remove all the datasets used in MEDINST32
from the MEDINST training set to create the train-
ing set for MEDINST32.

We performed random sampling on a portion of
tasks with abundant data resources to control the
number of test data in each category to be roughly
consistent. This helps to reduce the computational

resource consumption for evaluation. The sample
sizes are shown in Table 5. For other datasets, we
use the entire test set data.

Dataset Name Sample Size
NCBI-disease 100
BC5CDR 100
BioNLP-2011-GE 100
tmVar-v3 100
MeDAL 1000
ParaMed 200
Multi-XScience 200

Table 5: Sampling sizes for evaluation.

Overall, we provide a more comprehensive
and challenging biomedical instruction benchmark
compared to previous works.

B Instruction Examples

Table B presents the instruction examples for each
task categories. Each instruction contains three
parts: input explanation, task definition, and output
format, which clearly tell the LLM how to com-
plete the task. For each task within a category, the
instruction can vary, thus requiring manual compo-
sition. However, for categories such as NED, RE,
and EE tasks, the main body of the instruction is
generic. We can efficiently edit the instruction by
modifying some variable fields based on the meta-
data of each dataset, and these variable fields are
highlighted in blue.

C Implementation Details

Training For the baseline models, we used the
LLaMA-3-8B-Instruct 4 and MMed-LLaMA-3-8B
5 models available on Hugging Face. Due to lim-
ited computational resources, we employed Low-
Rank Adaptation (LoRA) for parameter-efficient
fine-tuning (PEFT). The LoRA rank was set to
8, targeting all linear layers, including q_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj,
and down_proj. The learning rate was set at 1.0e-
4, with a batch size of 4 and gradient accumulation
steps of 4. We used a cosine learning rate scheduler
with a 0.1 ratio of warmup. For training, we ran
5 epochs with 5K data, and 3 epochs for 50K and

4https://huggingface.co/unsloth/
llama-3-8b-Instruct

5https://huggingface.co/Henrychur/
MMed-Llama-3-8B
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QA Given a question and context, select the correct answer from the provided options.

TE Given a pair of texts, consisting of a claim and the evidence, determine whether the evidence supports, refutes, or is
neutral regarding the claim. Respond with one of the following: ‘Supports’, ‘Refutes’, or ‘Neutral’.

NER Given a sentence, label each disease, disease class and symptom entity using the BIO format. In BIO format, ‘B’
indicates the beginning of an entity, ‘I’ indicates the inside of an entity, and ‘O’ indicates a token not part of any entity. Label
each word in the format: ‘word [LABEL]’.

TXTCLASS You are provided with a citation context. Classify the intent of the citation within this context. Intents are:
[background, method, result].

NED You are provided with a text. Your objective is to identify and extract all chemical and disease entities mentioned in the
text, maintaining the order in which they appear. For each entity, provide its corresponding database identifier from MESH.
The entities should be presented in the format: [entity1 <db_name/db_id>].

RE Given a text, identify and extract specified relations between anatomical entities mentioned within it. The specified
relation types are [frag, Part-of]. Relation explanation: frag: Frag relation marking coordination with ellipsis; Part-of: Part-of
relation marking entity mention spanning a prepositional phrase. Present each relation in format as follows: [<entity1>
<relation> <entity2>].

COREF Given a text and a specified anatomical entity, identify and extract all co-references to that entity within the text.
Present each co-reference entity in the following format: [co-reference entity].

STS Given two texts, evaluate their similarity and provide an integer score ranging from 0 to 5, where 0 indicates no similarity
and 5 indicates high similarity.

EE Given a text, identify and extract the epecified types of bio-molecular events along with their primary arguments. The
event type can be [Binding, Positive_regulation, Phosphorylation, Regulation, Transcription, Localization, Gene_expression,
Protein_catabolism, Negative_regulation]. Present each event in the format as follows: [<type> <trigger> <theme entity>].

TRANSL Translate the text from Chinese to English.

TEXTPAIRCLASS You are given a drug name and a piece of text. Analyze the sentiment in the text and determine whether
the sentiment towards the drug is positive, negative, or neutral. Answer with ‘Positive’, ‘Negative’, or ‘Neutral’.

