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Abstract
Conditional Semantic Textual Similarity (C-
STS) introduces specific limiting conditions
to the traditional Semantic Textual Similarity
(STS) task, posing challenges for STS models.
Language models employing cross-encoding
demonstrate satisfactory performance in STS,
yet their effectiveness significantly diminishes
in C-STS. In this work, we argue that the failure
is due to the fact that the redundant informa-
tion in the text distracts language models from
the required condition-relevant information. To
alleviate this, we propose SElf-Augmentation
Via SElf-Reweighting (SEAVER), which, based
solely on models’ internal attention and with-
out the need for external auxiliary informa-
tion, adaptively reallocates the model’s atten-
tion weights by emphasizing the importance of
condition-relevant tokens. On the C-STS-2023
test set, SEAVER consistently improves per-
formance of all million-scale fine-tuning base-
line models (up to around 3 points), and even
surpasses performance of billion-scale few-
shot prompted large language models (such
as GPT-4). Our code is available at https:
//github.com/BaixuanLi/SEAVER.

1 Introduction

Semantic Textual Similarity (STS) has been a cor-
nerstone task in natural language processing fields
for years (Agirre et al., 2014, 2015, 2016; Cer et al.,
2017; Abdalla et al., 2021), which aims to mea-
sure the semantic similarity between two sentences.
With the emergence of pre-trained language models
(Devlin et al., 2018; Liu et al., 2019; Brown et al.,
2020; Raffel et al., 2020), the STS task seems to
have been almost solved. However, STS is an in-
herently ambiguous task (Wang et al., 2023b), for
the varying aspects that can influence sentence sim-
ilarity, unconditionally measuring this similarity is
irrational and unexplainable. To solve the ambi-
guity of STS task itself, Deshpande et al. (2023)
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Vanilla Language Model

SEAVER

Sent. 1: A man with a harness climbing a climbing wall.
Sent. 2: A girl wearing a harness climbs a rock wall.
Cond. : The sex of the person.

The two sentences are Similar.

Sent. 1: A man with a harness climbing a climbing wall.
Sent. 2: A girl wearing a harness climbs a rock wall.
Cond. : The sex of the person.

The two sentences are Dissimilar.

🕶

Figure 1: A straightforward example illustrating the dis-
traction in language models, SEAVER is able to softly
filter out irrelevant information, thereby focusing the
model’s attention on condition-relevant tokens.

proposed a novel task called Conditional Seman-
tic Textual Similarity (C-STS), which incorporates
specific conditions to highlight fine-grained aspects
of interest in sentence pair similarity assessment
(as shown in Figure 1), enables a more grounded,
precise and multi-faceted evaluation.

Given that C-STS introduces additional com-
plexity into STS, researchers have explored various
mainstream models, attempting to transfer them
from STS to C-STS (Liu et al., 2019; Reimers and
Gurevych, 2019; Deshpande et al., 2023). How-
ever, the results obtained have been less than sat-
isfactory. State-of-the-art STS language models
(hereafter referred to as STS models), such as Sim-
CSE (Gao et al., 2021), achieve only relatively low
performance in C-STS even after fine-tuning on
the C-STS dataset. More notably, even few-shot
prompted large language models perform poorly in
C-STS. This prompts us to ask: What causes the
state-of-the-art models in STS to fail in C-STS?

Previous work confirms that redundant objects
in data can distract models, leading to suboptimal
performance, a phenomenon widely discussed in
the visual domain (Wang et al., 2023a; You et al.,
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Method Encoder Type Additional Part #CM #FF Reweight Application Field
Vanilla LMs (Gao et al., 2021) cross-encoder none 1 1 ✗ text-only
PerceiverIO (Jaegle et al., 2021) cross-encoder cross-attn module 3 1 ✓ multimodal
AbSViT (Shi et al., 2023) bi-encoder feedback network 2 2 ✓ visual & multimodal
SEAVER (Ours) cross-encoder none 1 1 ✓ text-only

Table 1: Comparison of related work. "#CM" and "#FF" represent the number of computational module types
required for a single feedforward pass and the number of feedforward passes needed for one prediction, respectively.

2023). However, this issue also exists in the text
domain, where pre-trained language models often
extract excessive potential semantic information
(Hewitt and Manning, 2019), most of which is ir-
relevant to the task. The design of STS inherently
overlooks this issue, but C-STS has prompted a
rethinking of redundancy in the text domain.

As shown in Figure 1 (top), the two sen-
tences displayed differ only in the gender-specific
aspect (condition-relevant), while all other as-
pects (condition-irrelevant) are semantically iden-
tical. However, since the dissimilar but condition-
relevant aspect occupies a relatively small propor-
tion within the sentences, the abundance of similar
but condition-irrelevant aspects vastly exceeds the
required judgment area restricted by the condition
in the sentences. Due to the unconditional design
of STS, the STS models fine-tuned on C-STS still
tend to largely rely on the excessive similar but
condition-irrelevant semantic features, ignoring the
dissimilar but condition-relevant aspects that truly
require the model’s focus. This leads to their at-
tention being largely distracted. As a result, the
models tend to mistakenly perceive the sentences
as highly similar, and this inclination is difficult to
eliminate through simple fine-tuning.

Given the aforementioned observations, we ar-
gue that the excessive semantic features extracted
by language models, which, in turn, distracts their
attention, is the key reason for the failure of STS
models in C-STS. As similar phenomena have been
observed in the fields of visual and multimodal, re-
searchers in these fields attempt to mitigate such
distractions using reweighting strategies (Jaegle
et al., 2021; Shi et al., 2023).

