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Abstract

While LLMs have emerged as performant ar-
chitectures for reasoning tasks, their compo-
sitional generalization capabilities have been
questioned. In this work, we introduce a Com-
positional Generalization Challenge for Graph-
based Commonsense Reasoning (CGGC) that
goes beyond previous evaluations that are based
on sequences or tree structures – and instead
involves a reasoning graph: It requires models
to generate a natural sentence based on given
concepts and a corresponding reasoning graph,
where the presented graph involves a previously
unseen combination of relation types. To mas-
ter this challenge, models need to learn how
to reason over relation tuples within the graph,
and how to compose them when conceptual-
izing a verbalization. We evaluate seven well-
known LLMs using in-context learning and find
that performant LLMs still struggle in composi-
tional generalization. We investigate potential
causes of this gap by analyzing the structures of
reasoning graphs, and find that different struc-
tures present varying levels of difficulty for
compositional generalization. Arranging the
order of demonstrations according to the struc-
tures’ difficulty shows that organizing samples
in an easy-to-hard schema enhances the com-
positional generalization ability of LLMs. 1

1 Introduction

Reasoning (Brachman and Levesque, 2004) has
been widely explored and extended to a wide vari-
ety of situations involving logical or commonsense
reasoning (Rashkin et al., 2018; Talmor et al., 2019;
Bisk et al., 2020). Recently, LLMs such as GPT-3
(Brown et al., 2020) and Llama2 (Touvron et al.,
2023) have demonstrated astonishing performance
on reasoning tasks (Lourie et al., 2021).

However, existing works found that LLMs are
limited in scenarios that require generalization abil-
ities, such as out-of-domain (Shen and Kejriwal,

1Code & data: https://github.com/Heidelberg-NLP/CGGC

2021; Wang et al., 2021), low-resource (Klein and
Nabi, 2021) and complex compositional (Dziri
et al., 2024) tasks. Hupkes et al. (2023) concluded
that inferior performance of models in such cases
originates from a lack of compositional general-
ization ability – the ability to infer, from known
components, a potentially infinite number of novel
combinations suitable to solve the given task. With
this ability, LLMs are expected to generalize to un-
seen and more complex reasoning scenarios with-
out relying on large amounts of training instances.

To explore the compositional generalization abil-
ities of LLMs in reasoning, existing works intro-
duce benchmarks across various domains involving
different data representations, such as natural lan-
guage (Liu et al., 2022a; Yanaka et al., 2020; Fu and
Frank, 2023) and tree-based structures (Saparov
et al., 2023; Fu and Frank, 2024a; Kudo et al.,
2023). These works facilitate the compositional
generalization exploration in reasoning and have
shown that LLMs are able to generalize to some ex-
tent, while being limited in specific circumstances.
However, to date, we note a gap regarding the eval-
uation of compositional generalization abilities in
the context of graph-based reasoning. Graphs, as
commonly used in real-world applications, offer
flexible and diverse reasoning paths. Recent ev-
idence (Besta et al., 2024) suggests that graphs
enhance LLM reasoning by enabling the use and
combination of diverse reasoning paths.

Our work fills this gap by proposing CGGC,
a Compositional Generalization Challenge for
Graph-based Commonsense Reasoning. CGGC
builds on the generative commonsense reasoning
task CommonGen (Lin et al., 2020), which tasked
models to generate a coherent natural language sen-
tence from a set of given concepts. CGGC extends
this task by requiring models to reason over a set
of concepts presented in a connected graph struc-
ture. Fig.1.b shows an example where a model is
expected to generate a sentence such as ‘He puts a
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Figure 1: An instance of Compositional Generalization in Graph-based Commonsense Reasoning (CGGC). A
model is expected to solve a test sample (b, composition) that presents an input graph with an unseen combination
of relation types (here: HasA&AtLocation). The ICL demonstrations of the task in (a), by contrast, show each
relation primitive in combination with other relation types, here: HasA&UsedFor and AtLocation&UsedFor.

cheese pizza in an oven’ from a knowledge graph
that contains the set of target concepts {cheese,
oven, pizza}. For this task, we design the composi-
tional generalization test CGGC: The core idea of
the CGGC challenge is to probe models on specific
relationship compositions that have not previously
been seen in the learning sets. Fig. 1 illustrates how
an unseen combination of relations types must be
jointly verbalized in a sentence, whereas each of
the primitives has been seen in combination with
other relation types. In the example, the model is
required to reason over an unseen relation combina-
tion, here, AtLocation&HasA – while each of these
primitive relations has been seen in combination
with other relation types, here: AtLocation in At-
Location&UsedFor, and HasA in HasA&UsedFor.

With the CGGC challenge, we systematically
measure a model’s compositional generalization
ability in graph-based commonsense reasoning in
an in-context learning (ICL) regime (Brown et al.,
2020). Empirical results for seven well-known
LLMs reveal challenges in compositionally gen-
eralizing to novel subgraph configurations. We
analyze the factors that impact compositional gen-
eralization in such cases by examining error trends
that change as a function of: i) compositions. Fo-
cusing on the structure of compositional reasoning
graphs, we identify different schemas that result
from composing primitive relations. Experiments
show varying performance across different graph
structures. E.g., relation compositions with uni-
form directionality seem more straightforward com-
pared to compositions that end in a common target
node, or that start from a common node but end in
distinct nodes (Fig. 3). ii) primitives. We analyze
performances based on the distribution of primi-
tives according to different relation types. We find
that LLMs more easily generalize to compositions
involving common and frequent primitive relations.

Given the observed performance variations, we
arrange the order of presentation of graph structures
in ICL demonstrations according to their degree
of difficulty. Results indicate that ordering ICL
demonstrations in an easy-first manner enhances
the models’ compositional generalization ability.

2 Related Work

Analyzing Commonsense Reasoning Existing
analyses of commonsense reasoning focus on rep-
resentation (Zhou et al., 2020; Su et al., 2022), in-
terpretability (Rajani et al., 2019), bias (Sotnikova
et al., 2021; An et al., 2023) and consistency (Maler,
2023). Further, Davison et al. (2019); Petroni
et al. (2019); Singh et al. (2023) probed language
models for commonsense knowledge. Others con-
struct complex reasoning scenarios such as logical
queries on commonsense knowledge graphs (Fang
et al., 2024) and geometric knowledge reasoning
(Ding et al., 2024). Commonsense reasoning has
also been analyzed with downstream tasks, such
as machine translation (He et al., 2020; Liu et al.,
2023c), temporal question answering (Jain et al.,
2023; Wenzel and Jatowt, 2023), etc.