SUM Writing the related-work section of a paper based on its abstract and the articles it references.

Table 6: Instruction examples for each task category.

100K datasets. The training was conducted on a
single 40GB A100 GPU.

Query Template For the training and evaluation
of all LLaMA-3 series models, we used the stan-
dard LLaMA-3 chat template. Table 7 shows an ex-
ample. When constructing few-shot prompts, each
example is treated as a round of dialogue and added
before the query that needs an answer. Unlike the
approach where instructions are only given in the
first round of dialogue, we included instructions
in each example. This is because for some tasks
without a training set, we selected examples from
the training sets of similar tasks, so the instructions
in the examples may not completely match the in-
structions of the query. Table 8 demonstrates a
query of a NER task.

D Extra Metrics for SUM and TRANSL
Tasks

We add additional metrics, BERT score and ME-
TEOR score, to evaluate the generated text on sum-
marization and translation tasks. The evaluation
results are presented in Table 9 and Table 10.

E Dataset Collection

Table 11 lists all the dataset employed in
MEDINST. Because a single dataset might be re-
formulated into multiple tasks, we added suffixes
to the names in the multi-task dataset. For example,
BC5CDR appears in the NER, NED, and RE tasks.
For the primary task, NER, we use the dataset’s
original name, and for the other two tasks, we ap-
pend the respective suffixes to the dataset name.
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<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Given an utterance, determine if it is from a doctor or a patient. Do i have covid
19?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

patient<|eot_id|>

Table 7: LLaMA-3 prompt template.

Example 1
Instrcution: You are provided with a text. Your objective is to identify, extract and

classify all gene and protein entities mentioned in the text, maintaining
the order in which they appear. Types are [Gene, DomainMotif, Family-
Name]. The entities should be presented in the following format: [entity
<type>].

Input: Cloning, expression and localization of an RNA helicase gene from a
human lymphoid cell ... ... cell line from a diffuse large B-cell lymphoma.

Output: [RNA helicase <FamilyName>] [RNA helicase <FamilyName>] [p54
<Gene>] [RNA helicase <FamilyName>] [ME31B <Gene>] [ME31B
<Gene>]

Example 2
Instrcution: You are provided with a text. Your objective is to identify, extract and

classify all gene variant entities mentioned in the text, maintaining the
order in which they appear. Types are [DNAMutation, SNP, ProteinMu-
tation]. The entities should be presented in the following format: [entity
<type>].

Input: A novel multidrug-resistance protein 2 gene mutation identifies a ... ...
heterozygous mutation was significantly associated with the presence of
pruritus.

Output: [V1188E <ProteinMutation>]

Query Instrcution: You are provided with a text. Your objective is to identify, extract and clas-
sify all gene variant entities mentioned in the text, maintaining the order
in which they appear. Types are [OtherMutation, Species, DNAAllele,
DNAMutation, CellLine, SNP, ProteinMutation, ProteinAllele, Gene,
AcidChange]. The entities should be presented in the following format:
[entity <type>].

Input: A novel single-nucleotide substitution, Glu 4 Lys ... ... Thus, our results
suggest that Glu 4 Lys in the LTC4S might be associated with allergic
diseases.

Table 8: Query example.
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Model BERTScore METEOR Score
LLaMA3 0.7467 0.1758
BioMistral 0.7253 0.1152
MMEDL3-EnIns 0.7314 0.1185
GPT-4o 0.8317 0.2333
LLaMA3-MI32 (ours) 0.7951 0.1566
MMEDL3-MI32 (ours) 0.7963 0.1220
LLaMA3-MI (ours) 0.8203 0.1592

Table 9: SUM task: Multi-XScience results.

Model BERTScore METEOR Score
LLaMA3 0.9000 0.3776
BioMistral 0.9101 0.3670
MMEDL3-EnIns 0.8888 0.3625
GPT-4o 0.9291 0.4661
LLaMA3-MI32 (ours) 0.9115 0.3933
MMEDL3-MI32 (ours) 0.9080 0.3781
LLaMA3-MI (ours) 0.9379 0.6126

Table 10: TRANSL task: ParaMed results.
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Table 11: Dataset collection.