Inspired by the reweighting strategy, we pro-
pose a novel method that directly extracts the in-
ternal condition-sentence cross-attention submatri-
ces, which contain condition-sentence correlations,
from the STS model. Utilizing these submatrices,
we construct reweighting matrices to emphasize the
importance of condition-sentence correlations in
attention allocation. Considering the preservation

of the overall semantic integrity, the reweighting
results serve as an augmentation signal to enhance
the original output hidden states, explicitly direct-
ing the model to focus more on condition-relevant
tokens (as shown in Figure 1). Since our proposed
method solely utilizes internal attention informa-
tion, we have named it SElf-Augmentation Via SElf-
Reweighting (SEAVER).

Retaining an architecture that is relatively con-
sistent with that of the pre-trained language model,
SEAVER exhibits the capability to outperform all
fine-tuning baselines on the C-STS-2023 test set
(Deshpande et al., 2023). Remarkably, with a sig-
nificantly smaller parameter scale, it also surpasses
the performance of most few-shot prompted large
language models, highlighting its significant poten-
tial in advancing C-STS measurement.

2 Related Work

Excessive features extracted by Language Mod-
els. There is substantial evidence indicating that
throughout the pre-training, language models learn
not only contextualized text representations, but
also a grasp of grammar (Vig, 2019), syntax (He-
witt and Manning, 2019), even commonsense
(Davison et al., 2019) and world knowledge
(Petroni et al., 2019; Wang et al., 2020).

However, the semantic information mentioned
above is general-purpose and unconditional. Thus,
for C-STS, which emphasize the conditional con-
straints on sentences and focus on more fine-
grained aspects, the excessive information can, in
turn, distract the language model’s attention.

Conditional Reweighted Feedforward. Tasks
similar to C-STS (Deshpande et al., 2023) find
more discussions in vision and multimodal fields
(Deng et al., 2009; Carrasco, 2011; Li, 2014; Antol
et al., 2015). In these contexts, a specific condition
is essential for directing the model’s focus towards
objects that are relevant to the given condition.

Previous work employing such methods has
yielded effective results. PerceiverIO (Jaegle et al.,
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Figure 2: Self-Reweighting flow (from left to right). (i) Self-Extraction: extract attention submatrix, which represents
the interaction between the sentence and the condition. (ii) Output Reweighting: compute attention reallocation
matrices, serving to reweight the original output hidden states of the sentence and the condition, respectively, then
concatenate them, culminating in the acquisition of a self-reweighted output hidden state.

2021) introduced multiple cross-attention modules
to compute the relevance to reweight the output
tokens, which were directly used for prediction.
Conversely, AbSViT (Shi et al., 2023) proposed
a feedback mechanism to feed the relevance com-
puted during the first feedforward phase back to the
preceding modules, then the second feedforward
were conducted for prediction.

Moreover, these methods only apply reweight-
ing to visual features, and the textual component
(if present in the task) is often represented only in a
short-form indicative manner and does not partici-
pate in reweighting. Due to the inherent differences
in information density between textual and visual
data (He et al., 2022), such reweighting strategies
for visual features do not meet the requirements
of C-STS. As shown in Table 1, inspired by previ-
ous work, we design a reweighting strategy better
suited for C-STS, enabling a more efficient comput-
ing flow and a more integrated computing structure.

3 Method

This section starts with Self-Reweighting, which
directly extracts condition-sentence cross-attention
submatrices to reweight the outputs (Section 3.1),
then we use the reweighted outputs to enhance the
original outputs in a specific proportion (Section
3.2), namely Self-Augmentation.

3.1 Self-Reweighting
As is well known, when utilizing cross-encoding,
we compute the attention of the concatenated sen-
tence pair and the condition, which actually encap-
sulates multi-faceted information, encompassing
both the self-attention of each input item and the
cross-attention among input items.

Based on such observations, unlike previous at-
tempts to introduce external auxiliary information
or computational modules (Jaegle et al., 2021; Shi
et al., 2023), we designed a novel method to con-
struct the reweighting matrix directly using the in-
ternal attention in the model. As shown in Fig-
ure 2, to emphasize the condition-relevant infor-
mation, we specifically extract the cross-attention
between the sentences and the conditions from
the whole attention matrix. Then we divide them
into two distinct aspects of attention, namely Sen-
tence2Condition Attention (SCAttn) and Condi-
tion2Sentence Attention (CSAttn), respectively.
Here, SCAttn ∈ Rls×lc and CSAttn ∈ Rlc×ls ,
where ls indicates the length of the concatenated
sentence pair, and lc indicates the condition length.

We use the extracted SCAttn as the condition-
guided signal for sentences and CSAttn as the
sentence-guided signal for conditions. Utilizing
these, we calculate their similarities to construct
the reweighting matrices for sentences and condi-
tions, respectively. This reallocates attention by in-
tegrating sentence and condition information with
each other, which are computed as

WS = softmax(SCAttn ·CSAttn) (1)

WC = softmax(CSAttn · SCAttn), (2)

where WS ∈ Rls×ls indicates the reweighting ma-
trix for sentences and WC ∈ Rlc×lc indicates the
reweighting matrix for conditions.

Applying the obtained reweighting matrices WS

and WC , we perform Self-Reweighting on the trun-
cated model outputs, which can be computed as

ROS = WS ·O[0 : (ls − 1)] (3)

ROC = WC ·O[ls : (ls + lc)], (4)
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where O ∈ Rl×d indicates the last hidden state of
the language model, which we subsequently refer
to as the original output in the following text. l and
d represent the length of the concatenated input
(comprising the sentence pair and the condition)
and the dimension of the language model’s hidden
state, respectively. Here we represent the i-th token
of sentence k (k ∈ {1, 2}) as t(i)k . ROS ∈ Rls×d

and ROC ∈ Rlc×d represent the reweighted output
of the sentence pair and the condition, respectively.

