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Abstract

We consider the problem of finding plausi-
ble rules that are missing from a given on-
tology. A number of strategies for this prob-
lem have already been considered in the liter-
ature. Little is known about the relative per-
formance of these strategies, however, as they
have thus far been evaluated on different ontolo-
gies. Moreover, existing evaluations have fo-
cused on distinguishing held-out ontology rules
from randomly corrupted ones, which often
makes the task unrealistically easy and leads
to the presence of incorrectly labelled negative
examples. To address these concerns, we in-
troduce a benchmark with manually annotated
hard negatives and use this benchmark to evalu-
ate ontology completion models. In addition to
previously proposed models, we test the effec-
tiveness of several approaches that have not yet
been considered for this task, including LLMs
and simple but effective hybrid strategies.

1 Introduction

Ontologies, in the context of artificial intelligence
(AI), are essentially sets of rules which describe
how the concepts from a given domain are related
(Chandrasekaran et al., 1999). They generalise
taxonomies by expressing these relationships us-
ing logical connectives, which makes it possible
to describe conceptual relationships in a more pre-
cise way. Throughout this paper, we will use the
common description logic syntax for encoding on-
tology rules (Baader et al., 2004). For instance, an
ontology might contain the following rules:

Biologist ⊓ (∃ livesIn.UK) ⊑ UKScientist (1)

Geologist ⊓ (∃ livesIn.UK) ⊑ UKScientist (2)

Chemist ⊓ (∃ livesIn.UK) ⊑ UKScientist (3)

In this syntax, rules are formulated as concept in-
clusions X ⊑ Y , which encode that every instance
of the concept X is also an instance of the concept

Y . The connective ⊓ corresponds to intersection
and ∃r.C is the set of concepts that are related
through relation r to some concept from C. For
instance, (1) expresses the knowledge that every
biologist who is located somewhere in the UK is
called a “UK scientist”. Ontologies are most com-
monly used for defining specialised terminologies,
which is crucial for AI systems in many techni-
cal domains, including healthcare (Ivanović and
Budimac, 2014), building information modelling
(Succar, 2009) and geographic information systems
(Schuurman, 2006), just to name a few. They can
also be used to enrich knowledge graphs (KGs)
(Jain et al., 2021; Allemang and Sequeda, 2024)
and to improve classifiers by modelling label de-
pendencies (Kulmanov et al., 2018).

Like other types of knowledge bases, ontologies
are often incomplete (Ozaki, 2020). With this in
mind, we consider the problem of predicting miss-
ing rules. We are specifically interested in the prob-
lem of predicting rules between known concepts,
rather than in enriching ontologies with new con-
cepts. Previous work has shown the feasibility of
ontology completion, but the strengths and weak-
nesses of existing methods are poorly understood,
and suitable evaluation frameworks for studying
ontology completion are currently lacking. To ad-
dress this, we make the following contributions:

• We introduce a benchmark for ontology com-
pletion. While previous work has focused
on distinguishing between held-out rules and
randomly corrupted rules, our benchmark in-
cludes manually validated hard negatives.

• We empirically compare, for the first time, the
two main ontology completion methods from
the literature: the approach based on graph
neural networks (GNN) and concept embed-
dings from Li et al. (2019) and the approach
based on Natural Language Inference (NLI)
from Chen et al. (2023). For the NLI approach,
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we carry out the first analysis of Large Lan-
guage Models (LLMs) for this problem.

• We show that previous ontology completion
strategies are highly complementary and we
exploit this observation to implement simple
but effective hybrid strategies, which signifi-
cantly outperform the current state-of-the-art.

2 Preliminaries

Ontologies We focus on description logic ontolo-
gies, which express knowledge in terms of concept
inclusions. Let C be a set of atomic concepts and R
a set of relations (often called roles in this context).
A concept is (i) an expression of the form C with
C ∈ C (ii) an expression of the form X ⊓ Y with
X and Y concepts, (iii) an expression of the form
∃r.X with r ∈ R and X a concept, or (iv) one
of the trivial concepts ⊥ or ⊤. An ontology is a
set of rules of the form X ⊑ Y (also known as
concept inclusions), where X and Y are concepts,
called the body and the head of the rule respec-
tively. Equations (1)–(3) provide examples of such
rules. Semantically, each concept corresponds to a
set of individuals and X ⊑ Y expresses that every
individual which belongs to the concept X also
belongs to the concept Y . The concept X ⊓ Y con-
tains all individuals that belong to both X and Y .
The concepts ⊤ and ⊥ correspond to the universe
of all individuals and the empty set respectively.
Finally, an individual x belongs to ∃r.X if there ex-
ists some individual y such that the relation r(x, y)
holds and y belongs to X . A detailed understand-
ing of description logics is not needed for this paper.
For more details, we refer to Baader et al. (2009).

Task Formulation Let K be an ontology and let
X ⊑ Y be a rule which is not in K (nor logically
entailed by this ontology). We consider the prob-
lem of predicting whether X ⊑ Y is a valid rule,
which we treat as a binary classification problem.
Note that X and Y may be complex expressions,
built from a set of atomic concepts and relations.
While X and Y themselves might not appear in K,
we assume that these atomic concepts and relations
do, i.e. we focus on predicting missing knowledge
about a given set of atomic concepts.

Note that in this setting we do not have access to
examples of instances of the various concepts. This
means that traditional approaches to rule learning
cannot be used. Instead, two types of information
are available for predicting missing rules. First, we

may be able to exploit the structure of the ontol-
ogy. For instance, from the rules (1)–(3) we may be
able to infer that Biologist, Geologist and Chemist
share something in common, as these rules follow
a similar pattern. Whenever we encounter some
knowledge that is true for biologists and geolo-
gists, we may then assume that this knowledge
also plausibly holds for chemists. Second, we can
exploit the fact that ontology concepts generally
correspond to natural language terms, which means
that language models (Chen et al., 2023) or concept
embeddings (Li et al., 2019) can be used to inject
relevant knowledge.

Differences with Related Tasks Various forms
of knowledge base completion have been studied in
the literature, which differ from ontology comple-
tion in fundamental ways. For instance, knowledge
graph completion is about predicting missing fac-
tual assertions (e.g. Paris is the capital of France)
rather than about predicting rules. Rule learning
has been studied in many settings, but usually the
aim is to learn rules that capture statistical depen-
dencies, based on examples. In the case of ontology
completion, the purpose is to learn rules that are
universally valid, expressing knowledge that can
be used across a wide range of applications (within
a given technical domain). The problem of tax-
onomy expansion is also related, but focuses on
relations between individual terms, rather than be-
tween more complex expressions. Moreover, the
primary focus in that context has been on adding
missing terms to existing taxonomies, rather than
on predicting missing concept inclusions.

Benchmarking Progress on these various knowl-
edge base completion tasks has been crucially en-
abled by the emergence of standard benchmarks.
In the case of ontology completion, the evaluation
methodologies that were used in previous work
have serious shortcomings. Moreover, the evalua-
tion protocols that were used are not comparable,
meaning that little is known about the relative effec-
tiveness of different kinds of strategies. The main
aim of this paper is to address this issue, and thus
lay the foundations for future work on this topic.

3 The CONTOR Benchmark

Existing evaluations of ontology completion have
important limitations. For instance, Li et al. (2019)
and Chen et al. (2023) use different formulations
of the problem, which makes their evaluations not
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Training Dev Test IAA

pos neg pos neg pos neg κ

Wine 69 319 10 31 18 15 80.0
Economy 384 1744 44 174 96 81 82.0
Olympics 135 621 14 63 34 29 83.0
Transport 615 2416 135 142 154 145 81.0
SUMO 4377 21624 735 749 1095 998 63.0
FoodOn 45013 221429 2260 2190 2370 2155 62.0
GO 103184 494708 5326 5012 5431 5044 58.0

Table 1: Overview of CONTOR, showing the number of
positive and negative examples in the training and test
split, as well as the inter-annotator agreement (IAA), in
terms of Cohen’s κ, for the negative test examples.

directly comparable. More fundamentally, these
methods were evaluated by using randomly cor-
rupted positive examples as negatives. However,
such random corruptions are often relatively easy to
identify, especially if they were obtained by swap-
ping concepts for semantically distinct alternatives.
For instance, it should be easy enough for a base-
line system to predict that Biologist ⊑ UK is not a
plausible rule. Furthermore, randomly corrupted
rules might sometimes correspond to semantically
valid rules. To address these limitations, we pro-
pose CONTOR (Completing Ontology Rules), a
benchmark for ontology completion with manually
validated hard negative test examples. In Section
5 we will then use this benchmark to compare, for
the first time, the different approaches that have
been proposed for ontology completion.