Beyond these perspectives, generalization is an-
other important research direction. Existing works
have shown that language models suffer from over-
fitting and are limited in generalization to out-of-
domain examples (Sen and Saffari, 2020; Kejriwal
and Shen, 2020), novel answers (Ma et al., 2021),
and various tasks (Zhang et al., 2023b). In addi-
tion, Shwartz and Choi (2020) found that LLMs
tend to overestimate and amplify biases in training
data. Our work extends the research and analyses
of generalization in commonsense reasoning, from
the perspective of compositional generalization.

Compositional Generalization Despite the suc-
cess of LLMs on downstream tasks, their compo-
sitional generalization abilities are poorly under-
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Task & Works Examples Rep

Question Answering
Liu et al. (2022a)

train: Cow is a national animal of which country? When did pandas come to USA?
test: Panda is a national animal of which country?

natural
language

NLI
Yanaka et al. (2020)
Fu and Frank (2023)

train: He realizes a woman is smiling → A woman is smiling
A woman is smiling ↛ A man is smiling
test: He realizes a woman is smiling ↛ A man is smiling.

natural
language

Deductive Reasoning
Fu and Frank (2024a)
Saparov et al. (2024)

train: Alex is a dog. All dogs are mammals. → Alex is a mammal.
Fae is a cat. Fae is soft. → Fae is soft and a cat.
test: Alex is a dog. All dogs are mammals. Alex is not mean. → Alex is a mammal and not mean.

tree

Commonsense
Reasoning
(ours)

train: (dog, tail, HasA), (tail, wag, UsedFor) → The dog is wagging his tail.
(paddle, lake, AtLoc), (paddle, canoe, UsedFor) → A man paddles his canoe on the lake.
test: (cheese, pizza, AtLoc), (pizza, cheese, HasA) → He puts a cheese pizza in an oven.

graph

Table 1: Comparison of tasks exploring compositionality in reasoning. ‘Rep’ shows the format of compositions.

stood (Fodor and Pylyshyn, 1988; Lake et al., 2017;
Hupkes et al., 2020). Prior works have evaluated as-
pects of compositionality in PLMs in semantic pars-
ing (Lake and Baroni, 2018; Kim and Linzen, 2020;
Qiu et al., 2022b), machine translation (Li et al.,
2021; Dankers et al., 2022), image caption gener-
ation (Nikolaus et al., 2019; Bogin et al., 2021),
etc., concluding that state-of-the-art PLMs are still
not able to perform compositional generalization.
To solve the issue, many approaches have been
proposed, including data augmentation (Qiu et al.,
2022a; Levy et al., 2023), specialized architectures
(Zheng and Lapata, 2021; Herzig and Berant, 2021;
Fu and Frank, 2024a), meta-learning (Conklin et al.,
2021; Lake and Baroni, 2023), etc.

Recently, the exploration of compositional gen-
eralization in reasoning has attracted increasing
attention. Existing works measure the composi-
tional generalization abilities of models on reason-
ing tasks such as question answering (Liu et al.,
2022a), deductive reasoning (Saparov et al., 2023),
natural language inference (Yanaka et al., 2020; Fu
and Frank, 2023), and arithmetic reasoning (Kudo
et al., 2023). Our study differs from prior work
in terms of representation types. We focus on the
compositionality of reasoning on graph-based rep-
resentations, which could facilitate complex rea-
soning by offering diverse reasoning paths (Besta
et al., 2024). Table 1 shows an overview of tasks
with their underlying representations. Our work is
related to Xu et al. (2023), who propose to cluster
predicates for compositional data-to-text genera-
tion, and who further test on compositions with
more predicates in novel domains. In contrast,
we focus on novel compositions by recombining
known relations, serving as acomplementary work.

Unlike prior work we conduct detailed analy-
ses of compositional graph structures, hence our

findings can facilitate future reasoning tasks.

Generative Commonsense Reasoning The
CommonGen task proposed by Lin et al. (2021),
aims to advance machine commonsense towards
generative reasoning abilities. Based on this bench-
mark, prior works have improved generation qual-
ity by incorporating explicit knowledge (Liu et al.,
2021, 2022b) and visualizing relational scenes
(Wang et al., 2022). More recent work focused on
enhancing diversity (Liu et al., 2023a; Zhang et al.,
2024; Jinnai et al., 2024) and robustness (Neerudu
et al., 2023). The task has also been extended to
other domains, such as testing negative knowledge
(Chen et al., 2023) and visual commonsense gen-
eration (Tang et al., 2023; Cui et al., 2024). We
complement these studies by providing a new per-
spective on the generalization ability of LLMs.

CommonGen and CGGC are grounded in the
same dataset, but differ in motivation and research
fields: CommonGen tasks a model to generate a
natural language sentence based on a set of given
concepts. It advances machine commonsense to-
ward generative reasoning abilities. We extended
this dataset with reasoning graphs, and split it elab-
orately to test for the compositional generalization
abilities of models, in a generative graph-based
commonsense reasoning task. Our benchmark
CGGC offers the first graph-based compositional
generalization evaluation benchmark, enriching
the compositional generalization research field.

3 Defining a new CGGC Challenge

Our new challenge CGGC, aiming to test for Com-
positional Generalization abilities in Graph-based
generative Commonsense Reasoning tasks, extends
the existing CommonGen task of Lin et al. (2021).
CGGC asks systems to generate a plausible natu-
ral language sentence given a set of concepts and
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a reasoning graph that connects these concepts,
showing how they can relate to each other. The sen-
tence is expected to serve as a description covering
commonsense relations between given concepts.

Given the novel task, we aim to explore whether
and to what extent LLMs can perform composi-
tional generalization – which consists in under-
standing and verbalizing novel compositions of pre-
viously seen primitive relation types, presented in
a graph-structured representation. In our work we
define a relation type in the reasoning graph as a
primitive, and a compound that requires several
relation types in the reasoning graph as a composi-
tion. Using {oven, pizza, cheese} in Fig. 1 as exam-
ple, the relation compound AtLocation&HasA is
regarded as a composition; its constituent relation
types AtLocation and HasA are seen as primitives.