After acquiring the reweighted outputs for both
sentences and conditions, we then concatenate
them to form the concatenated reweighted outputs
RO ∈ Rl×d, where RO indicates the concate-
nated reweighted output, which is of the same
size with the original output O. Then, we uti-
lize the reweighted (attention reallocated) output
RO as an augmentation signal to perform the Self-
Augmentation as described in Section 3.2.

Furthermore, it is important to note that the
reweighting matrices for attention reallocation are
derived directly from the attention matrices re-
turned by the last layer of the language model.
Since this does not introduce an external informa-
tion, we refer to this process as Self-Reweighting.

3.2 Self-Augmentation

We consider the multi-head self-attention mech-
anism of the language model, which ultimately
yields H attention matrices, where H is the number
of attention heads. Here, we refer to the reweighted
output obtained after applying the reweighting ma-
trices constructed from the attention matrix re-
turned by the i-th attention head as ROi. Fol-
lowing a method similar to that used in Transform-
ers for processing outputs from multiple attention
heads (Vaswani et al., 2017), we concatenate these
H reweighted outputs. Subsequently, they are pro-
jected through a projection matrix to match the
dimension of a single reweighted output, which
can be computed as

RO = [RO1;RO2; ...;ROH ] ·Wo, (5)

where Wo ∈ RHd×d indicates the projection ma-
trix. To be more specific, the RO here indicates
the projected reweighted output. Each ROi is com-
puted through Section 3.1, where it should be noted
that the RO in Section 3.1 denotes the case for a
single attention head.

We utilize the final reweighted output RO as
an augmentation signal, aimed at enhancing parts
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Figure 3: Overall architecture of our proposed SEAVER.
A self-augmented output is derived through the addi-
tion of the self-reweighted output to the original output
(scaled by a factor of α). This self-augmented output
is subsequently fed into a simple regressor (a single-
hidden-layer MLP), predicting the semantic similarity.

of the original output O where there is a signif-
icant semantic association between the sentence
pair and the condition. To achieve this, we perform
a weighted addition of the augmentation signal
RO with the original output O. This results in the
self-augmented output, which is then utilized for
predicting similarity, which can be computed as

AO = RO+ αO, (6)

where AO ∈ Rl×d indicates the self-augmented
output and α ≥ 0 denotes the hyperparameter that
controls the ratio between the weight of reweighted
output RO and the original output O, which is
discussed in detail in Section 4.2.

The overall architecture of the model is as de-
picted in Figure 3, where the final regressor is a
single-hidden-layer MLP structure for scoring.

4 Experiments

Dataset. In this study, we employ C-STS-2023
dataset collected by Deshpande et al. (2023) for
training and testing, which consists of quadru-
ples, formatted as (sentence1, sentence2,
condition, label). In which label repre-
sents the level of similarity between sentence1
and sentence2 under condition, converted
into a Likert scale (Likert, 1932) with values rang-
ing from 1 to 5, which is common with semantic
textual similarity tasks (Agirre et al., 2013).
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Sentence 1 Sentence 2 Condition Output
A boy is in midair doing a skate-
board trick at a skate park while
two women and a toddler walk
behind him.

A boy in yellow pants and a
blue shirt is rollerblading on the
side of his black skates.

The type of skating.
w/o: 4.00
w/ : 1.46
Label: 1.00

Two people are near a wooden
building wearing backpacks.

A couple of people working
around a pile of rocks.

The number of people.
w/o: 2.60
w/ : 4.62
Label: 5.00

Table 2: Two cases from the C-STS-2023 validation set. "Output" refers to the predicted and the ground-truth
similarity, where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed SEAVER. More cases are available in Appendix A.1.

Experimental Setup. We conduct a comparative
analysis between various baselines and our pro-
posed SEAVER, which can be categorized into:
(i) Fine-tuning baselines, which are fine-tuned on
the entire training partition. We select RoBERTa
(Liu et al., 2019) and SimCSE (Gao et al., 2021)
as our language model baselines, encompassing
both the base and large scales. Additionally,
we have considered top-notch works that possess
design principles analogous to SEAVER, as de-
tailed in Section 2, as baseline models. These
include AbS-LM and PerceiverIO (Jaegle et al.,
2021), where AbS-LM represents a modified Ab-
SViT (Shi et al., 2023) for C-STS, with its ViT
backbone replaced by RoBERTa and SimCSE (de-
noted as AbS-RoBERTa and AbS-SimCSE, respec-
tively). For PerceiverIO, we selected the version
of the model pre-trained exclusively for text tasks.
(ii) Prompting baselines, which refer to general-
purpose large language models, are recognized for
their few-shot learning capabilities. We select Flan-
T5 (Wei et al., 2021), GPT-J (Wang and Komat-
suzaki, 2021), GPT-3.5 (Brown et al., 2020), and
GPT-4 (Achiam et al., 2023) as our baselines. More
details are available in Appendix A.2.

4.1 Dilution Effect and SEAVER Mitigation
In Table 2, the predictions from the baseline model
are higher and lower in comparison to the ground-
truth, respectively, while those from SEAVER align
more closely with the ground-truth.

To elucidate the attention allocation mechanism
of the baseline model in C-STS, and to understand
the reasons behind the baseline model’s prediction
failures as well as the success of SEAVER. As
illustrated in Figure 4, we extracted and averaged
the attention matrices from the last layer of the
baseline model and the Self-Reweighting weights
for the sentence part in SEAVER.

Since the input sequence consists of concate-

nated sentence and condition, SEAVER includes
separate reweighting matrices that affect both the
sentence and the condition respectively. How-
ever, considering that the condition itself serves
to impose constraints on the sentence. In this sec-
tion, to more intuitively understand how SEAVER
reweights the sentence based on the condition, we
only display the reweighting matrix that acts on the
sentence part (Figure 4 (right)).