Ontologies CONTOR is based on seven well-
known ontologies: the five ontologies that were
used by Li et al. (2019), namely Wine, Economy,
Olympics, Transport and SUMO, and two ontolo-
gies that were used by Chen et al. (2023), namely
FoodOn and the Gene Ontology (GO). Wine, Econ-
omy, Olympics and Transport are small domain-
specific ontologies. SUMO is used as a representa-
tive example of a larger general-domain ontology.
Finally, FoodOn and GO are considerably larger
than all the others, while being focused on spe-
cialised domains. For Wine, Economy, Olympics,
Transport and SUMO, we keep 20% of the rules
for testing. For FoodOn and GO, we keep 5% for
testing. The remaining rules are split into training
and development sets. Some basic statistics of the
considered ontologies are summarised in Table 1.

Negative Training Examples For the training
set, using manually annotated negative examples
is not feasible, due to the large number of rules

which would have to be checked. Therefore, we
still use randomly corrupted negative examples for
the training set, following the strategies that were
proposed in previous work (Li et al., 2019; Chen
et al., 2023) (see Appendix B for details). Finally,
note that we only add these randomly corrupted
rules as negative examples if they cannot be en-
tailed by the positive examples (i.e. the training
split of the given ontology).

Negative Test Examples To obtain negative ex-
amples for the test set, we rely on human annota-
tors to ensure that the corrupted rules are indeed
negative examples. Moreover, we aim to select
hard negative examples, given that random cor-
ruption often leads to nonsensical rules which are
too easy to identify. Specifically, for each posi-
tive rule α ⊑ β, we randomly select one of the
concepts C appearing in that rule and replace it
with another concept D. Rather than selecting this
concept arbitrarily, we choose D to be among the
5 most similar concepts to C, in terms of the co-
sine similarity between the fastText embeddings
of the corresponding names1. Note that selecting
similar concepts increases the chances that the cor-
rupted rule is actually a valid rule, which means
that human annotation is critical in this case. Each
corrupted rule was checked by two annotators, who
were trained in formal knowledge representation
and were fluent in English. The agreement between
the annotators is reported in Table 1. For cases
where the annotators disagreed, a third annotator
was used to decide on the final label.

4 Ontology Completion Strategies

Our main aim in this paper is to empirically com-
pare the success of different ontology completion
strategies. First, we focus on two strategies from
the literature: an NLI based strategy (Chen et al.,
2023) and a model based on GNNs and pre-trained
concept embeddings (Li et al., 2019). In addition to
providing the first comparison of these two strate-
gies, we will also explore a range of variants of the
original models. As we will see, both strategies
are in fact highly complementary. Inspired by this
finding, we also explore some hybrid strategies.

4.1 NLI Based Models
To treat ontology completion as an NLI problem,
we need to verbalise the body and head of a given

1We used the embeddings trained on Common Crawl from
https://fasttext.cc/docs/en/english-vectors.html.
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candidate rule. For instance, the body of the rule
might be translated to the premise “a biologist who
lives in the UK” and the head might be translated
to the hypothesis “a UK Scientist”. While some
care is needed about how the premise and hypoth-
esis are formulated (e.g. how concept names re-
ferring the multi-word expressions are tokenised),
this approach is intuitive and conceptually straight-
forward. We experiment with three variants: (i)
the BERTSubs model (Chen et al., 2023) from the
DeepOnto library2; (ii) fine-tuned LLMs; and (iii)
ChatGPT and GPT-4 in a zero-shot setting.

DeepOnto BERTSubs relies on a fine-tuned LM
from the BERT family. The model takes a verbalisa-
tion of the rule as input and is fine-tuned as a binary
classifier.3 We rely on the implementation of BERT-
Subs from the DeepOnto library (He et al., 2023b).
For a rule of the form X ⊑ Y , we use DeepOnto’s
verbaliser to obtain a textual description of the con-
cepts X and Y . This verbaliser tokenises multi-
term expressions and describes the logical struc-
ture of complex concepts. For instance, RedWine
becomes “red wine” while Wine ⊓ ∃hasColor.Red
becomes “wine that has color red”. To check the
validity of X ⊑ Y , an input of the form “[CLS]
dX [SEP] dY [SEP]” is used, with dX and dY the
descriptions of X and Y respectively. Chen et al.
(2023) also experimented with variants that explic-
itly include some of the ontology context of X and
Y as part of the input, but since they did not observe
a clear benefit from doing this, we do not consider
such variants in this paper. Following Chen et al.
(2023), we use RoBERTa-base and RoBERTa-large
(Liu et al., 2019) as the pre-trained LM.

LLMs NLI based methods rely on the LM’s inter-
nal knowledge to assess the plausibility of a given
rule. As such, LLMs might perform better than
smaller models. While He et al. (2023a) obtained
somewhat disappointing results with LLMs, their
analysis was limited to the zero-shot setting. To
allow for a more direct comparison, we will use
LLMs that are fine-tuned in a similar way to BERT-
Subs. To complement our experiments with fine-
tuned LLMs, we also report results for ChatGPT
(gpt-3.5-turbo) and GPT-4 (gpt-4-turbo).

2https://krr-oxford.github.io/DeepOnto/
3Note that NLI systems are typically ternary classifiers,

with entailment, contradiction and neutral as the possible op-
tion. In description logic, contradiction is expressed using
disjointness rules of the form X⊓Y ⊑ ⊥, which we verbalise
as “X and Y implies contradiction”. In this way, entailment
and contradiction is predicted using the same binary classifier.

4.2 Concept Embedding Based Models
We now recall the approach from Li et al. (2019),
which uses a GNN with pre-computed concept em-
beddings for predicting plausible rules. These con-
cept embeddings can be obtained from standard
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) or distilled from pre-trained lan-
guage models (Li et al., 2021; Liu et al., 2021a).
To see why concept embeddings can be useful for
predicting missing rules, note that ontologies often
contain large numbers of “parallel rules”, express-
ing essentially the same knowledge for a number
of related concepts. Taking the example of (1)–(3),
for any concept X whose embedding is similar to
that of Biologist, Geologist and Chemist, we can
plausibly infer that there should be a counterpart to
these rules for X; e.g. we might thus infer:

Physicist⊓ (∃ livesIn.Britain)⊑UKScientist (4)

Note that the justification comes purely from our
prior knowledge about the relatedness of the con-
cepts Biologist, Geologist, Chemist and Physicist.
In particular, the concept UKScientist does not play
any role in this process. This strategy can thus
also be used if the concept in the head of the rule
has a meaning which only makes sense within the
context of the given ontology. However, its main
drawback is that it can only be applied if suitable
parallel rules are present. Li et al. (2019) developed
an embedding based method for ontology comple-
tion which uses a Graph Neural Network (GNN)
to implement the aforementioned intuition, which
first abstracts rules as rule templates and then uses
these templates to define a graph.

Rule Templates A unary rule template is ob-
tained by replacing one of the concepts appearing
in a rule from the ontology by a placeholder. For
instance, the rules (1)–(3) are all instances of the
following template:

ρ(X) = X ⊓ (∃livesIn.UK) ⊑ UKScientist

The notion of rule template allows us to treat the
problem of predicting missing rules as a binary
classification problem: for a given concept X , de-
cide whether ρ(X) is a valid rule or not. Similarly,
a binary rule template is obtained by replacing two
concepts by a placeholder. We can for instance
consider the following template:

ρ(X,Y ) = Biologist ⊓ (∃livesIn.X) ⊑ Y
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Figure 1: Schematic overview of the considered ontol-
ogy completion strategies.