4 Datasets

In this section we introduce the benchmark for our
novel CGGC challenge. It relies on the Common-
Gen dataset (Lin et al., 2020) and the commonsense
resource ConceptNet (Speer et al., 2017) (Section
4.1). With these resources, we extend samples with
reasoning graphs (Section 4.2), and further split
the constructed data based on the compositional
generalization features for evaluation (Section 4.3).

4.1 Dataset Pre-Processing

CommonGen (Lin et al., 2020) 2 tasks models to
generate a coherent sentence given a set of com-
mon concepts. For example, {tail, dog, wag} →
The dog is wagging his tail. The input is an un-
ordered set of k concepts, denoted as X = {c1, c2,
..., ck}. Each concept ci is a common object (noun)
or action (verb), which is guaranteed to appear as
a ConceptNet unigram (Speer et al., 2017). The
expected output is a coherent sentence Y that de-
scribes a common scenario from daily life, using
all given concepts in X . Each reference consists
of an average of 11 words and introduces about 3
new meaningful words not included in the given
concept set (see the Appendix A.3 for details).

We enrich each concept set with a commonsense
reasoning graph that provides related common-
sense facts and relations. As knowledge resource,
we choose ConceptNet, as it encompasses all can-
didate concepts. ConceptNet nodes represent con-
cepts, and its edges provide commonsense knowl-

2We use the train and dev data together, and ignore the test
data given it is unavailable for reasons of leaderboard testing.
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Figure 2: The process of constructing a reasoning graph
given ConceptNet and a target sentence.

edge relations between them, covering 34 relation
types. 3 To facilitate the following compositional-
ity evaluations, we merge some relations with sim-
ilar meanings (e.g., {/r/InstanceOf, /r/MannerOf}
→ /r/IsA) and ignore some infrequent relations
(e.g., /r/LocatedNear, /r/SymbolOf). We finally se-
lect 13 frequent relations following (Becker et al.,
2021). More details are given in the Appendix A.1.

4.2 Graph Construction

To construct a ConceptNet-based reasoning graph
that fits a given concept set and an associated tar-
get sentence y, following Plenz et al. (2023), we
i) construct a similarity-weighted ConceptNet sub-
graph, that assigns weights to each triple based on
their similarity to the reference sentence y, and ii)
apply Dijkstra’s algorithm (Dijkstra, 2022) to find
weighted shortest paths between all concept pairs.

Fig. 2 illustrates this construction process: We
verbalize the triplets in ConceptNet to sentences
using pre-defined templates (①) and further encode
these sentences using S(entence-)BERT (Reimers
and Gurevych, 2019) (②). For instance, the triple
(tail, UsedFor, wag) is verbalized as ‘Tail is used
for wag’. We also encode a target sentence in y
using SBERT, to attain its representation. We cal-
culate cosine similarity between all candidate triple
representations and the target sentence represen-
tation. To provide non-negative weights for Dijk-
stra’s algorithm, we transform the calculated cosine
similarity into a non-negative value, signifying se-
mantic dissimilarity between concepts (③). This
conversion involves scaling the cosine similarity
value to a new weight using the formula 1−cos

2 . The
resulting values serve as weights for all triples.

Hence, for each sample, we assign weights to
triples based on the corresponding target sentences.

3https://github.com/commonsense/
conceptnet5/wiki/Relations
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Concepts
Sets

general graph

#set #sent #lens #nodes #edges #rel

all 26819 55269 10.68 9.07 7.73 4.63

-size=3 19684 42747 10.16 8.31 7.01 4.41
-size=4 3947 8548 11.75 10.85 9.43 5.15
-size=5 3188 3972 13.89 13.33 11.81 5.76

Table 2: Data statistics for our novel CGGC benchmark.
We provide details about concept sets, reference sen-
tences s, and the original vs. extended reasoning graphs.

The ensuing shortest subgraph calculation min-
imizes the cumulative edge weights, effectively
maximizing semantic similarity across concepts
and references. Ultimately, each sample will be
assigned a reasoning graph 4. We conduct a human
evaluation to assess the quality of the constructed
graphs in Appendix B.

4.3 Compositional Generalization Label

To perform compositional generalization evalua-
tion on our dataset, we assign a graph label to each
sample. The label indicates the types of relations
that will be needed to infer and generate a sentence
that entails the given concept set. E.g., the graph
label for the sample {oven, cheese, pizza} shown
in Fig. 1 is AtLocation&HasA.

We define graph labels for all data samples and
only select compositional labels which contain at
least two distinct relations for compositional gen-
eralization tests. After filtering we select 468 com-
positional graph labels for our experiments. These
labels are related to 26,819 examples in total, where
each label corresponds to at least five samples. We
categorize all selected data instances into three
groups, based on the input concept set sizes. Table
2 provides statistics of the data, with further details
about the extended reasoning graphs.5

5 Experimental Setup

5.1 Evaluated LLMs and Methods

We select 7 open access autoregressive LLMs:
i) Llama2, Llama2-chat (Touvron et al., 2023);
ii) Mistral-v0.1, Mistral-Instructv0.1 (Jiang et al.,
2023); iii) Falcon, Falcon-instruct (Penedo et al.,
2023); iv) GPT-J (Wang and Komatsuzaki, 2021).
The first three model types include both vanilla

4For a concept set with multiple reference sentences, we
construct an individual reasoning graph for each reference.

5Note that during graph construction, intermediate concept
nodes may be added. This can be seen in column 4 of Table 2.

sample label

te
st {cheese, pizza, oven}

→ He puts a cheese pizza in an oven. AtLocation-HasA

de
m

on
st

ra
tio

ns id {cup, tea, table}
→ He puts a cup of tea on the table. AtLocation-HasA

oo
d

{tail, dog, wag}
→ The dog is wagging his tail. UsedFor-HasA

{lake, paddle, canoe}
→ A man paddles his canoe on the lake. AtLocation-UsedFor

Table 3: Example of in-context learning evaluation. We
show the test sample and corresponding in-distribution
(id) and out-of-distribution (ood) demonstrations.

pre-trained models and instruct models fine-tuned
on instruction datasets. We will refer to all instruc-
tion tuning-based model variants as x-chat, e.g.,
Llama2-chat. For all LLMs, we choose their 7 bil-
lion versions (GTP-J is aligned with 6B) to avoid
the model scale effects.