In Figure 4 (left), it is observable that in the
baseline model, the required Region of Interest
(RoI) does not receive additional attention. We
also observed that the required RoI occupies only
a small proportion within the sentence, with the
remaining parts involved in attention computation
predominantly consisting of numerous condition-
irrelevant tokens, which, after being normalized
by the softmax function, dilute the impact of
condition-relevant features on the final prediction.
We have named this the Dilution Effect.

After applying our proposed SEAVER method,
we observe from Figure 4 (right) that the reweight-
ing matrix exhibits distinct emphasized regions
(darker in color) and suppressed areas (lighter in
color). This refocuses attention on the condition-
relevant tokens. For instance, for the first case in
Table 2, the emphasized regions of the reweighting
matrix make the model concentrate more on to-
kens related to the type of skating, such
as skateboard and rollerblading. Conse-
quently, compared to the baseline model, applying
SEAVER successfully reallocates more attention to
the condition-relevant aspects, mitigating distrac-
tions within the model.

4.2 Quantitative Results and Analysis
We initially conduct fine-tuning experiments using
the entire training set of the C-STS-2023 dataset.
The quantitative results are shown in Table 3. More
details are available in Appendix A.3.
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Model #Param. Spear. ↑ Pears. ↑
PerceiverIO 203M 1.26 1.32

RoBERTa 125M 39.07 39.05
AbS-RoBERTa 139M 8.58 8.04
SEAVER RoBERTa 132M 41.36 41.05
RoBERTa 355M 40.40 40.78
AbS-RoBERTa 406M -3.48 -1.84
SEAVER RoBERTa 372M 43.45 43.60
SimCSE 125M 38.56 39.00
AbS-SimCSE 139M 6.47 6.28
SEAVER SimCSE 132M 39.59 39.30
SimCSE 355M 42.28 42.40
AbS-SimCSE 406M 9.55 9.20
SEAVER SimCSE 372M 43.83 43.81

Table 3: Fine-tuning results in Spearman and Pearson
correlation (scaled by 100) on the C-STS-2023 test set.
Highlighted rows indicate optimal performance with the
best-configured α within a series.

In Table 3, RoBERTa has been fine-tuned di-
rectly on the C-STS-2023 dataset following pre-
training. In contrast, before being fine-tuned on
the C-STS-2023 dataset, SimCSE has already been
fine-tuned on unconditional STS datasets. It’s ob-
servable that our proposed SEAVER can bring sta-
ble performance improvements to these two base-
line language models of different scales.

Furthermore, we also compared the performance
of SEAVER with that of novel related works pos-
sessing analogous design principles on the C-STS
task (AbS-LM and PerceiverIO). The results indi-

cate that the two approaches, analogous in design
to ours, performed poorly on the C-STS task, even
falling significantly short of the performance of
vanilla language models. The reasons for this un-
derperformance are as follows:

(i) Intrusive reweighting strategy disrupts the
capability for attention allocation. AbS-LM re-
tains parts of the original Language Model (LM)
and introduces feedback information in an intru-
sive manner (i.e., directly reweighting the value
part of attention in LMs based on the similarity
between condition embeddings and extracted fea-
tures). However, this intrusive feedback method
not only introduces a significant number of addi-
tional parameters, leading to training instability, but
also disrupts the internal information of pre-trained
LMs, resulting in failure on the C-STS task.

(ii) Simple cross-attention modules struggle
to meet the demands of C-STS. Although Per-
ceiverIO introduces cross-attention modules more
in line with the C-STS task setting compared to
Vanilla LMs, it lacks the powerful semantic un-
derstanding inherent to pre-trained language mod-
els, thereby only performing superficial similarity
measurements on texts without capturing deeper
semantic information, which is crucial for C-STS.

In contrast to these methods, SEAVER utilizes
a residual connection-style non-intrusive approach
to reallocate attention by emphasizing the inter-
nal condition-relevant information within its atten-
tion matrices, thereby focusing more on condition-
relevant aspects. This results in a minimal increase
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in parameters without introducing any additional
cross-attention modules, further validating the ef-
fectiveness and efficiency of SEAVER.

Model 0-shot ↑ 2-shot ↑ 4-shot ↑
Flan-T5-base 11.3 9.1 10.7
Flan-T5-large 11.1 12.3 12.8
GPT-J 7.4 1.1 2.0
GPT-3.5 15.0 16.6 15.5
GPT-4 39.3 42.6 43.6

Our fine-tuned model (w/ the best performance)
†SEAVER SimCSE (372M) 43.8

Table 4: Zero-shot and few-shot prompted results on
the C-STS-2023 test set using Spearman’s correlation.
† indicates fine-tuning on the entire training set.

Additionally, we compared the performance
of SEAVER with that of zero-shot and few-shot
prompted large language models on the C-STS-
2023 test set. The performance of the zero-shot
and few-shot prompted large language models, as
presented in Table 4, represent the best results ob-
tained after prompting using various prompts as
applied by Deshpande et al. (2023).

As shown in Table 4, it is evident that despite a
substantial difference in the number of parameters
between our selected model (372M) and large lan-
guage models such as GPT-J (6B), GPT-3.5 (175B),
and GPT-4 (even larger than GPT-3.5), the best per-
formance of SEAVER, still surpasses the optimal
performance achieved by large language models.
Furthermore, as the process of zero-shot and few-
shot prompting in large language models also con-
stitutes cross-encoding, this further confirms the
superiority of SEAVER in cross-encoding models.

4.3 Multi-Head Effect Analysis

To analyze the impact of the multi-head effect
on self-augmentation, we randomly selected a
subset of attention heads to compute the self-
augmentation signal, while keeping the rest of the
model settings consistent with the optimal model
configurations as shown in Table 8. The experimen-
tal results are presented in Table 5.