Rule (1) is an instance of this template with X =
UK and Y = UKScientist. Each binary template
defines a classification problem on concept pairs
(X,Y ), i.e. decide whether ρ(X,Y ) is valid.

GNN Model When using rule templates, the
problem of ontology completion reduces to that
of classifying concepts or concept pairs. While we
could directly use pre-trained concept embeddings
for this purpose, better results can be achieved by
contextualising these embeddings using a GNN.
Specifically, we consider a graph with one node
for each atomic concept appearing in the training
set. Two atomic concepts are connected by an edge
if they appear in the same rule. We consider vari-
ants of the model with unary and binary templates.
For the unary template model, we train a logistic
regression classifier for each template. This clas-
sifier takes the final layer embedding of a given
concept X as input and predicts whether ρ(X) is
a valid rule. For the binary template model, we
use the scoring function from DistMult (Yang et al.,
2015) to predict whether ρ(X,Y ) is a valid rule. Li
et al. (2019) trained an R-GCN to predict whether
a given concept (resp. concept pair) is a valid in-
stance of a given unary (resp. binary) template. We

modify this approach in two ways. First, we sim-
plify the model by using standard GNNs, i.e. we
only consider whether two concepts appear in the
same rule, rather than trying to capture the kinds
of rules in which the concepts co-occur. Second,
we train the model to predict the validity of a rule,
rather than predicting instances of templates, which
is essential to allow us to compare this approach
with the NLI based strategy. Figure 1 provides a
schematic overview of the unary and binary tem-
plate models. Further details of the different mod-
els can be found in Appendix A.

4.3 Hybrid Strategies

The concept embedding based model can only pre-
dict a given rule if it is an instance of a rule template
that is witnessed in the training data. When assess-
ing a candidate rule for which no rule templates are
available, rather than reverting to random guessing,
it makes sense to revert to a backup ontology com-
pletion strategy instead. We consider two simple
hybrid strategies based on this intuition.

Conditional Hybrid Strategy If the given rule r
is an instance of a rule template which is witnessed
at least K times in the training data, then we use the
strategy based on concept embeddings. Otherwise,
we use a fall-back strategy, such as an NLI model.

Simple Aggregation Given two models, we pre-
dict the rule r as a positive example as soon as
either of the two models labels this rule as positive.

5 Experiments

We now present our experimental analysis.4

Models We experiment with the NLI based mod-
els from the DeepOnto library, which correspond to
fine-tuned RoBERTa-base and RoBERTa-large
encoders. Regarding the fine-tuned LLMs, we
experiment with Mistral-7B, Llama3-8B, Phi3-
medium and Gemma-7B. Where available, we
use both the base models and their instruction fine-
tuned variants. The latter will be indicated by IT in
the results tables. To fine-tune the LLMs, we rely
on the 4-bit QLoRA implementation from Unsloth
AI5. For the concept embedding based approach we
consider three standard GNN architectures: GCN
(Kipf and Welling, 2017), GAT (Velickovic et al.,

4Our dataset and implementation are available at https:
//github.com/thomas-bllx/CONTOR

5https://github.com/unslothai/unsloth
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Wine Economy Olympics Transport SUMO FoodOn GO Average

NLI BASED MODELS

RoBERTa-base 57.8 78.5 76.9 65.6 76.8 76.2 72.9 72.1
RoBERTa-large 76.5 79.4 79.3 75.6 77.3 78.3 74.6 77.3

Mistral-7B 67.9 80.6 87.0 84.7 79.3 82.2 80.3 80.3
Mistral-7B (IT) 69.0 81.3 77.1 83.1 80.1 80.6 80.9 78.9
Llama3-8B 57.9 57.9 51.8 62.0 75.5 72.5 77.4 65.0
Llama3-8B (IT) 70.2 78.5 74.7 82.7 79.7 80.5 81.3 78.2
Phi3-medium (IT) 54.4 81.4 75.2 80.0 78.4 82.0 81.0 76.1
Gemma-7B 38.5 77.8 34.3 80.7 77.5 79.0 79.7 66.8
Gemma-7B (IT) 61.6 73.4 69.0 82.8 78.5 82.1 78.6 75.1

ChatGPT 50.8 66.5 69.5 56.1 65.6 60.3 61.7 61.5
GPT-4 63.7 74.8 81.0 62.4 74.2 75.7 76.7 72.6

CONCEPT EMBEDDING BASED MODELS

R-GCN (UT) 84.8 71.6 64.7 74.9 69.4 70.8 71.3 72.5
R-GCN (BT) 79.9 16.5 28.5 54.0 3.7 25.7 28.3 33.8
GCN (UT) 84.8 73.4 68.9 76.9 67.2 71.5 71.9 73.5
GCN (BT) 78.9 16.6 28.5 52.8 3.7 26.3 28.7 33.6
GAT (UT) 84.8 68.0 68.6 74.3 69.3 69.4 70.6 72.1
GAT (BT) 87.1 16.6 29.2 55.6 3.7 25.3 27.5 35.0
GATv2 (UT) 88.2 66.9 65.5 74.7 69.5 69.7 70.9 72.2
GATv2 (BT) 86.4 16.5 29.2 55.7 3.7 25.8 26.7 34.9

FFN (UT) 70.9 70.1 59.7 65.9 61.1 65.7 67.2 64.8
FFN (BT) 73.1 16.4 27.2 49.5 3.7 27.6 30.9 32.6

Table 2: Overview of the main results in terms of F1 (%). For the GNN models, ConCN embeddings were used as
input features. The NLI based models are trained on each ontology separately.

2018) and GATv2 (Brody et al., 2022). We further-
more compare with the model from Li et al. (2019),
which uses a graph with different edge types, cor-
responding to the binary templates, and relies on
an R-GCN (Schlichtkrull et al., 2018) to take these
edge types into account. As a baseline, to show
the benefit of using GNNs, we also compare with
a variant which feeds the concept embeddings to
a feedforward network instead of a GNN (shown
as FFN). Unless specified otherwise, we use the
ConCN concept embeddings (Li et al., 2023) as
input features for the GNNs. Full experimental
details can be found in Appendix B.

Results The main results are summarised in Ta-
ble 2. For this experiment, the NLI models have
been fine-tuned on each ontology separately.6 Sur-
prisingly, the RoBERTa-large model from Deep-
Onto performs better than some of the LLMs, and
only slightly underperforms the best LLMs. The
best NLI models also outperform the concept em-
bedding based models on average. Among the
fine-tuned LLMs, Mistral achieves the best results.
In the case of Llama3 and Gemma, the instruction

6The other possibility is to train a single model on the joint
training sets of all ontologies. An analysis of this variant can
be found in the appendix.

fine-tuned variants outperform the base models,
but this effect is not observed for Mistral. Chat-
GPT and GPT-4 (zero-shot) perform worse than
the best fine-tuned models. For the concept em-
bedding based models, the unary templates gener-
ally perform much better than the binary templates.
The different GNN architectures perform similarly,
with the best overall results achieved by the GCN.
The feedforward model underperforms the GNNs.
Significant further analysis about the considered
strategies can be found in Appendix C.

Overall, our most surprising finding is the rela-
tively poor performance of the LLMs. While Mis-
tral achieves the best results on average, its im-
provement over the much smaller RoBERTa-large
model is limited. This highlights the fact that on-
tology completion is not a pure NLI problem. It
sometimes involves dealing with artificial concepts,
whose meaning is defined by the knowledge ex-
pressed in the ontology, and cannot accurately be
modelled based on the given concept name. An-
other interesting result is the fact that GNNs with
unary templates are competitive (e.g. better than
Llama3-8B on average), and more importantly, that
their performance is complementary with that of
the LLMs. For instance, GNNs perform much bet-
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ter on Wine but much worse on GO.