In addition, we evaluate GPT4 (Achiam et al.,
2023), to also assess the compositional generaliza-
tion abilities of a larger-scale LLMs.

In all experiments we use in-context learning
with a fixed prompt as task adaptation technique,
since existing works have proved its superior effec-
tiveness in compositional generalization (Qiu et al.,
2022b; Saparov et al., 2023).6 We give four demon-
strations per prompt 7 in our main experiments.

5.2 Evaluation Data Split
To conduct the compositional generalization evalu-
ations, we control the dataset splits based on prim-
itives and compositions. Specifically, we design
two settings: i) In-Distribution. Demonstration
samples and the evaluated samples come from
the same distribution, meaning that all samples
share the same reasoning graph label. ii) Out-of-
Distribution (i.e., compositional generalization).
Here, demonstration samples and evaluated sam-
ples come from different distributions. We guaran-
tee that the primitive relation types in the evaluated
sample are encountered in the demonstration sam-
ples. Table 3 shows examples for both settings.

5.3 Evaluation Metrics
Quality Evaluation Following Lin et al. (2020),
we use seven evaluation metrics from three cate-
gories, focusing on i) surface similarity by con-
centrating on n-gram overlap between generations
and references, using BLEU (Papineni et al., 2002),

6Details about prompts can be found in Appendix C.
7The value is determined by the empirical experiments.
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Models Dis ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

Llama2
id 8.57 27.49 14.00 9.00 16.19 7.98 24.30 71.79
ood 6.27 24.57 10.10 5.80 15.84 6.48 22.80 67.75

∆ 2.30 2.92 3.90 3.20 0.35 1.50 1.50 4.04

Llama2-chat
id 8.35 26.85 13.60 8.70 16.13 7.50 24.00 70.42
ood 6.11 23.03 9.50 5.30 14.97 5.09 21.20 65.64

∆ 2.14 3.82 4.10 3.40 1.16 2.41 2.80 4.78

Mistral
id 9.50 28.79 15.50 10.40 17.02 8.60 24.50 69.92
ood 6.15 23.69 9.50 5.50 15.49 5.85 21.00 59.88

∆ 3.35 5.10 6.00 4.90 1.53 2.75 3.50 10.04

Mistral-chat
id 8.37 26.86 13.70 8.70 15.33 7.67 23.50 71.89
ood 5.56 21.79 9.10 5.10 13.45 5.40 19.10 55.72

∆ 2.81 5.07 4.60 3.60 1.88 2.27 4.40 16.17

Falcon
id 8.44 26.97 13.80 9.00 15.14 7.59 22.10 64.06
ood 5.99 22.73 9.80 5.70 13.51 5.57 19.10 55.21

∆ 2.45 4.24 4.00 3.30 1.63 2.02 3.00 8.85

Falcon-chat
id 7.42 25.48 12.30 7.90 14.31 6.83 20.10 60.22
ood 5.03 21.24 8.00 4.50 12.89 4.95 17.40 50.55

∆ 2.39 4.24 4.30 3.40 1.42 1.88 2.70 9.67

GPT-J
id 7.31 24.40 12.10 7.60 13.33 6.37 19.00 52.20
ood 5.10 20.68 8.00 4.10 12.56 4.86 16.60 43.71

∆ 2.21 3.72 4.10 3.50 0.77 1.51 2.40 8.49

GPT-4o5
id 10.43 29.72 15.70 10.70 17.78 9.75 37.70 97.68
ood 8.46 27.04 12.40 8.10 16.67 8.63 35.50 95.17

∆ 1.97 2.68 3.30 2.60 1.11 1.12 2.20 2.51

Table 4: Performance of seven LLMs on the CGGC tasks in two configurations: in-distribution (id) and composi-
tional generalization (ood). ∆ indicates the gap between the setting of id and ood, calculated as ∆ = id - ood. We
highlight the maximum value of id and ood by and respectively, and the minimum value of ∆ in . Aggregated
results are shown in the Appendix F for a better illustration of comparisons among different models.

ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005); ii) concept associations, assuming
system generations and human references use simi-
lar concepts and focusing on evaluating the associ-
ations between mentioned concepts, using CIDEr
(Vedantam et al., 2015) and SPICE (Anderson et al.,
2016); iii) task performance, by analyzing whether
the model completes the given task. Here, Cover-
age (Lin, 2004) calculates the average percentage
of input concepts present in the lemmatized output.

Human Evaluation Following (Lu et al., 2022;
Meng et al., 2022; Zhang et al., 2023a), we conduct
a human evaluation of the generated sentences y
across four dimensions: i) Quality: Is the sentence
well-formed and fluent? ii) Plausibility: Does the
sentence describe a plausible situation? iii) Con-
cepts: Does the sentence include the given concepts
in a meaningfull way? iv) Overall: Considering
the above three metrics, does the sentence meaning-
fully combine all given concepts into a well-formed
scenario? For each aspect, annotators indicated
their agreement with the pre-defined statement us-

ing the scale: Yes (3 points), Somewhat (2 points),
and No (1 point). 8

Relation Verification CGGC performs compo-
sitional generalization evaluation based on the rea-
soning relations, assuming that LLMs that under-
stand them can use them for generating sentences.
However, existing research indicates that LLMs
might produce correct answers without applying
the correct reasoning. In our context, this means
a fitting sentence could be generated without uti-
lizing the provided relations. To address this issue,
we developed a verification model to ensure that
the generated sentences indeed incorporate the in-
tended reasoning relations.

For this purpose we use Llama2 with a feed-
forward classification layer to classify relation
types based on two concepts and a target sentence.
For example, given the concepts {oven, pizza}
and the sentence He puts a cheese pizza in an
oven, the model is expected to predict the relation
/r/AtLocation. To evaluate the model, we compare

8Evaluation guidelines are provided in the Appendix E.
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the predicted relation with those specified in the
reasoning graph. If the prediction matches the pro-
vided relation, we consider it to be genuinely used,
aligning with our expectations for compositional
evaluation.9 For further analyses, we use the verifi-
cation model to filter results, focusing solely on ex-
amples where all composed relations are accurately
applied. After filtering, an average of 44.74% and
44.81% of the data is removed for in-distribution
and compositional generalization, respectively.