For the RoBERTa series, it is observed that in-
corporating a greater number of attention heads in
the computation of the self-augmentation signal
leads to more substantial performance improve-
ments. However, in the case of RoBERTa-large,
engaging fewer attention heads may adversely af-

Model #Param. Spear. ↑ Pears. ↑
RoBERTa 125M 39.07 39.05
+2-head-Aug 126M 40.51 40.04
+4-head-Aug 127M 40.96 40.39
+8-head-Aug 129M — —
+all(12)-head-Aug 132M 41.36 41.05
RoBERTa 355M 40.40 40.78
+2-head-Aug 358M 38.82 38.94
+4-head-Aug 360M 40.04 39.69
+8-head-Aug 364M 42.42 42.54
+all(16)-head-Aug 372M 43.45 43.60
SimCSE 125M 38.56 39.00
+2-head-Aug 126M 39.25 39.25
+4-head-Aug 127M 40.28 40.28
+8-head-Aug 129M 37.76 37.79
+all(12)-head-Aug 132M 39.59 39.30

SimCSE 355M 42.28 42.40
+2-head-Aug 358M 43.81 43.90
+4-head-Aug 360M 43.54 43.53
+8-head-Aug 364M 43.63 43.67
+all(16)-head-Aug 372M 43.83 43.81

Table 5: The performance of models on the C-STS-
2023 test set when augmented with varying numbers of
attention heads. "—" indicates a representation collapse
due to training instability, resulting in a nan outcome.

fect predictive performance, potentially due to in-
sufficient attention information being gathered to
effectively compute the self-augmentation signal.

In contrast, a more intriguing phenomenon was
observed with the SimCSE series, where involv-
ing fewer attention heads in the computation ap-
peared to yield more significant performance im-
provements. We believed that after undergoing
STS fine-tuning—a process not experienced by the
pretraining-only RoBERTa model—certain atten-
tion heads in SimCSE have developed uniquely spe-
cialized capabilities for STS measurement. Conse-
quently, selectively utilizing these specific attention
heads during fine-tuning with SEAVER can lead to
more pronounced improvements in C-STS.

It can also be observed that for RoBERTa-base,
in order to ensure consistency with the experimen-
tal setup that involves using all attention heads,
there may be instability issues such as representa-
tion collapse during training when relying solely
on the self-augmentation signal (α = 0) under
our settings for RoBERTa-base. Therefore, we
recommend that for any model configured with
α = 0, training should include all heads to main-
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tain consistency with the architecture of the back-
bone model. Alternatively, a more precise deter-
mination of α values might be necessary under
varying head count configurations.

4.4 Self-Reweighting Impact Analysis

Given that Self-Reweighting extracts the condition-
sentence cross-attention submatrices, we now com-
mence with the random selection of two non-
overlapping submatrices from the attention ma-
trix to further confirm the effectiveness of Self-
Reweighting. These submatrices, similar to those
in the Self-Reweighting configuration, are symmet-
rically positioned relative to the main diagonal of
the attention matrix, and are utilized as the weights
for reweighting, a process we have termed Random-
Augmentation, which yielded the following results:

Model #Param. Spear. ↑ Pears. ↑
RoBERTa 125M 39.07 39.05
+Rand-Aug w/o orig. 132M 38.00 37.57
+Rand-Aug w/ 1*orig. 132M 37.78 37.56
+Rand-Aug w/ 2*orig. 132M 37.48 37.26
+Rand-Aug w/ 3*orig. 132M 35.00 35.48

RoBERTa 355M 40.40 40.78
+Rand-Aug w/o orig. 372M 40.93 40.83
+Rand-Aug w/ 1*orig. 372M 38.86 38.91
+Rand-Aug w/ 2*orig. 372M 40.83 40.95
+Rand-Aug w/ 3*orig. 372M 40.41 40.26

SimCSE 125M 38.56 39.00
+Rand-Aug w/o orig. 132M 37.37 37.11
+Rand-Aug w/ 1*orig. 132M 37.52 37.08
+Rand-Aug w/ 2*orig. 132M 37.39 37.43
+Rand-Aug w/ 3*orig. 132M 37.86 37.96

SimCSE 355M 42.28 42.40
+Rand-Aug w/o orig. 372M 41.16 41.01
+Rand-Aug w/ 1*orig. 372M 40.08 39.79
+Rand-Aug w/ 2*orig. 372M 43.07 43.12
+Rand-Aug w/ 3*orig. 372M 42.60 42.75

Table 6: Fine-tuning results of Random-Augmentation
on the C-STS-2023 test set. Highlighted rows indi-
cate declined performance within a series. "+Rand-
Aug w/ α*orig." denotes the addition of the Random-
Reweighting signal to the original output (scaled by a
factor of α), and “w/o” is equivalent to α = 0.

From Table 6, it can be observed that Random-
Augmentation does not enhance the performance
of the language model on the C-STS task in the ma-
jority of cases. However, in some instances, slight
improvements over the baseline were observed, at-
tributable to four primary reasons:

(i) The introduction of additional parameters (al-
beit minimal) allowed for minor gains. The inclu-
sion of new parameters in the model can subtly
enhance its performance by providing more flex-
ibility in adapting to the data. (ii) The randomly
sampled submatrices inevitably encompass parts of
the condition-sentence cross-attention submatrices
from the attention matrix. Therefore, compared to
the unenhanced baseline model, this inclusion also
contributes to a partial gain. (iii) As α increases,
the proportion of the original signals extracted by
the language model is amplified, thereby dimin-
ishing the impact of the Random-Augmentation
signal. A detailed discussion regarding the im-
pact of α is provided in Section 4.5. (iv) Random-
Augmentation introduces a certain amount of noise
into the fine-tuning process. Several studies (Zhang
et al., 2020; Wu et al., 2022) have indicated that
the introduction of such noise can reduce the gap
between pre-training and fine-tuning tasks, thereby
having a positive impact on fine-tuning.