Hybrid Strategies The results of the hybrid mod-
els are shown in Table 3. For the conditional hybrid
models, we use the notation X + Y to denote the
configuration where X is the base model and Y is
the fall-back model. We write GCN (UT≥3) for the
variant where K = 3, i.e. where only templates
occurring at least 3 times in the training data are
considered, while GCN (UT) corresponds to the
standard variant where K = 1. For the simple ag-
gregation strategy, X + Y refers to the model that
predicts a rule as positive if it is labelled as such
by X or Y . Several of the hybrid configurations
outperform the best individual models. The condi-
tional hybrid approach slightly underperforms the
simple aggregation approach in most cases. We
can also see that the variants with K = 3 typically
outperform the corresponding variants with K = 1.
Among the LLMs, configurations with Mistral lead
to be best results. In Appendix C we show that con-
ditional models can be slightly improved by also
considering binary templates.

Our main finding is the surprising effectiveness
of the hybrid models, and the simple aggregation
strategy in particular. Remarkably, combining the
GCN with Mistral even leads to much improved
results on ontologies where the GCN alone per-
forms poorly (e.g. Economy and Olympics). Hy-
brid configurations with RoBERTa are somewhat
less effective, especially for the four smaller on-
tologies, which suggests that the strengths of this
model are somewhat in between those of the GCN
(i.e. capturing the structure of the ontology) and
the LLMs (i.e. capturing richer pre-trained knowl-
edge about lexical entailment). The relatively poor
performance of the Mistral + Llama configuration
further supports the claim that the success of the hy-
brid approach (for the other configurations) is due
to the complementarity of the methods involved.

Qualitative Analysis Below are examples of
rules that were identified by the GCN with unary
templates but predicted by neither Llama3-8B (IT)
nor Mistral-7B:

• Chenin Blanc implies something that has fla-
vor Moderate

• Avocado implies Grocery Produce

• Smoked and Frozen Cod Fillet implies Cod
Fillet

• Rings implies Artistic Gymnastics

• Abort implies Computer Process

• Food Distribution Operation implies Military
Operation

• Petite Syrah implies something that has sugar
Dry

• Railroad Track and Bulkhead implies Contra-
diction

We see several cases involving domain-specific
concepts (e.g. Rings implies Artistic Gymnastics),
which only make sense within the context of the
given ontology (i.e. Olympics). We also see cases
involving ∃, which often sound less natural when
verbalised, e.g. Petite Syrah implies something that
has sugar Dry. Conversely, let us now consider the
following examples of rules that were identified by
both Llama3-8B (IT) and Mistral-7B but not by the
GCN with unary templates.

• Sauternes implies something located in
Sauterne Region

• Chianti implies something located in Chianti
Region

• Fire Boat implies Emergency Vehicle

• Canal System implies Water Transportation
System

• War implies Violent Contest

• Telegraph implies Electric Device

• Artistic Gymnastics implies Gymnastics

• Summer Games implies Olympic Games

• Plastic implies Manufactured Product

• Coffee Bean implies Plant Agricultural Prod-
uct

Here we see many examples that are almost tauto-
logical, e.g. Sauternes implies something located in
Sauterne Region. Such rules are easy to identify by
NLI models, but the GNN models can fail on such
cases if they lack the required template. NLI mod-
els also do well on examples that benefit from the
general background knowledge captured by LLMs,
e.g. Fire Boat implies Emergency Vehicle.
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CONDITIONAL HYBRID MODELS

GCN (UT) + RoBERTa 79.9 74.8 71.0 64.8 67.6 77.1 76.4 78.5
GCN (UT) + Mistral 89.5 76.6 73.0 66.7 68.0 78.9 78.6 80.1
GCN (UT) + Llama 83.3 74.8 75.0 64.8 66.8 78.1 77.5 79.2
GCN (UT≥3) + RoBERTa 83.9 85.4 80.6 81.3 81.7 79.7 77.4 81.4
GCN (UT≥3) + Mistral 100.0 88.3 87.9 86.3 83.2 82.1 73.7 85.9
GCN (UT≥3) + Llama 80.0 85.4 84.4 79.7 78.1 72.2 79.2 79.9

SIMPLE AGGREGATION

RoBERTa + Mistral 79.1 87.8 87.3 79.9 83.9 86.8 87.4 84.6
RoBERTa + Llama 84.8 86.2 87.5 74.8 89.6 91.2 92.1 86.6
Mistral + Llama 72.7 72.7 70.5 67.6 71.4 67.4 67.4 70.0

GCN (UT) + RoBERTa 71.4 76.7 77.8 74.3 72.5 80.2 77.5 80.4
GCN (UT) + Mistral 89.5 81.7 75.0 72.8 71.9 81.6 79.9 83.1
GCN (UT) + Llama 83.3 76.6 76.9 69.4 69.4 80.9 78.8 81.2
GCN (UT≥3) + RoBERTa 65.0 83.8 76.5 78.0 76.4 77.4 73.1 75.7
GCN (UT≥3) + Mistral 100.0 91.6 89.6 87.7 88.9 88.0 76.2 88.9
GCN (UT≥3) + Llama 80.0 87.2 84.4 80.9 82.2 75.4 81.3 81.6

Table 3: Overview of the main results in terms of F1 (%) for the hybrid models. RoBERTa refers to RoBERTa-large,
Mistral refers to the Mistral-7B base model, and Llama refers to the instruction-finetuned Llama3-8B model.

6 Related Work

Knowledge Graph Completion KG completion
is concerned with predicting missing factual asser-
tions and thus fundamentally different from ontol-
ogy completion. Note, however, that several rule
based methods have been proposed for KG comple-
tion (Meilicke et al., 2019; Qu et al., 2021; Cheng
et al., 2023). Such methods learn rules that capture
statistical regularities from the KG (e.g. if some-
body works in a company that is based in country
X, then they are likely to be a resident of that coun-
try). This is again different from our focus in this
paper: KG completion rules are typically not uni-
versally valid and tied to a particular KG, and they
are learned from factual assertions (i.e. the training
KG). In contrast, we aim to learn ontological rules
that can be used across a wide range of applica-
tions, and we infer the plausibility of these rules
based on the meaning of the concepts involved.

Taxonomy Expansion Another popular knowl-
edge base completion task consists in expanding
taxonomies (Jurgens and Pilehvar, 2016; Takeoka
et al., 2021), which differs from ontology com-
pletion in several respects. First, in the case of
ontology completion, due to the presence of com-
plex rules, we need to go beyond modelling re-
lations between natural language terms. Second,
most taxonomy expansion benchmarks focus on
adding new concepts to the taxonomy, whereas we
focus on finding missing rules (involving concepts
that already belong to the ontology). Third, in the

case of taxonomy enrichment, the input usually
consists of a term and a definition, whereas in the
case of ontology completion, we need to infer the
intended meaning of a concept from the ontology it-
self. Taxonomy enrichment is thus closely aligned
with tasks such as hypernym detection (Hanna and
Mareček, 2021) and definition modelling (Noraset
et al., 2017). As such, most current approaches
primarily rely on language models (Chen et al.,
2021a; Takeoka et al., 2021), although Graph Neu-
ral Networks have also been leveraged in this con-
text (Shen et al., 2020; Shang et al., 2020).

Ontology Learning The ontology completion
methods we considered in this paper use NLP mod-
els (i.e. concept embeddings or language models)
to provide prior knowledge about the meaning of
the concepts. Some approaches have been studied
which only focus on the structure of the ontology,
taking inspiration from knowledge graph embed-
ding models (Kulmanov et al., 2019; Mondal et al.,
2021; Xiong et al., 2022; Peng et al., 2022; Jacker-
meier et al., 2023), but this requires very large on-
tologies with sufficient regularity. The special case
of embedding taxonomies has also received exten-
sive interest (Vilnis et al., 2018; Nickel and Kiela,
2017; Ganea et al., 2018; Le et al., 2019). Yet
another line of work has focused on learning con-
cept representations using word embedding models
(Mikolov et al., 2013), where the key idea is to view
ontology axioms as sentences (Smaili et al., 2018,
2019; Chen et al., 2021b). Finally, when a suffi-
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ciently large set of factual assertions is available
(i.e. an ABox), we can also find plausible ontology
rules by relying on standard rule learning (Iannone
et al., 2007; Fanizzi et al., 2008; Bühmann et al.,
2016; Sarker and Hitzler, 2019).

