@inproceedings{koval-etal-2024-financial,
title = "Financial Forecasting from Textual and Tabular Time Series",
author = "Koval, Ross and
Andrews, Nicholas and
Yan, Xifeng",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.486",
pages = "8289--8300",
abstract = "There is a variety of multimodal data pertinent to public companies, spanning from accounting statements, macroeconomic statistics, earnings conference calls, and financial reports. These diverse modalities capture the state of firms from a variety of different perspectives but requires complex interactions to reconcile in the formation of accurate financial predictions. The commonality between these different modalities is that they all represent a time series, typically observed for a particular firm at a quarterly horizon, providing the ability to model trends and variations of company data over time. However, the time series of these diverse modalities contains varying temporal and cross-channel patterns that are challenging to model without the appropriate inductive biases. In this work, we design a novel multimodal time series prediction task that includes numerical financial results, macroeconomic states, and long financial documents to predict next quarter{'}s company earnings relative to analyst expectations. We explore a variety of approaches for this novel setting, establish strong unimodal baselines, and propose a multimodal model that exhibits state-of-the-art performance on this unique task. We demonstrate that each modality contains unique information and that the best performing model requires careful fusion of the different modalities in a multi-stage training approach. To better understand model behavior, we conduct a variety of probing experiments, reveal insights into the value of different modalities, and demonstrate the practical utility of our proposed method in a simulated trading setting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koval-etal-2024-financial">
<titleInfo>
<title>Financial Forecasting from Textual and Tabular Time Series</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ross</namePart>
<namePart type="family">Koval</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Andrews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xifeng</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is a variety of multimodal data pertinent to public companies, spanning from accounting statements, macroeconomic statistics, earnings conference calls, and financial reports. These diverse modalities capture the state of firms from a variety of different perspectives but requires complex interactions to reconcile in the formation of accurate financial predictions. The commonality between these different modalities is that they all represent a time series, typically observed for a particular firm at a quarterly horizon, providing the ability to model trends and variations of company data over time. However, the time series of these diverse modalities contains varying temporal and cross-channel patterns that are challenging to model without the appropriate inductive biases. In this work, we design a novel multimodal time series prediction task that includes numerical financial results, macroeconomic states, and long financial documents to predict next quarter’s company earnings relative to analyst expectations. We explore a variety of approaches for this novel setting, establish strong unimodal baselines, and propose a multimodal model that exhibits state-of-the-art performance on this unique task. We demonstrate that each modality contains unique information and that the best performing model requires careful fusion of the different modalities in a multi-stage training approach. To better understand model behavior, we conduct a variety of probing experiments, reveal insights into the value of different modalities, and demonstrate the practical utility of our proposed method in a simulated trading setting.</abstract>
<identifier type="citekey">koval-etal-2024-financial</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.486</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>8289</start>
<end>8300</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Financial Forecasting from Textual and Tabular Time Series
%A Koval, Ross
%A Andrews, Nicholas
%A Yan, Xifeng
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F koval-etal-2024-financial
%X There is a variety of multimodal data pertinent to public companies, spanning from accounting statements, macroeconomic statistics, earnings conference calls, and financial reports. These diverse modalities capture the state of firms from a variety of different perspectives but requires complex interactions to reconcile in the formation of accurate financial predictions. The commonality between these different modalities is that they all represent a time series, typically observed for a particular firm at a quarterly horizon, providing the ability to model trends and variations of company data over time. However, the time series of these diverse modalities contains varying temporal and cross-channel patterns that are challenging to model without the appropriate inductive biases. In this work, we design a novel multimodal time series prediction task that includes numerical financial results, macroeconomic states, and long financial documents to predict next quarter’s company earnings relative to analyst expectations. We explore a variety of approaches for this novel setting, establish strong unimodal baselines, and propose a multimodal model that exhibits state-of-the-art performance on this unique task. We demonstrate that each modality contains unique information and that the best performing model requires careful fusion of the different modalities in a multi-stage training approach. To better understand model behavior, we conduct a variety of probing experiments, reveal insights into the value of different modalities, and demonstrate the practical utility of our proposed method in a simulated trading setting.
%U https://aclanthology.org/2024.findings-emnlp.486
%P 8289-8300
Markdown (Informal)
[Financial Forecasting from Textual and Tabular Time Series](https://aclanthology.org/2024.findings-emnlp.486) (Koval et al., Findings 2024)
ACL