Nevertheless, it is evident that these gains do
not match the improvements afforded by SEAVER
of extracting specific cross-attention submatrices
through Self-Reweighting. This further corrob-
orates the effectiveness of the Self-Reweighting
strategy’s intuitively designed rationale and also
demonstrates that the improvements introduced by
SEAVER are not merely the result of increased
parameters and training perturbations.

4.5 Self-Augmentation Ratio Analysis
To explore optimal performance of SEAVER, we
configured 4 different Self-Augmentation Ratios α
on various versions of SEAVER as shown in Figure
5. It is clear that there exists an easily identifiable,
optimal configuration of α that enables the best
synergy between the model’s original output and
the augmentation signal, ensuring that SEAVER
consistently outperforms the baseline model.

Additionally, to analyse the impact of α. As
specified in Equation 6, a larger α increases the
proportion of the original output’s influence on the
final prediction. When α = 0, the final prediction
relies solely on the augmentation signal. As α →
+∞, it depends exclusively on the original output
(degenerates to the baseline model).

It can be observed that the optimal configura-
tion of α is not zero in most cases, confirming that,
in addition to directly condition-relevant features,
the preservation of the overall semantics, which is
largely provided by the original output, also plays
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Figure 5: Spearman’s correlation of SEAVER under different settings of α. The red dashed line represents the
performance of the corresponding fine-tuning baseline language model. Detailed values can be found in Table 8.

a crucial role. Therefore, this is the rationale for
using the Self-Reweighting output as an augmenta-
tion signal to the original output, rather than as the
sole component utilized for prediction.

Meanwhile, the optimal configuration of α varies
across models of different scales and training meth-
ods. We note that α represents a form of trade-off
between the model’s intrinsic sentence understand-
ing ability and the degree of need for attention
reallocation. Models with stronger sentence under-
standing, such as RoBERTa-large, typically require
a larger α value compared to RoBERTa-base, i.e.
models with higher intrinsic sentence understand-
ing have less need for attention reallocation through
the Self-Reweighting output to mitigate distraction.

However, it remains necessary to introduce the
Self-Reweighting output into models with stronger
sentence understanding capabilities, as the model’s
performance degrades to that of the corresponding
baseline models when α → +∞ (w/o augmenta-
tion). More details are available in Appendix A.4.

5 Conclusion

In this work, we argue that the reason for the sub-
par performance of language models in C-STS
is attributed to the dilution effect: The excessive
general-purpose but condition-irrelevant features
distract language models’ attention from the spe-
cific, condition-relevant features that occupy a rel-
atively small proportion in the sentence. How-
ever, mitigating this distraction through mere fine-
tuning is challenging. To address this, we propose
SEAVER, which reallocates the model’s attention
weights based on specific conditions using its inter-
nal information. On the C-STS-2023 test set, our
method outperforms all types of baseline models.

Limitations

Although the application of SEAVER can bring
stable performance improvements to models us-
ing cross-encoding, proving its feasibility, due to

concerns about the method’s complexity, SEAVER
only involves extracting relevant attention scores
from the last layer of the language model and calcu-
lating the semantic correlation between sentences
and conditions. This results in the extracted rele-
vance reflecting more on the independent semantic
features of the last layer, which does not signifi-
cantly enhance performance.

Future work can focus on the comprehensive
utilization of semantic relevance captured in other
layers of the model, as well as that of the last layer
and other layers. Furthermore, the adoption of a
learned adaptive approach to make models focus
more on condition-relevant semantic features of
each layer can be considered. This would enable
adaptive amplification of a certain number of se-
mantic features according to the complexity of dif-
ferent sentences, thereby achieving more efficiency
and satisfactory performance improvements.

Ethical Considerations

It is widely acknowledged that language models are
capable of generating predictions that exhibit bias.
This issue becomes especially pronounced when
the input sentences possess sensitive characteris-
tics. In light of some potential issues, this study
advocates for usage under research purposes. Ap-
propriate care should thus be taken when applying
such approaches for any non-research purpose.

In this study, our use of existing artifacts is
consistent with their intended purposes. All the
datasets and models used in this work are publicly
available. RoBERTa-* models have MIT license1.
Flan-T5-* and PerceiverIO models have Apache-
2.0 license2. The remaining open-source models
and datasets used have all been credited with their
sources in Appendix A.2 in this paper.

1https://choosealicense.com/licenses/
mit

2https://www.apache.org/licenses/LICE
NSE-2.0
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A Appendix

A.1 Dilution Effect and SEAVER Mitigation
Additional cases, along with their corresponding at-
tention matrices and Self-Reweighting weights, are
provided in Table 9 and Figure 6, respectively. This
enables a broader and deeper understanding of the
dilution effect and SEAVER alleviation mentioned
in Section 4.1. An enlarged version of Figure 4 can
be find in Figure 7 and Figure 8.

It must be reiterated that the Self-Reweighting
weights computed here reflect the reallocation of
different features’ intensities. That is, to enhance
condition-relevant features and suppress condition-
irrelevant features, it is necessary to adjust the in-
tensity of the original features. Therefore, in the
Self-Reweighting weights, there may be instances
where the weights of features that are supposed
to be enhanced are not as salient. This can occur
not only due to the intrinsic learning quality of the
model but also because the original intensity of
certain features is already relatively strong, thus
requiring less enhancement, and vice versa.

A.2 Implementation Details
The hyperparameter settings shown in Table 7 were
determined to yield the best performance when
evaluating our proposed SEAVER on the C-STS-
2023 validation set. To maintain higher consistency
with the baseline proposed by Deshpande et al.
(2023), and to maximize the reproducibility of our
experimental results, we set the torch seed to 42 in
all our experiments.