Benchmarking Ontology Completion Cur-
rently there are no standard benchmarks for on-
tology completion, unlike for the task of KG com-
pletion where standardised benchmarks have long
been the norm. Chen et al. (2023) and Li et al.
(2019) evaluated their models by checking whether
they are able to distinguish held-out rules from the
ontology from corrupted versions of these rules.
However, their evaluation protocols are not com-
patible and they were tested on different ontolo-
gies. Moreover, as already mentioned, testing
on randomly corrupted rules has important limita-
tions. He et al. (2023c) introduced ONTOLAMA, a
benchmark for testing the ability of language mod-
els to recognise subsumption relations between
complex concepts. This differs from the bench-
mark we introduce in this paper, as ONTOLAMA
involves predicting the validity of a single rule,
without any further ontology context. In contrast,
we are specifically interested in methods that can
take a given ontology into account.

Modelling Ontologies with LLMs Language
models are now commonly used for KG comple-
tion. Somewhat surprisingly, perhaps, LLMs have
not previously been considered for ontology com-
pletion, to the best of our knowledge. However, He
et al. (2023a) carried out a preliminary study into
the potential of LLMs for the related problem of on-
tology alignment, i.e. mapping the concepts from
one ontology onto the corresponding concepts from
another ontology. They obtained mixed results with
Flan-T5-XXL and ChatGPT, with both models fail-
ing to consistently outperform a fine-tuned BERT
method (in a zero-shot setting). Giglou et al. (2024)
obtained somewhat promising results with Llama 2,
Mistral and ChatGPT, but also failed to consistently
outperform traditional methods for ontology align-
ment. Some authors have proposed methods for
learning ontologies with LLMs (Giglou et al., 2023;
Kommineni et al., 2024), but such works focus on
relation extraction tasks (e.g. finding instances of a
concept, or relations between concepts) rather than
on modelling rules. A key challenge for ontology
completion comes from the fact that concepts may
be used with a meaning that is more specific than
the common understanding of the corresponding

natural language term. LLMs with in-context learn-
ing tend to struggle in such specification-heavy
settings (Peng et al., 2023), which is why we have
focused on fine-tuned LLMs in our analysis.

7 Conclusions

We have considered the problem of finding plausi-
ble rules which are missing from a given ontology.
Specifically, we have introduced a new benchmark
with hard negatives, which were manually verified
by human annotators. We then compared, for the
first time, the two main families of ontology com-
pletion methods: NLI based methods and GNN
based methods. Beyond existing NLI based meth-
ods, we also presented the first analysis of LLMs
for ontology completion. Finally, we found hy-
brid strategies to achieve surprisingly strong results,
clearly outperforming the current state-of-the-art.
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Limitations

The area of ontology completion is considerably
less mature than related areas such as taxonomy ex-
pansion and knowledge graph completion. As such,
the methods we have analysed in this paper should
be seen as baselines for future work. For instance,
we expect that much better hybrid strategies can be
developed, which combine the knowledge captured
by LLMs with models that take into account the
structure of the ontology. The results of the LLM
models themselves should also be seen as lower
bounds. For instance, while we have attempted to
construct reasonable prompts, it is likely that better
prompting strategies can be found.

In this paper, we have treated ontology comple-
tion as a binary classification problem, deciding
whether a given candidate rule is valid or not. How-
ever, in practice, we also need a mechanism for
generating suitable candidate rules. The template
based approach can be used in a straightforward
way for this purpose. While it is likely that LLMs
can also be successfully leveraged for generating
rules, rather than classifying them, studying how
this can best be done is left for future work.
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BERT’s knowledge of hypernymy via prompting. In
Proceedings of the Fourth BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 275–282, Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Yuan He, Jiaoyan Chen, Hang Dong, and Ian Horrocks.
2023a. Exploring large language models for ontology
alignment. CoRR, abs/2309.07172.

Yuan He, Jiaoyan Chen, Hang Dong, Ian Horrocks,
Carlo Allocca, Taehun Kim, and Brahmananda Sap-
kota. 2023b. Deeponto: A python package for
ontology engineering with deep learning. CoRR,
abs/2307.03067.

Yuan He, Jiaoyan Chen, Ernesto Jiménez-Ruiz, Hang
Dong, and Ian Horrocks. 2023c. Language model
analysis for ontology subsumption inference. CoRR,
abs/2302.06761.

Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi.
2007. An algorithm based on counterfactuals for
concept learning in the semantic web. Appl. Intell.,
26(2):139–159.

8325

https://doi.org/10.1007/978-3-540-92673-3_1
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1109/5254.747902
https://doi.org/10.1109/5254.747902
https://doi.org/10.18653/v1/2021.naacl-main.373
https://doi.org/10.18653/v1/2021.naacl-main.373
https://doi.org/10.18653/v1/2021.naacl-main.373
https://doi.org/10.1007/S11280-023-01169-9
https://doi.org/10.1007/S11280-023-01169-9
https://doi.org/10.1007/S11280-023-01169-9
https://doi.org/10.1007/s10994-021-05997-6
https://openreview.net/forum?id=F8VKQyDgRVj
https://openreview.net/forum?id=F8VKQyDgRVj
https://doi.org/10.1007/978-3-540-85928-4_12
https://doi.org/10.1007/978-3-540-85928-4_12
https://aclanthology.org/2022.coling-1.349
https://aclanthology.org/2022.coling-1.349
http://proceedings.mlr.press/v80/ganea18a.html
http://proceedings.mlr.press/v80/ganea18a.html
https://doi.org/10.1007/978-3-031-47240-4_22
https://doi.org/10.1007/978-3-031-47240-4_22
https://doi.org/10.48550/ARXIV.2404.10317
https://doi.org/10.48550/ARXIV.2404.10317
https://doi.org/10.18653/v1/2021.blackboxnlp-1.20
https://doi.org/10.18653/v1/2021.blackboxnlp-1.20
https://doi.org/10.48550/ARXIV.2309.07172
https://doi.org/10.48550/ARXIV.2309.07172
https://doi.org/10.48550/ARXIV.2307.03067
https://doi.org/10.48550/ARXIV.2307.03067
https://doi.org/10.48550/arXiv.2302.06761
https://doi.org/10.48550/arXiv.2302.06761
https://doi.org/10.1007/s10489-006-0011-5
https://doi.org/10.1007/s10489-006-0011-5
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Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021a. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442–1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Qianchu Liu, Fangyu Liu, Nigel Collier, Anna Korho-
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A Details of Ontology Completion
Strategies

In this section, we provide some additional details
about the considered ontology completion strate-
gies.

A.1 NLI Based Approach with LLMs

To fine-tune the LLMs, we use the following
prompt:

Classify the text into True or False. Reply with
only one word: True or False. Determine if
the following statement is valid: [RULE BODY]
implies [RULE HEAD].

where [RULE BODY] and [RULE HEAD] are the
verbalisations of the rule body (i.e. left-hand side)
and head, obtained with DeepOnto. For instance,
for the rule CheninBlanc ⊑ ∃hasFlavor.Moderate,
the last part of the prompt becomes: Chenin Blanc
implies something that has flavor Moderate. For
our zero-shot experiments with ChatGPT and GPT-
4, we used the same prompt.