Dataset Task Train Dev Test
BioASQ-Task-B-yesno QA 15,568 0 813
BioASQ-Task-B-list QA 11,687 0 1,000
BioASQ-Task-B-factoid QA 16,389 0 724
BioASQ-Task-B-summary QA 13,151 0 824
BiologyHowWhyCorpus QA 1,269 0 0
BIOMRC QA 700,000 50,000 62,707
Evidence-Inference-2.0 QA 10,056 1,233 1,222
MedQA QA 10,178 1,273 1,272
MedHop QA 1,620 342 0
MEDIQA-QA QA 312 25 150
PubMedQA-artificial QA 200,000 11,269 0
PubMedQA-labeled QA 450 50 500
SciQ QA 11,679 1,000 1,000
FEVER TE 145,449 9,999 9,999
HealthVer TE 10,590 1,917 1,823
PubHealth TE 9,804 1,214 1,233
SciFact TE 868 0 1,189
ManConCorpus TE 0 0 2,775
CoVERt TE 0 0 212
MEDIQA-RQE TE 8,588 302 230
SciTail TE 23,596 2,126 1,304
NCBI-disease NER 5,432 923 942
BC2GM NER 12,632 2,531 5,065
CHEMDNER-BIO NER 30,884 30,841 26,561
BC5CDR NER 4,560 4,581 4,797
Linnaeus NER 12,004 4,086 7,181
JNLPBA-DNA NER 4,699 552 622
JNLPBA-RNA NER 721 89 102
JNLPBA-CT NER 4,792 420 1,422
JNLPBA-CL NER 2,596 284 377
AnatEM NER 5,861 2,118 3,830
AnEM NER 164 137 30
BioInfer NER 894 0 206
BioNLP-2009 NER 756 260 150
BioNLP-2011-EPI NER 600 200 0
BioNLP-2011-GE NER 856 0 338
BioNLP-2011-ID NER 151 46 117
BioNLP-2011-REL NER 756 150 260
BioNLP-2013-CG NER 300 100 200
BioNLP-2013-GE NER 194 212 256
BioNLP-2013-GRO NER 150 50 100
BioNLP-2013-PC NER 260 90 175
BioNLP-2019-BB NER 132 66 0
BioRED NER 400 100 100
BioRelEx NER 1,402 201 0
CellFinder NER 5 0 5
CHEBI NER 476 0 0
CHEMDNER NER 2,915 2,906 2,477