As mentioned by Deshpande et al. (2023), the
C-STS-2023 dataset used in this paper comprises
a training set (11,342 examples), a validation set
(2,834 examples), and a test set (4,732 examples),
all consisting of English sentence examples.

All pre-trained parameters of the language mod-
els involved in the experiments are directly avail-
able on Hugging Face: RoBERTa-base3, RoBERTa-
large4, SimCSE-base5, SimCSE-large6, and

PerceiverIO7. In Table 3, we mention AbS-LM,
which is a variant based on the AbSViT model

3https://huggingface.co/FacebookAI/ro
berta-base

4https://huggingface.co/FacebookAI/ro
berta-large

5https://huggingface.co/princeton-nlp
/sup-simcse-roberta-base

6https://huggingface.co/princeton-nlp
/sup-simcse-roberta-large

7https://huggingface.co/deepmind/lang
uage-perceiver

that substitutes the ViT backbone with a language
model. The original AbSViT model has also been
made open source8. For GPT-3.5 and GPT-4, con-
sistent with the experimental setup described by
Deshpande et al. (2023), the related test results
were obtained using the OpenAI API with the
static model versions gpt-3.5-turbo-0301
and gpt-4-0314 during the experiments.

Configuration Base Large
Batch Size 64 64
Learning Rate 3e-5 1e-5
Weight Decay 0.1 0.1
Seed 42 42
Loss MSE MSE

Table 7: Hyperparameter sweep done for C-STS-2023
validation set for our proposed Self-Augmentation mod-
els. "Base" and "Large" represent the scale of our pro-
posed Self-Augmentation models.

Model #Param. Spear. ↑ Pears. ↑
RoBERTa (Deshpande et al., 2023) 125M 39.07 39.05
SEAVER RoBERTa w/o orig. 132M 41.36 41.05
SEAVER RoBERTa w/ 1*orig. 132M 39.93 39.83
SEAVER RoBERTa w/ 2*orig. 132M 40.44 40.35
SEAVER RoBERTa w/ 3*orig. 132M 38.83 38.91

RoBERTa (Deshpande et al., 2023) 355M 40.40 40.78
SEAVER RoBERTa w/o orig. 372M 43.16 43.20
SEAVER RoBERTa w/ 1*orig. 372M 40.69 40.56
SEAVER RoBERTa w/ 2*orig. 372M 43.45 43.60
SEAVER RoBERTa w/ 3*orig. 372M 39.35 39.28

SimCSE (Deshpande et al., 2023) 125M 38.56 39.00
SEAVER SimCSE w/o orig. 132M 37.16 36.92
SEAVER SimCSE w/ 1*orig. 132M 38.48 38.08
SEAVER SimCSE w/ 2*orig. 132M 39.59 39.30
SEAVER SimCSE w/ 3*orig. 132M 39.18 39.24

SimCSE (Deshpande et al., 2023) 355M 42.28 42.40
SEAVER SimCSE w/o orig. 372M 43.06 43.01
SEAVER SimCSE w/ 1*orig. 372M 42.47 42.52
SEAVER SimCSE w/ 2*orig. 372M 43.70 43.47
SEAVER SimCSE w/ 3*orig. 372M 43.83 43.81

Table 8: Fine-tuning results in Spearman and Pearson
correlation (scaled by 100) on the C-STS-2023 test set.
Bold rows indicate the highest performance achieved
within the same model and scale. "SEAVER [MODEL
NAME] w/ α*orig." denotes the addition of the Self-
Augmentation signal to the original output (scaled by a
factor of α), and “w/o” is equivalent to α = 0.

A.3 Model Parameter Discussion
In Table 3 and Table 8, we can observe that the
parameter count of SEAVER has increased slightly

8https://github.com/bfshi/AbSViT
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compared to the similar scale baseline, the appli-
cation of our method results in an increase of 7M
training parameters for base scale models and
17M for large scale models. This translates to
our proposed method introducing 1.056 and 1.047
times the number of parameters of the fine-tuning
baseline language model for base and large
scales, respectively. This increase is due to the
application of a projection matrix that maps the
concatenated multi-head vector dimensions back
to the model dimension (the slight increase in pa-
rameters corresponds to the introduction of this
projection matrix).

However, since no external auxiliary informa-
tion is introduced and the transformation is applied
only to the information originally extracted by the
model, our proposed SEAVER still maintains a rel-
atively high degree of consistency with the original
baseline model. And the increase in parameter
count due to our approach has a negligible im-
pact on training time and resource consumption.
This consistency makes integrating our method
into practice exceptionally efficient and convenient,
eliminating the need for significant alterations to
the existing structures and training methodologies
of pre-trained language models.

As a supplement to the main body, in Table 8,
we set the range of the scaling factor α in Eq. 6
from 0 to 3, to observe the impact on the overall
model performance under different ratios of the
Self-Augmentation signal combined with the origi-
nal output.

As RoBERTa has not been fine-tuned on
other STS datasets, it largely retains the general-
purposed feature extraction capability acquired dur-
ing pre-training. Therefore, for RoBERTa-base
(125M), solely using the Self-Augmentation sig-
nal for prediction (i.e., setting α to 0) can yield
its optimal result. Introducing varying degrees
of the original output may, to some extent, im-
pair this, leading to suboptimal performance. Con-
versely, the RoBERTa-large (355M), compared to
RoBERTa-base, further enhances its feature ex-
traction ability. With the increased depth of ex-
tracted features, some features suppressed in the
Self-Augmentation signal can positively influence
the prediction (due to increased learned seman-
tic complexity; intuitively, some features may ap-
pear condition-irrelevant individually but become
condition-relevant in combination), thus introduc-
ing a certain degree of the original output (i.e.,
setting α to 2) can achieve its optimal result.