A.2 Concept Embedding Approach

Typed Binary Templates Many of the rules in
a typical ontology are basic subsumptions of the
form A ⊑ B. With a naive application of the bi-
nary template model, such rules give us the trivial
binary template ρ(X,Y ) = X ⊑ Y . Following Li
et al. (2019), we therefore use typed binary tem-
plates. When typed templates are used, instead of
replacing a concept A by a placeholder X , we re-
place it by the conjunction X ⊓ A′ where A′ is a
direct parent of A (i.e. A′ is such that we have the
rule A ⊑ A′ in the ontology). A basic subsumption
A ⊑ B then leads to a binary template of the form
ρ(X,Y ) = X ⊓ A′ ⊑ Y ⊓ B′, where A′ and B′

are direct parents of A and B. If A and B have
multiple direct parents, then we consider each of
the corresponding typed templates.

Using Multi-relational Graphs To construct the
concept graph that is used by the GNN models,
the strategy explained in the main paper is to con-
nect two concepts with an edge if they co-occur in
some rule. In contrast, Li et al. (2019) used edges
of different types, with the types corresponding
to binary templates. In other words, their graph
structure reflects which kinds of rules two concepts
co-occur in. While their graph is more informa-
tive, learning with multi-relational graphs is harder,
especially considering that the amount of training
data that we have available is typically limited. For
this reason, it turns out that using our simpler ap-
proach performs as well in practice, while having
the advantage of being more efficient.

Loss Function let U be the set of unary templates
which are witnessed in the given ontology. For each
atomic concept X and template ρ ∈ U , we estimate
the probability that ρ(X) is a valid rule as follows

conf(ρ,X) = σ(x · aρ + bρ) (5)

where x ∈ Rn is the final-layer embedding of con-
cept X in the GNN, aρ ∈ Rn and bρ ∈ R, and σ
denotes the sigmoid activation function.

The evaluation carried out by Li et al. (2019)
focused on predicting whether a concept X (resp.
concept pair X,Y ) is a valid instance of a unary
(resp. binary) template. This makes it possible to
compare the performance of different concept em-
bedding strategies, but not to compare the GNN
model with other strategies for ontology comple-
tion. We therefore adapt the model to make pre-
dictions at the level of rules. Specifically, to clas-
sify a given rule r as valid or not, we first deter-
mine all templates ρ and concepts X for which
r = ρ(X). Let us write ρ1(X1), ..., ρm(Xm) for
these template-concept combinations. The proba-
bility that r is a valid rule is then estimated as:

p(r) =
m

max
i=1

conf(ρi, Xi)

Note that if m = 0, i.e. r is not an instance of any
of the unary templates, then p(r) = 0. We train the
model using binary cross-entropy:

L = −
∑

r

yr log p(r) + (1− yr) log(1− p(r))

where the summation ranges over the rules r in the
training set (see Section 3), and we define yr = 1
if r is a positive example and yr = 0 otherwise.
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Model Name URL

Mistral-7B https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit
Mistral-7B (IT) https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit
Llama3-8B https://huggingface.co/unsloth/llama-3-8b-bnb-4bit
Llama3-8B (IT) https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit
Phi3-medium (IT) https://huggingface.co/unsloth/Phi-3-medium-4k-instruct-bnb-4bit
Gemma-7B https://huggingface.co/unsloth/gemma-7b-bnb-4bit
Gemma-7B (IT) https://huggingface.co/unsloth/gemma-7b-it-bnb-4bit

Llama2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf
Llama2-7B-Chat https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama2-13B https://huggingface.co/meta-llama/Llama-2-13b-hf
Llama2-13B-Chat https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
Llama2-7B-32K-Instruct https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
Vicuna-13B https://huggingface.co/lmsys/vicuna-13b-v1.5

Table 4: Specification of the LLMs that were used in our experiments.

Ontology Name URL

Wine https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
Economy http://reliant.teknowledge.com/DAML/Economy.owl
Olympics https://swat.cse.lehigh.edu/resources/onto/olympics.owl
Transport http://reliant.teknowledge.com/DAML/Transportation.owl
SUMO https://www.ontologyportal.org/
FoodOn https://obofoundry.org/ontology/foodon.html
GO http://purl.obolibrary.org/obo/go.owl

Table 5: Specification of the ontologies that were used for the CONTOR benchmark.

For the binary template model, we need to pre-
dict whether ρ(X,Y ) is a valid rule. We considered
two possible approaches for this. First, we con-
sidered the scoring function from DistMult (Yang
et al., 2015): In particular, we have:

conf(ρ,X, Y ) = σ(xTMρy) (6)

where Mρ ∈ Rn×n is a diagonal matrix, and
x,y ∈ Rn are the final-layer embeddings of con-
cepts X and Y in the GNN. Second, we also consid-
ered a scoring function inspired by TransE (Bordes
et al., 2013):

conf(ρ,X, Y ) = σ(∥(y − x− aρ∥2 − bρ) (7)

with aρ ∈ Rn and b ∈ R. Unless specified oth-
erwise, the results in this paper are based on the
DistMult variant. The binary template model is
also trained using binary cross-entropy.

A.3 Hybrid Strategies

Conditional Hybrid Strategy For the ease of
presentation, we consider the unary template model
for explaining the hybrid strategy. Let r be a given
candidate rule and let ρ1, ..., ρm be the correspond-
ing rule templates, where r = ρ1(X1) = ... =
ρm(Xm). For a rule template ρ, let us write freq(ρ)

for the number of times it is witnessed in the train-
ing data (i.e. the number of available rules of the
form ρ(X)). We define the support of r as:

supp(r) = max(freq(ρ1), ..., freq(ρm))

Note in particular that supp(r) = 0 if no templates
are available that match r. To classify a given rule
candidate r, we then proceed as follows:

• If supp(r) ≥ K then we predict the validity
of r using the available rule templates

• Otherwise, we use a fall-back strategy, such
as an NLI model, to make the prediction.

Entirely analogously we can also consider a hybrid
strategy based on the binary template model.

Simple Aggregation For the simple aggregation
strategy, we consider two ontology completion
models (or in some configurations three models)
and simply classify a rule as a positive example if
it is labelled as such by at least one of the models.
Note that this approach, by design, increases recall
but possibly at the cost of reduced precision. As
such, this approach may perform best if at least one
of the models is precision-oriented. For this rea-
son, when the concept embedding based method is
used, we also consider the aforementioned variant
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in which only templates appearing K times in the
training data are used.

B Experimental Details

Language Models and Ontologies Table 4 gives
an overview of the language models that were
used in our experiments, together with informa-
tion about where they can be obtained. In addition
to the models that were considered in the main
results table (Table 2), we show details of some
models which we will additionally consider in this
appendix. Details about the ontologies that are in-
cluded in our CONTOR benchmark are provided
in Table 5. Note that these ontologies are provided
under a CC BY license.

Generating Training Examples As explained
in the main paper, the negative examples in the
training data were obtained by randomly corrupt-
ing the positive rules from the training split. To this
end, we used the following strategies, where we
use notations such as α and β to denote arbitrary
rule bodies and heads, and notations such as C and
D to denote concept names: (i) For each rule of
the form C ⊑ D in the ontology, we add D ⊑ C
as a negative rule. (ii) For each rule of the form
α1 ⊑ β1, we randomly select another rule from
the ontology of the form α2 ⊑ β2 and we generate
the corrupted rules α1 ⊑ β2 and α2 ⊑ β1. (iii)
For each rule of the form C ⊑ D, we randomly
replace C or D by another concept, which is ran-
domly sampled from all concepts appearing in the
ontology. (iv) For each rule of the form C ⊑ D we
generate the constraint C ⊓D ⊑ ⊥ (encoding that
C and D are disjoint).

Training Details We use the rule-based verbal-
izer provided by the DeepOnto library to convert
the rules into textual inputs. For instance, the con-
cept RedWine is converted to the term “red wine”,
while the concept ∃hasColor.Red is converted to
the phrase “something that has color red”. For train-
ing with DeepOnto, we set the learning rate to 1e-5,
weight decay to 1e-2, the number of epochs to 3,
the batch size of the training and development sets
to 8, and the batch size of test sets to 16.