6 Results

6.1 Overall Results

Table 4 shows the performance of all LLMs in two
data configurations: in-distribution (id) and compo-
sitional generalization (ood).10 We provide aggre-
gated results in Appendix F for better overview.

According to eight evaluation metrics, we ob-
serve that Mistral and Llama2 generally achieve the
best performance under in-distribution and compo-
sitional generalization settings, respectively (high-
lighted in green and yellow in Table 4). Across all
evaluated models, including the powerful GPT-4,
the gap (∆) between the two data configurations
consistently shows positive values. This suggests
that the evaluated LLMs still lack compositional
generalization ability to some extent when en-
countering unseen composition instances. In ad-
dition, we find that various model groups show
variance in absolute performance and the compo-
sitional generalization abilities. Llama2 models
show high absolute performance in both data con-
figurations and superior compositionality. Mis-
tral models achieve relatively high absolute per-
formance but low compositionality, whereas GPT-J
shows the opposite trend (Fig. 7 in the Appendix F
shows details).

We also compare the performances of the vanilla
vs. chat version for each model type,11 e.g., Llama2
vs. Llama2-chat. Results do not indicate a consis-
tent trend: For Llama2, the vanilla version shows
superior compositionality in 7 metrics but inferior
results in the remaining (ROUGE-2) metric, i.e., 7
vs. 1. This trend is not observed with Mistral and
Falcon, where the metrics of superior and inferior

9For details on this model, see Appendix D.
10Due to the high cost of large-scale LLMs, we randomly

sample 100 instances for GPT-4o’s evaluation. For fair com-
parison, results of GPT-4o will not be compared for the fol-
lowing qualitative analysis.

11GPT-J does not have a chat version, so we ignore it here.

Models Dis Quality Plausibility Concepts Overall

Llama2
id 2.39 2.43 2.29 2.22
ood 1.96 1.61 2.02 1.95

Llama2-chat
id 2.18 2.41 2.32 2.14
ood 1.88 1.93 1.87 1.99

Mistral
id 2.20 2.20 2.28 2.10
ood 2.02 2.00 1.90 1.80

GPT-4o
id 2.54 2.56 2.94 2.62
ood 2.26 2.24 2.80 2.46

Table 5: Human evaluation results of four models on
the CGGC task in two configurations: in-distribution
(id) and compositional generalization (ood).

results between vanilla and chat versions are more
balanced: 3 vs. 5 for Mistral and 3 vs. 4 for Falcon.

6.2 Human Evaluation

To avoid the limitation of rigid automatic evalua-
tion metrics, we also conduct human evaluations
following (Meng et al., 2022; Zhang et al., 2023a).
We selected 50 samples from each of four repre-
sentative models (maximum performance / min-
imum compositionality gap) under both settings
(in-distribution and out-of-distribution), resulting
in a total of 400 samples. These samples were
mixed and presented to two annotators.

Table 5 shows human evaluation results. Com-
paring the results between the in-distribution (id)
and compositional generalization (ood) settings,
the four evaluated models represent higher values
in id compared to ood setting. This trend is con-
sistent with the automated metrics, reinforcing that
LLMs still face challenges with compositional gen-
eralization. Notably, GPT-4 achieves the best per-
formance across both configurations, outperform-
ing other baselines by 0.4 and 0.47 points overall.

7 Error Analysis

In this section we investigate potential causes of
limitations in compositional generalization, by an-
alyzing error trends in relation to compositions
(Section 7.1) and primitives (Section 7.2). 12

7.1 Composition Analysis

Graph Structure We examine the graph struc-
tures that indicate how the composition is struc-
tured. Considering the complexity of compositions
with multiple primitives, we constrain the experi-

12Results of Llama2 are used for further analysis, given its
superior performance. For each analysis, we perform three
runs with different seeds.
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Type ∆ROUGE-2/L(↓) ∆BLEU-3/4(↓) ∆METEOR(↓) ∆CIDEr(↓) ∆SPICE(↓) ∆Coverage(↓) Rank

A 2.28 2.91 2.63 1.44 0.07 1.44 0.78 2.96 ①

B 2.58 2.94 3.07 1.61 0.09 1.81 1.00 3.06 ②

C 2.72 3.50 3.09 2.09 0.11 1.97 1.51 4.35 ③

Table 6: The performance gap between in-distribution and compositional generalization (∆ = id − ood) for three
reasoning graph structures (shown in Fig. 3). Rank indicates the difficulty levels, calculated by the performance gap.

A B C

Figure 3: Different types of compositional connection
schemas. and arrows (→) denote primitive relations.

ment to two primitives. 13 Graphs composed of two
primitives (i.e., connecting three nodes) are defined
as basic graphs as they are the smallest meaningful
graphs that can model composition patterns. They
are grouped as: A) transitive: directed primitive
relations are connected in a uniform direction; B)
common source: the starting node of two directed
primitive relations are shared; C) common target:
the end nodes of two primitive directed relations are
shared. Fig. 3 illustrates these connection schemas.

We categorize the graph structures of test sam-
ples along the classes A-C. Table 6 shows the per-
formance gap between in-distribution and compo-
sitional generalization for the 3 classes. 14 We
observe that different structures present varying
levels of difficulty for compositional generaliza-
tion, with A) transitivity < B) common source <
C) common target. We further computed the oc-
currence frequency of subgraphs of the different
composition types, with detailed statistics provided
in Appendix A.2. It shows that Type A occurs more
frequently than Types B and C, while the com-
plexity of the three structures in terms of number
of nodes and edges is comparable. We speculate
that the difference in difficulty is likely because,
compared to a common source or target structure,
transitive structures are more common and straight-
forward to construct into a natural sentence.

Structuring Demonstrations Although we guar-
antee that primitive relations required to solve un-
seen composition samples are fully covered by in-

13Experimental data is sampled from graphs of original
concept set size 3. For more details see Appendix A.2.