While SimCSE has already been fine-tuned on
unconditional STS datasets, we believe this slightly
impairs the model’s ability to extract general fea-
tures. However, SimCSE also acquires effective
task-specific features for measuring sentence sim-
ilarity. There exists a certain trade-off between
the negative and positive impacts brought by fine-
tuning on the unconditional STS datasets. Intu-
itively, we suspect this is related to the model’s
scale. The SimCSE-base (125M) is more likely
to be negatively influenced by fine-tuning on the
unconditional STS datasets compared to SimCSE-
large (255M), resulting in the optimal performance
of SimCSE-base being lower than that of the same
scaled RoBERTa. In contrast, SimCSE-large seems
to gain more positive benefits than negative impacts
from the unconditional STS fine-tuning process,
thereby further enhancing its capability to extract
semantic features and achieving higher optimal per-
formance.

A.4 Self-Augmentation Ratio Analysis
We provide a more detailed trend analysis in this
section. As shown in Figure 5, both the base
and large scales of the RoBERTa model exhib-
ited similar trends: a significant decrease in perfor-
mance upon the initial introduction of the original
output, followed by a pattern of first increasing and
then continuing to decrease as α increases.

However, a distinction between the base and
large scales of the RoBERTa model is observed
in the performance peak upon increasing the degree
of the original output’s inclusion: the large scale
of RoBERTa surpasses the performance of using
solely the Self-Augmentation signal for prediction,
whereas the base scale does not.

The base scale SimCSE model shows a trend
where performance continuously grows to a peak
and then declines as α increases. The performance
trend of the large scale SimCSE model is similar
to that of RoBERTa, but the peak performance ap-
pears to be shifted to the right. It is also observable
that at this point, the performance improvement has
begun to converge.

We can also observe from Figure 5 that the best
configuration of α varies across models of different
scales and training methodologies. This variation
is due to differences in the intrinsic sentence under-
standing capabilities and preferences of each model.
Models with weaker sentence understanding, such
as RoBERTa (pre-training + C-STS fine-tuning),
typically require a smaller α value compared to
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SimCSE (pre-training + STS fine-tuning + C-STS
fine-tuning) when both models are of the same
scale. This indicates a greater need for a higher pro-
portion of Self-Reweighting output, which serves
primarily as a supplementary and modulatory sig-
nal, to facilitate attention reallocation. Models with
higher intrinsic sentence comprehension have less
need for attention reallocation through the Self-
Reweighting output to mitigate distraction.

However, it is important to emphasize that the
role of Self-Reweighting output in facilitating at-
tention reallocation is still crucial even in models
with stronger sentence understanding capabilities.
This is evident as the model performance degrades
to that of the corresponding baseline models when
α → +∞.
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Sentence 1 Sentence 2 Condition Output

Two martial artists com-
pete before a referee and
onlookers.

Two people are fighting
in full protective gear
and helmets.

The number of partic-
ipants.

w/o: 2.90
w/ : 4.61
Label: 5.00

A man in a black wet-
suit rides a surfboard on
a wave.

Surfer in black wetsuit
falling off his board into
the water.

The color of cloth-
ing.

w/o: 2.75
w/ : 4.75
Label: 5.00

A man dressed in red
dives for a shuttlecock
with a racket on a court.

A Japanese man in a
red shirt, at the olympics
playing tennis.

The name of the
color.

w/o: 2.35
w/ : 4.08
Label: 5.00

At a rodeo and a cowboy
is riding a bull and other
men are standing by.

A man dressed as a cow-
boy walks away from a
brown horse.

The type of animals.
w/o: 3.35
w/ : 1.54
Label: 1.00

A youth on a skateboard
is doing flips and tricks
over a metal bar.

Young kid in a blue shirt
is doing a trick on his
rollerblades.

What the person is
wearing on their feet.

w/o: 3.07
w/ : 1.28
Label: 1.00

A man with a blue har-
ness climbing a climb-
ing wall.

A young girl wearing a
safety harness climbs a
rock wall.

The sex of the per-
son.

w/o: 3.37
w/ : 1.66
Label: 1.00

A guy in red shirt is
rock-clibbing on a dan-
gerous mountain wall.

A man in a red jacket
mountain climbing an
icy rock mountain.

The color of cloth-
ing.

w/o: 2.18
w/ : 4.12
Label: 5.00

A brown and white dog
running fast in a fenced
yard.

A dog is running while
catching a tennis ball in
its mouth.

The action.
w/o: 2.73
w/ : 4.47
Label: 5.00

A boy wearing a green
shirt rides a scooter
down the sidewalk.

A little boy in a green
jacket is crying on his
tricycle.

The color of the
clothing.

w/o: 2.25
w/ : 4.10
Label: 5.00

A woman in an over-
sized black shirt plays a
black and red guitar in a
musky room.

A bass player girl, who
is performing at a con-
cert one of the bands
songs.

The sex of the musi-
cian.

w/o: 2.58
w/ : 4.20
Label: 5.00

Table 9: 10 additional cases from the C-STS-2023 validation set. "Output" refers to the predicted and the ground-
truth similarity, where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed SEAVER (based on RoBERTa-base).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6: Average attention matrix (left: obtained from the baseline model) and Self-Reweighting weight (right:
obtained from our proposed SEAVER) of each row case ((a) for the first row, (b) for the second row, etc) presented
in Table 9. The darker the color, the larger the corresponding value.
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Figure 7: An enlarged version of Figure 4 (left), which is provided for a clearer display of tokens and attention
details.
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Figure 8: An enlarged version of Figure 4 (right), which is provided for a clearer display of tokens and attention
details.
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