Continued on next page
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Table 11 – Continued from previous page
Dataset Task Train Dev Test
ChemProt NER 1,020 612 800
CHIA NER 1,932 0 0
CPI NER 1,808 0 0
DDI NER 673 0 279
DrugProt NER 3,500 750 0
EBM-NLP NER 4,735 0 187
EU-ADR NER 299 0 0
GENETAG NER 3,875 1,311 2,567
PTM-Events NER 112 0 0
GENIA-Term NER 2,000 0 0
GNormPlus NER 418 0 261
HPRD50 NER 34 0 9
MedMentions NER 2,635 878 879
miRNA NER 201 0 100
MLEE NER 130 44 87
NLM-Gene NER 450 0 100
NLM-Chem NER 80 20 50
OSIRIS NER 105 0 0
PDR NER 179 0 0
PICO-Annotation NER 361 0 0
ProGene NER 20,055 1,109 2,414
SCAI-Chemical NER 67 0 0
SCAI-Disease NER 330 0 0
SETH NER 433 0 0
SPL-ADR NER 101 0 0
tmVar-v1 NER 213 0 101
tmVar-v2 NER 158 0 0
tmVar-v3 NER 0 0 493
Verspoor-2013 NER 117 0 0
MedDialog TXTCLASS 981 126 122
SciCite TXTCLASS 8,243 916 1,861
Hallmarks-of-Cancer TXTCLASS 12,119 1,798 3,547
GEOKhoj-v1 TXTCLASS 25,000 0 5,000
BC7-LitCovid TXTCLASS 24,960 2,500 6,239
AskAPatient-NED NED 15,612 845 867
BC5CDR-NED NED 500 500 500
Bio-ID NED 11,366 0 0
BioNLP-2019-BB-NED NED 132 66 0
BioRED-NED NED 400 100 100
BioRelEx-NED NED 1,402 201 0
CPI-NED NED 1,808 0 0
GNormPlus-NED NED 418 0 261
Linnaeus-NED NED 95 0 0
MeDAL NED 3,000,000 1,000,000 1,000,000
MedMentions-NED NED 2,635 878 879
miRNA-NED NED 201 0 100
MuchMore-NED NED 7,820 0 0
NCBI-disease-NED NED 592 100 100
NLM-Gene-NED NED 450 0 100
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NLM-Chem-NED NED 80 20 50
OSIRIS-NED NED 105 0 0
SPL-ADR-NED NED 101 0 0
tmVar-v2-NED NED 158 0 0
tmVar-v3-NED NED 0 0 493
TwADR-L-NED NED 4,816 115 143
AnEM-RE RE 22 5 13
BC5CDR-RE RE 500 500 500
BioInfer-RE RE 642 0 142
BioNLP-2011-REL-RE RE 378 92 0
BioNLP-2013-GE-RE RE 40 41 0
BioNLP-2013-GRO-RE RE 149 48 0
BioNLP-2019-BB-RE RE 121 59 0
BioRED-RE RE 395 97 100
BioRelEx-RE RE 1,263 178 0
CHEBI-RE RE 415 0 0
ChemProt-RE RE 767 443 620
CHIA-RE RE 1,876 0 0
CPI-RE RE 1,246 0 0
DDI-RE RE 510 0 191
DrugProt-RE RE 2,433 542 0
EU-ADR-RE RE 253 0 0
HPRD50-RE RE 28 0 8
IEPA RE 114 0 26
LLL05 RE 77 0 0
MLEE-RE RE 32 11 16
MuchMore-RE RE 7,734 0 0
SETH-RE RE 212 0 0
SPL-ADR-RE RE 96 0 0
Verspoor-2013-RE RE 114 0 0
AnEM-COREF COREF 10 2 14
BioNLP-2009-COREF COREF 536 110 0
BioNLP-2011-EPI-COREF COREF 440 168 0
BioNLP-2011-GE-COREF COREF 571 0 0
BioNLP-2011-ID-COREF COREF 170 31 0
BioNLP-2011-REL-COREF COREF 535 110 0
BioNLP-2013-CG-COREF COREF 466 176 0
BioNLP-2013-GE-COREF COREF 53 41 0
BioNLP-2013-PC-COREF COREF 455 128 0
BioRelEx-COREF COREF 1,143 167 0
PTM-Events-COREF COREF 25 0 0
MLEE-COREF COREF 198 57 113
PDR-COREF COREF 19 0 0
Bio-SimVerb STS 1,000 0 0
Bio-SimLex STS 988 0 0
BIOSSES STS 64 16 20
EHR-Rel STS 3,741 0 0
MayoSRS STS 101 0 0
MQP STS 3,048 0 0
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UMNSRS STS 1,153 0 0
BioNLP-2009-EE EE 695 150 0
BioNLP-2011-EPI-EE EE 383 121 0
BioNLP-2011-GE-EE EE 765 0 0
BioNLP-2011-ID-EE EE 110 30 0
BioNLP-2013-CG-EE EE 299 100 0
BioNLP-2013-GE-EE EE 149 157 0
BioNLP-2013-PC-EE EE 257 90 0
PTM-Events-EE EE 111 0 0
MLEE-EE EE 127 44 87
PDR-EE EE 167 0 0
MuchMore-TRANSL TRANSL 6,374 0 0
ParaMed TRANSL 62,127 2,036 2,102
SciELO TRANSL 3,006,699 0 0
Medical-Data TEXTPAIRCLASS 5,279 0 0
MeQSum SUM 1,000 0 0
Multi-XScience SUM 30,369 5,066 5,093
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