14We compare results of each two data structures, the pair-
wise t-test at 5% significance level.
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5.5
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70

CIDEr Coverage

D1&3 D2&2

Figure 4: Two ways of providing the required primitive
relations in demonstrations for in-context learning.

context demonstrations, the distribution of these
primitive relations in ICL demonstrations is not
fully constrained. For example, for a test sample
with graph label Causes & IsA & HasProperty &
UsedFor, the demonstrations could provide primi-
tive relations in the following two ways: i) D1&3.
The compositional relations could be separated into
one relation and the three remaining ones, such as
samples with Causes and HasProperty & IsA &
UsedFor; or ii) D2&2. The compositional relations
could be separated into two groups with two prim-
itive relations each, such as Causes & HasProp-
erty and IsA & UsedFor. Figure 4 illustrates the
comparison between these two alternative ways of
providing the required primitive relations. 15 We
observe that the alternative options in structuring
ICL demonstrations in terms of packaging primi-
tives show minor differences. This indicates that
alternative options for presenting the same set of
primitives for a given sample do not affect the per-
formance of compositional reasoning significantly.

7.2 Primitive Analysis

Next, we examine the correlation between primi-
tive relation types and the models’ performances
in the two data configurations, aiming to deter-
mine whether specific primitive relations have a
specific impact (i.e., greater or lower difficulty) on
a model’s compositional generalization abilities.
Specifically, we count the occurrence frequency of
all primitive relation types in the reasoning graphs,

15Given space limits, we select a representative metric from
each metric category. Other choices show a similar trend.
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Dimension ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

le
ve

l easy (typeA) 5.99 23.52 10.50 5.80 13.96 6.10 20.10 66.63
medium (typeB) 5.69 23.39 9.90 5.40 14.01 6.12 20.60 66.43
hard (typeC) 5.67 22.98 10.00 5.50 14.13 6.01 21.10 66.58

or
de

r easy-to-hard 7.11 27.77 12.00 7.10 16.76 7.65 27.20 79.98
hard-to-easy 7.04 26.60 11.50 6.80 15.61 7.25 24.40 73.06

Table 7: Performance results when controlling the demonstration of graph structures in ICL along two dimensions:
level of difficulty (level) and ordering according to difficulty (order). The pairwise t-test at 5% significance level.

Dis RBOR2 RBOCIDEr RBOCov Avg

id 0.5445 0.5736 0.5141 0.5441
ood 0.4927 0.5473 0.5119 0.5173
∆ 0.4603 0.3997 0.4997 0.4532

Table 8: Rank Biased Overlap (RBO) compares the
rank of relation types according to their frequency and
their associated performance results across three data
configurations (Dis). Avg indicates the average results.

and rank these relations from most to least frequent.
The sorted rank is denoted as Rfreq. We also exam-
ine the difficulty of primitive relation types based
on the two data configurations (id vs. ood) from eas-
iest to hardest, and record the gap in performance
(∆) between the two configurations from smallest
(best, highest rank) to largest (worst, lowest rank).
Each rank for a given relation under a given data
configuration is compared with its frequency rank
Rfreq. Table 8 shows Rank Biased Overlap (RBO)
(Webber et al., 2010) results for three metrics and
their average value.

We find that the average correlations of the three
configurations are around 50%, indicating a mod-
erate correlation between performance and the fre-
quency of primitive relation types. Notably, the id
and ood configurations show correlations of 0.5441
and 0.5173, respectively, which are higher than the
0.4532 correlation observed for gap performance.
This suggests that primitive relation types have a
greater impact on absolute generation quality than
on a model’s compositional generalization abilities.

8 Difficulty-based Demonstrations

We conclude from the analyses in Sec. 7 (see espe-
cially Table 6) that reasoning graph structures are
a significant factor affecting compositional gener-
alization. Hence, we aim to investigate whether,
and to what extent the compositional generalization
ability of evaluated LLMs could be enhanced by
controlling the demonstration of graph structures in
in-context learning. We group the samples by the

ranked difficulty of their graph structures into three
groups: hard: type C, medium: type B, and easy:
type A (see Fig. 3). We then select and arrange
demonstration candidates along two dimensions:
i) level of difficulty, by selecting demonstrations
from a specific graph structure type (A/B/C) and
ii) ordering according to difficulty, by arranging
demonstration types according to a given level of
difficulty and following a specific order, from easy-
to-hard (A→B→C) or hard-to-easy (C→B→A).

Table 7 shows results for both dimensions. We
find that the evaluated model benefits more when
demonstrations are ordered by difficulty. That is,
combining graph structures of different difficulty
levels considerably enhances the model’s ability
to perform compositional reasoning – compared
to relying on a single structure type. This find-
ing aligns with results in Levy et al. (2023) who
experimented on tree structures. Furthermore, we
observe ordering demonstrations in an easy-to-hard
manner achieves superior compositionality perfor-
mance compared to the reverse demonstration order.
This result parallels the findings of Fu and Frank
(2024b), who show that ordering compositional
textual NLI problems in an easy-to-hard manner
improves model performance in continual learning.

9 Conclusion

We propose a Compositional Generalization chal-
lenge for Graph-based Commonsense Reasoning
that extends CommonGen to a compositional gen-
erative commonsense reasoning task from graph-
structured inputs. Extensive experiments on seven
LLMs using In-Context Learning indicate that they
struggle with compositional generalization settings.
We investigate potential causes of the limitations,
and find that the topology of the graph structures
is a significant factor. We show that arranging the
order of demonstrations in an easy-to-hard schema
enhances the compositional generalization ability.

8384



10 Limitations

We use ConceptNet to enrich each CommonGn
sample (a concept set and reference sentence) with
a commonsense reasoning graph, which constrains
potential relations between concepts to 13 common
commonsense relation types. This limitation re-
stricts the variety of composition types compared
to real-world applications. However, even on this
restricted set of basic relations we were able to
establish weaknesses of current LLMs. Addition-
ally, the construction of the data is unsupervised
and relies on the quality of ConceptNet and the
SBERT model. However, the proposed construc-
tion method for CGGC is flexible and can be ex-
tended with other high-quality and high-coverage
commonsense resources in the future.