For tuning the GNN models, we select the num-
ber of layers from {2, 3, 4, 5}. For GAT and
GATv2, we select the number of attention heads
from {4, 8, 16} and fix the negative slope of the
LeakyReLU activations as 0.2. In all GNN models,
we use dropout to avoid over-fitting. For GAT and

GATv2, the dropout rate of attention layers is set
to 0.2. For all GNN models, the dropout rate of
non-attention layers is set to 0.5. We select the di-
mension of the hidden layers from {8, 16, 32, 64}.
All GNN models are optimised using AdamW, with
a learning rate of 1e-2 and weight decay of 5e-2.
We train the models for 200 epochs and select the
best checkpoint based on the validation split.

For the baselines based on feedforward networks
(FFN), we learn encoders consisting of several
ReLU layers to transform the pre-trained concept
embeddings. On top of the encoder, we add a classi-
fication layer of the form (5) for the unary template
variant and a classification layer of the form (6) for
the binary template variant. The number of layers
is tuned from {3, 4, 5} for FoodOn and GO, and {2,
3, 4} for the other ontologies. The dimensionality
of the hidden states is tuned from {32, 64, 128} for
FoodOn and GO, and {16, 32, 64} for the others.
We use AdamW as the optimizer with a learning
rate of 0.01. We use dropout, and the dropout rate
is set to 0.5. As for the GNNs, we use binary cross
entropy as for training the models.

To fine-tune the LLMs, we rely on QLoRA,
which combines 4-bit quantization via BitsAnd-
Bytes with Low-Rank Adaptation (LoRA) to en-
able efficient model optimization. In particular, we
use the implementation from Unsloth AI7, which
has a number of further optimisations for efficient
memory management.

C Additional Analysis

Comparison of Concept Embeddings For the
GNN models, Table 2 only reports results for the
ConCN concept embeddings. To analyse the im-
pact of this choice, Table 6 compares the results
for different concept embedding choices. We ex-
periment with several types of pre-trained concept
embeddings. First, we consider standard word em-
beddings models: Skip-gram (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and Numberbatch
(Speer et al., 2017)8. Second, we consider meth-
ods which rely on fine-tuned LM encoders to map
the name of a concept to their embedding: Mirror-

7https://github.com/unslothai/unsloth
8Glove trained on Common Crawl (https:

//nlp.stanford.edu/projects/glove/), Skip-gram
trained on Google News (https://code.google.
com/archive/p/word2vec/), and Numberbatch from
https://conceptnet.s3.amazonaws.com/downloads/
2019/numberbatch/numberbatch-en-19.08.txt.gz
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BERT9 (Liu et al., 2021a), which was trained in a
self-supervised fashion, and the bi-encoder model
from Gajbhiye et al. (2022), which we refer to as
BiEnc10. Finally, we use two methods which ob-
tain embeddings by finding mentions of the concept
name in Wikipedia and aggregating their contex-
tualised representation: MirrorWiC11 (Liu et al.,
2021b), which is self-supervised, and ConCN12(Li
et al., 2023), which was trained using distant super-
vision from ConceptNet. For this analysis, we have
used the GCN model.

As can be seen, the results are highly sensitive
to the quality of the concept embeddings, with tra-
ditional word embeddings models such as Skip-
gram (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014) leading to considerably weaker
results. However, the performance of Number-
batch (Speer et al., 2017), a method which uses the
ConceptNet13 knowledge graph to improve Skip-
gram, is surprisingly strong. MirrorBERT (Liu
et al., 2021a), MirrorWiC (Liu et al., 2021b), Bi-
Enc (Gajbhiye et al., 2022) and ConCN (Li et al.,
2023) all rely on fine-tuned BERT models for ob-
taining concept embeddings. The best results are
obtained with ConCN, which also relies on Con-
ceptNet for distant supervision.

Additional Language Models Table 7 provides
results for a number of LLMs that were not consid-
ered in the main experiments. These models clearly
underperform the best models from Table 2.

Usefulness of Binary Templates While the bi-
nary template model underperforms the other ap-
proaches when used in isolation, it has complemen-
tary strengths that can be exploited by the hybrid
strategies. Table 8 shows an analysis of hybrid
models that take advantage of this. For the condi-
tional hybrid models, the notation X+Y +Z refers
to a configuration where X is the base model and
the conditional hybrid model Y +Z is the fall-back
model. As can be seen, in most cases adding the bi-
nary template model leads to slightly better results,
compared to the corresponding configurations in
Table 3.

9https://huggingface.co/cambridgeltl/
mirror-bert-base-uncased-word

10https://github.com/amitgajbhiye/biencoder_
concept_property

11https://huggingface.co/cambridgeltl/
mirrorwic-bert-base-uncased

12https://github.com/lina-luck/semantic_
concept_embeddings

13https://conceptnet.io

Joint Training In the main experiments (Table
2), the NLI based models were trained on each
ontology separately. This has the advantage that
the resulting models are specialised towards the
given ontology, which can be important if ontolo-
gies use concepts in idiosyncratic ways, among oth-
ers. However, jointly training these models on all
ontologies together also has some possible advan-
tages. For instance, some of the smaller ontologies
may not have enough examples to enable success-
ful fine-tuning of LLMs. Moreover, the models
might generalise better by being exposed to a more
diverse set of training examples. Table 9 shows
the results we obtained with this joint training strat-
egy. We can see that this generally leads to worse
results than fine-tuning on individual ontologies.
However, some configurations benefit from this
joint training strategy, namely Gemma-7B and (to
a lesser extent) Llama3-8B, as well as several vari-
ants of Llama2. Interestingly, joint fine-tuning only
benefits the base models of Gemma and Llama3.
We can also observe some differences between the
different ontologies. For instance, for SUMO it is
almost always beneficial to fine-tune on this ontol-
ogy alone, with the Llama2-7B variants as the only
exceptions.

Scoring Function For the binary template model,
in our main experiments we have relied on a bi-
linear scoring function (6). Another possibility,
inspired by TransE, is to use (7) instead. A compar-
ison between both alternatives is shown in Table
10. As can be seen, the results are broadly similar.

Effect of QLoRA The use of 4-bit quantization
and low-rank adaption makes the process of fine-
tuning LLMs significantly more efficient. However,
this efficiency may come at the cost of reduced per-
formance. To analyse this, Table 11 compares the
results for Llama-3 based on QLoRA (from the
main experiments) with a model that was trained
using standard fine-tuning in full precision. For
the full fine-tuning experiment, we relied on the
Llama-3 model provided by Meta14. As can be
seen, full fine-tuning performs slightly better on av-
erage, but the improvement is insufficient to justify
the significantly higher computational cost, espe-
cially since other models perform better even with
4-bit QLoRA (including the instruction fine-tuned
variant of Llama-3). In particular, for the full fine-
tuning experiment, we needed eight A100 GPUs

14https://huggingface.co/meta-llama/
Meta-Llama-3-8B
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Wine Economy Olympics Transport SUMO FoodOn GO Average

U
na

ry
te

m
pl

at
es Skip-gram 50.3 52.2 47.7 48.3 51.6 56.4 55.1 51.7

GloVe 51.2 53.4 48.9 50.2 53.7 58.7 57.6 53.4
Numberbatch 82.8 72.3 67.5 75.2 66.9 70.8 70.5 72.3
MirrorBERT 81.3 71.5 65.4 70.3 63.4 68.1 67.1 69.6
MirrorWiC 82.4 71.9 66.2 71.6 64.5 68.8 68.3 70.5
BiEnc 83.2 72.9 68.2 75.4 66.8 71.2 70.9 72.7
ConCN 84.8 73.4 68.9 76.9 67.2 71.5 71.9 73.5

B
in

ar
y

te
m

pl
at

es Skip-gram 47.8 13.1 19.9 42.8 2.6 18.7 18.3 23.3
GloVe 49.1 13.2 20.4 43.2 2.6 19.2 18.9 23.8
Numberbatch 77.3 16.1 27.9 51.6 3.7 25.9 27.9 32.9
MirrorBERT 74.5 15.7 26.4 50.3 3.6 23.7 24.8 31.3
MirrorWiC 75.2 15.9 26.5 50.9 3.6 24.5 25.4 31.7
BiEnc 76.3 16.2 28.1 52.6 3.7 25.8 28.1 33.0
ConCN 78.9 16.6 28.5 52.8 3.7 26.3 28.7 33.6

Table 6: Analysis of different pre-trained concept embeddings. All results are obtained with the GCN model.