For in-context learning, we use a fixed prompt as
described in Appendix C, chosen based on recom-
mended best practices and preliminary experiments.
We leave the exploration of other prompt construc-
tions, such as incorporating explanations within the
prompts, for future work.
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A Data

A.1 ConceptNet Relations

We merge some relations with similar meanings,
e.g., {/r/InstanceOf, /r/MannerOf} → /r/IsA. Ta-
ble 9 shows all instantiations of merged relations.
We also ignore some infrequent relations, e.g.,
/r/LocatedNear, /r/SymbolOf. Finally selected 13
relations are listed in the bottom of Table 9.

m
er

ge
_r

el

source target

/r/HasFirstSubevent,
/r/HasLastSubevent

/r/HasSubevent

/r/InstanceOf,
/r/MannerOf

/r/IsA

/r/PartOf /r/HasA

fin
al

_r
el /r/IsA, /r/UsedFor, /r/AtLocation, /r/HasSubevent,

/r/HasPrerequisite, /r/CapableOf, /r/CausesDesire,
/r/Causes, /r/MotivatedByGoal, /r/HasProperty,
/r/ReceivesAction, /r/HasA, /r/Desires

Table 9: Instantiations of merged relations and finally
selected relations from ConceptNet.

A.2 Data Statistics of Graph Types

We examine the graph structures (Mesgar and
Strube, 2015; Liu et al., 2023b) that indicate how
the composition is structured. Considering the com-
plexity of compositions with multiple primitives,
we constrain the experiment to two primitives. Ex-
perimental data is sampled from graphs of original
concepts set size 3. Selected test samples are cate-
gorized given their graph structures, as illustrated
in Fig. 3. Table 10 presents the data statistics for
the three different types of graph structures. We ob-
serve that type A occurs more frequently than the
other graph types. However, the graph complexity
in terms of node and relation counts is comparable,
with Type A showing marginally lower counts.

general graph

#num #sent #nodes #edges #rel

Type A 3517 6250 8.49 7.17 4.41
Type B 1037 1697 9.22 7.91 4.72
Type C 1185 1964 9.12 7.86 4.73

Table 10: Data statistics of different graph types of test
samples in CGGC. We include the general information
of concept sets and extended reasoning graph details.

A.3 Data Statistics of Target Sentences

We segmented the target sentences and counted
the involved words. The column #lens in Table
11 presents the results, showing that each sentence
contains an average of 11 words. We further ex-
plored the new words required to generate the target
sentence. Specifically, we removed stop words in
each sentence. New words are defined as follows:
i) w/o graph, only given concepts are counted as
given words; ii) w/ graph, concepts contained in
the graph are also counted as given words. The col-
umn #nwwg in Table 11 indicates that a generated
sentence requires roughly 3 new meaningful words.
We also analyze the part-of-speech tagging of these
novel words. Cnw@5 shows the top 5 categories of
missing words. It shows that the categories of miss-
ing words mainly include verbs, nouns, adjectives,
and prepositions.

A.4 Data Statistics of Graph Labels

As mentioned in Section 4.3, we ultimately selected
468 compositional graph labels for our experiments.
Figure 6 illustrates the sample distribution for the
top 40 graph labels. We further count various re-
lation types (primitives), where Figure 5 show the
sample distribution for used relations.

Figure 5: Distribution of primitive relations. The y-axis
indicates number of samples.

A.5 Data Splits for Verification & Composition

As mentioned in Section 5.3, we need to construct
a verification model 16 to verify if the generated
sentence uses the reasoning relations provided in
the graph as we expected. Hence, we split the
dataset into two groups: i) verification, for evalu-
ating whether the generated sentences do in fact
express the target relations. Train and val data are
used for verification model training and validation.

16For details of the verification model see Appendix D.
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Figure 6: Distribution of compositional graph labels. The y-axis indicates number of samples.

#lens
w graph w/o graph

#nwwg Cnw@5 #nwwog Cnw@5

all 10.68 2.82 VBG,CD,NN,JJ,IN 2.87 VBG,CD,NN,JJ,IN

-size=3 10.16 2.81 VBG,CD,NN,JJ,IN 2.86 VBG,CD,NN,JJ,IN
-size=4 11.75 2.83 RB,JJ,IN,NN,NNS 2.88 RB,JJ,IN,NN,NNS
-size=5 13.89 2.98 NN,JJ,NNS,VBG,VBD 3.05 NN,JJ,NNS,VBG,VBD
VBG: Gerund or Present Participle; CD: Cardinal Number; NN: Noun, Single; JJ: Adjective;
IN: Preposition; NNS: Noun, Plural; RB: Adverb; VBD: Verb, Past Tense

Table 11: Data statistics for the target sentences of the CGGC Benchmark. #nw indicates the number of novel words
(removing stop words and punctuation) except the given concepts contained in the target sentence. The subscript
wg and wog denotes whether concepts contained in the reasoning graph are counted in known concepts. Cnw@5
denotes the top 5 categories of missing words.

Results are shown in Appendix D; and ii) composi-
tion, for graph-based compositional generalization
tests. Here the train and test data are used for con-
structing demonstrations and compositional test.
Results are shown in Section 6. Table 12 shows the
data statistics for the above two groups.

Verification Composition

train val train test

#set 6375 1125 11591 7728

Table 12: Data statistics for verification and composi-
tion. The sample counts are based on the number of
concept sets.

B Human Evaluation of Reasoning
Graphs

As our reasoning graphs are automatically con-
structed, we perform a human evaluation to as-
sess whether these graphs are related to the target
sentence, following (Josifoski et al., 2023). We

randomly selected 50 test samples for this evalu-
ation. We hired two annotators who majored in
computational linguistics for annotation. For each
sample, annotators were presented with the target
sentence and all triples extracted from the corre-
sponding graph. Each triple is comprised by two
concepts and their relation. For each triple, anno-
tators were instructed to determine if the relation
between the two given concepts could be inferred
from the target sentence. We annotate all triples in
one sample, and each sample was rated on a scale
of 0 (not related), and 1 (related). The percentage
agreement between annotators is 96%, with a Co-
hen’s kappa of 81.13%. The results demonstrate a
91% accuracy in the extracted subgraph’s relevance
to the target sentence, indicating the high quality
of the constructed graphs.

C Experiment Details

Prompts To guide the given task, we add an in-
struction at the beginning of all inputs. We provide
a prompt example as follows:
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Dis Llama2 Llama2-chat Mistral Mistral-chat Falcon Falcon-chat GPT-J

id 44.64 44.53 45.11 44.80 44.47 44.27 45.33
ood 44.42 44.69 45.25 45.28 44.44 44.18 45.43

Table 13: The filtering rate (%) by the verification model for seven evaluated models under two test configurations
in-distribution (id) and compositional generalization (ood).

Quality

Is the sentence well-formed well-formed?
Yes: The sentence is well-formed and fluent.
Somewhat: The sentence is understandable but a bit awkward.
No: The sentence is neither well-formed or fluent.

Plausibility

Does the sentence describe a plausible scenario?
Yes: The sentence describes a realistic or plausible scenario.
Somewhat: The sentence describes an acceptable scenario but a bit awkward.
No: The sentence describes a nonsensical scenario.

Concepts

Does the sentence include the given concepts meaningfully?
Yes: The sentence meaningfully includes all of the concepts.
Somewhat: The sentence meaningfully includes some, but not all of the concepts.
Or, the sentence includes all concepts but some of them are not meaningful or properly incorporated.
No: The sentence does not include concepts in a meaningful way.

Overall

Considering your answers to 1), 2) and 3), does the sentence meaningfully combine all of the concepts
into a well formed and plausible scenario?
Yes: The sentence is reasonably understandable, and meaningfully combines all the concepts into a plausible scenario.
Somewhat: The sentence looks okay in terms of above questions.
No: The sentence is not well-formed/understandable, or fails to properly combine all the concepts into a plausible scenario.

Table 14: Human evaluation guidelines for evaluating the generated sentences.

Please generate a natural sentence with the provided con-
cepts and their commonsense reasoning graphs.
concepts: oven, cheese, pizza
commonsense reasoning graph: <H> pizza <R> HasA
<T> cheese, <H> pizza <R> AtLocation <T> oven
sentence:

Following the requirements of LLMs, we also add
some special tokens to the prompts: i) for Llama2
models, we add ‘[INST] «SYS»’ (detailed tem-
plates can be found in the official website 17); ii)
for Falcon and Mistral models, we add ‘User:’ and
‘Assistant:’.

D Verification Model

We aim to construct a verification model to ensure
that the generated sentence accurately employs the
required reasoning relations. This model is a multi-
label classifier based on a LLM. Specifically, we
use Llama2 along with a feed-forward classifica-
tion layer. The model classifies the relation type
based on two concepts and a target sentence. For in-
stance, given the concepts {oven, pizza} and the tar-
get sentence He puts a cheese pizza in an oven, we
expect the model to predict /r/AtLocation. To test
the model, we compare the predicted relation with
the relations specified in the reasoning graph. If the

17https://llama.meta.com/docs/
model-cards-and-prompt-formats/
meta-llama-2/

predicted relation matches the provided relation,
we consider this relation to have been genuinely
used, aligning with our expectations for composi-
tional evaluation.

Table 12 presents the data statistics for the veri-
fication model. We use 6735 samples for training,
achieving 90.21% accuracy on a validation set of
1125 samples. To ensure data quality for verifica-
tion, we sampled data for human evaluation. The
results in Appendix B confirm that the data is suit-
able for verification.

We use this verification model to filter the re-
sults of the compositional generation test. When
doing so, we focus exclusively on examples where
all composed relations are accurately applied, i.e.,
samples that achieved 100% verification accuracy.
Table 13 shows the filtering ratio (%) for each
model in the two evaluation configurations: in-
distribution and compositional generalization.

E Human Evaluation Guidelines

Following (Lu et al., 2022; Meng et al., 2022;
Zhang et al., 2023a), we conduct a human eval-
uation of the generated sentences y across four
dimensions. The guidelines of these four aspects
for annotators are provided in the Table 14.
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Figure 7: Aggregated results based on eight evaluation metrics for seven evaluated LLMs. Under each evaluation
metric, LLMs’ results are ranked in an ascending order. The results for id and ood represent absolute performance,
i.e., higher rank is better. Conversely, the gap and gap percentage show gap performance, i.e., lower rank is
better. We then score LLMs based on their ranks. Scores for id and ood are assigned from 1 (lowest=worst) to 8
(highest=best), while for gap and gap percentage are assigned from 8 (highest=best) to 1 (lowest=worst). For each
model of a specific configuration, we summarize the rank scores across the eight metrics (minimum value: 8*1=8,
maximum value: 8*7=56).

F Aggregated Results

Figure 7 aggregates the main results shown in Ta-
ble 4 for better illustration. Under each evaluation
metric, we ranked and scored the LLMs’ results for
a specific configuration in a specific order. Under
each evaluation metric, LLMs’ results are ranked in
an ascending order. The results for id and ood rep-
resent absolute performances, that is, higher rank
is better. Conversely, the gap and gap percentage
(the percentage drop of the gap value in relation to
id results, i.e., smaller is better) represent relative
gap performance, that is, lower rank is better. We
then score seven LLMs based on their ranks. For
absolute performance under id and ood configura-
tions, scores are assigned from 1 to 7. Conversely,
scores for gap performance are assigned from 7 to
1. For example, under the Rouge-2 evaluation for
the id data configuration, the seven LLMs will be
ranked and scored as: (7) Mistral > (6) Llama2 > (5)
Falcon > (4) Mistral-chat > (3) Llama2-chat > (2)
Falcon-chat > (1) GPT-J. For each model of a spe-
cific configuration, we summarize the rank scores
across the eight metrics. The minimum score is
eight metrics with score one, i.e., 8*1 =8, and the
maximum value is eight metrics with score seven,
i.e., 8*7=56. Aggregated main results are illus-
trated in Fig. 7.

The aggregated ranks under in-distribution (Rid)
and compositional generalization (Rood) represent
the absolute generation ability, while the remain-
ing two ranks based on the gap performance (Rgap)
and gap percentage(Rgap_per) indicate the models’
compositional generalization capability. Given the

aggregated scores shown in Fig. 7, we find Mistral
achieves the best performance under in-distribution
and Llama2 obtains the best results under composi-
tional generalization and smallest gaps. Further, we
observe that various model groups show variance
in absolute performance and compositional gen-
eralization. Llama2-based models (Llama2 and
Llama2-chat) and Falcon show consistent ability in
generation and compositional generalization, while
Llama2 represents the top ability. In contrast, the
remaining LLMs show a difference between these
two abilities. Mistral-based models achieve rela-
tively high absolute performance but low compo-
sitional generalization capability, whereas GPT-J
shows the opposite trend.
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