Wine Economy Olympics Transport SUMO FoodOn GO Average

Llama2-7B 45.0 63.3 55.1 60.0 64.0 75.1 72.7 62.2
Llama2-7B-Chat 50.8 56.0 50.2 53.5 60.6 74.5 69.0 59.2
Llama2-13B 52.2 68.2 55.6 62.0 69.5 78.2 77.2 66.1
Llama2-13B-Chat 54.4 66.0 53.6 55.0 70.1 76.8 75.6 64.5
Llama2-7B-32K-Instruct 45.8 66.2 64.5 60.4 69.0 75.7 70.1 64.5
Vicuna-13B 54.1 78.4 73.0 69.4 72.5 77.3 76.8 71.6

Table 7: Analysis of additional LLMs for the main experiments in terms of F1 (%). The models are trained on each
ontology separately.

Wine Economy Olympics Transport SUMO FoodOn GO Average

CONDITIONAL HYBRID MODELS

GCN (UT) + GCN(BT) + RoBERTa 78.0 79.5 84.5 77.0 77.7 78.5 77.6 80.0
GCN (UT) + GCN(BT) + Mistral 81.0 83.2 89.2 82.3 78.7 80.9 79.7 81.2
GCN (UT) + GCN(BT) + Llama 78.0 78.3 84.5 74.9 74.8 80.2 78.8 80.7

GCN (UT≥3) + GCN(BT≥3) + RoBERTa 78.9 87.6 86.6 79.7 87.6 83.4 78.7 83.2
GCN (UT≥3) + GCN(BT≥3) + Mistral 87.8 91.3 94.4 84.6 89.8 86.1 77.2 87.3
GCN (UT≥3) + GCN(BT≥3) + Llama 75.7 86.4 88.2 78.6 83.2 75.0 78.6 80.8

SIMPLE AGGREGATION

GCN (UT) + GCN (BT) + RoBERTa 72.3 75.7 80.0 74.1 72.4 80.7 80.1 81.1
GCN (UT) + GCN (BT) + Mistral 80.9 83.2 89.2 82.3 78.7 82.4 82.3 84.5
GCN (UT) + GCN (BT) + Llama 78.0 78.3 84.5 74.9 74.8 81.8 80.3 83.1

GCN (UT≥3) + GCN (BT≥3) + RoBERTa 68.2 82.6 80.6 76.4 76.8 77.0 72.9 76.4
GCN (UT≥3) + GCN (BT≥3) + Mistral 87.8 91.3 94.4 84.6 90.0 86.0 77.6 88.0
GCN (UT≥3) + GCN (BT≥3) + Llama 75.7 86.4 88.2 78.6 83.1 75.0 78.6 80.8

Table 8: Overview of the main results in terms of F1 (%) for the hybrid models with binary templates. RoBERTa
refers to RoBERTa-large, Mistral refers to the Mistral-7B base model, and Llama refers to the instruction-finetuned
Llama3-8B model.

for about twenty hours for the biggest ontologies.
In contrast, to fine-tune the LLMs with QLoRA
(Unsloth AI), we used a single A6000 GPU for less
than one hour per ontology.

Prompt Analysis In Table 12, we compare the
performance of different prompts. For this analysis,
we use a test set that consists of 100 examples from
each of the seven ontologies (50 positive and 50

negative examples) The prompts that we consid-
ered are as follows:

• Prompt 1: Classify the text into True or False.
Reply with only one word: True or False. De-
termine if the following statement is valid:

• Prompt 2: Assess the validity of the following
statement. Reply with only one word: True or
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Wine Economy Olympics Transport SUMO FoodOn GO Average

Mistral-7B 54.7 77.7 79.5 79.2 69.8 79.7 82.9 74.8
Mistral-7B (IT) 53.0 80.8 69.6 77.6 67.4 81.6 80.9 73.0
Llama3-8B 69.0 63.8 57.7 76.3 61.9 63.0 66.4 65.4
Llama3-8B (IT) 63.5 80.5 73.8 83.0 76.4 81.8 80.9 77.1
Phi3-medium (IT) 52.5 80.4 71.0 80.4 76.1 80.5 81.7 74.6
Gemma-7B 66.4 75.4 78.6 81.5 72.2 77.8 80.6 76.1
Gemma-7B (IT) 63.6 75.9 68.2 78.5 73.1 79.9 77.8 73.9

Llama2-7B 53.8 71.4 71.5 60.2 69.9 75.3 73.4 67.9
Llama2-7B-Chat 37.1 68.2 66.7 59.7 68.0 73.5 72.3 63.7
Llama2-13B 45.6 69.8 68.1 58.5 68.2 75.3 75.5 65.9
Llama2-13B-Chat 48.3 71.9 63.3 60.8 67.7 74.3 74.4 65.8
Llama2-7B-32K-Instruct 51.3 65.0 74.6 58.2 65.8 72.2 69.3 65.2
Vicuna-13B 48.6 72.3 63.5 59.7 71.8 77.1 76.3 67.0

Table 9: Results for the NLI models when jointly trained on all ontologies. Results which are better than the
corresponding result in Table 2 and 7 are highlighted in bold.

DistMult TransE

Wine 72.2 70.8
Economy 14.6 15.7
Olympics 27.9 27.3
Transport 47.0 45.9

Table 10: Comparison between DistMult and TransE as
scoring function for the Binary Template model (F1%).

False. Determine if the following statement is
valid:

• Prompt 3: Assess the validity of the following
rule. Reply with only one word: True or False.
Determine if the following rule is valid:

• Prompt 4: Classify the text into True or False.
Reply with only one word: True or False. De-
termine if the following is a valid rule:

• Prompt 5: Classify the text into True or False.
Reply with only one word: True or False. De-
termine if the following is valid statement:

In all cases, the prompt is followed by a statement
of the form RULE BODY implies RULE HEAD. As
we can see in Table 12, the performance of these
prompts is comparable. Furthermore, the instruc-
tion fine-tuned models are generally more robust
against changes in the prompt.
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QLoRA 4-bit (Llama3-8B) 57.9 57.9 51.8 62.0 75.5 72.5 77.4 65.0
Full fine-tuning (Meta-Llama-3-8B) 53.6 72.5 68.9 77.1 66.1 77.9 79.4 70.8

Table 11: Comparing fine-tuning in 4-bit precision using QLoRA with standard fine-tuning in full prevision.

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

Mistral-7B 80.3 77.6 78.5 75.6 78.1
Mistral-7B (IT) 78.3 78.5 77.4 78.8 78.6
Llama3-8B 53.4 57.2 58.8 50.8 52.9
Llama3-8B (IT) 75.8 74.9 75.1 74.9 75.9
Phi3-medium (IT) 70.9 73.6 70.9 69.9 69.4
Gemma-7B 69.4 72.2 63.1 65.5 62.2
Gemma-7B (IT) 76.3 76.9 77.3 77.6 76.1

Llama2-7B 66.4 61.9 62.9 67.2 67.1
Llama2-7B-Chat 61.3 63.0 63.7 65.0 64.8
Llama2-13B 69.5 69.9 71.2 70.4 70.9
Llama2-13B-Chat 65.4 65.4 63.3 65.2 65.8
Llama2-7B-32K-Instruct 67.0 67.4 67.8 63.2 65.8
Vicuna-13B 69.7 69.0 68.4 69.8 68.6

Table 12: Analysis of the performance of different prompts in terms of F1 (%) on a combined test set containing
100 examples from each of the ontologies.
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