Refiner: Restructure Retrieved Content Efficiently to Advance Question-Answering Capabilities

Zhonghao Li, Xuming Hu, Aiwei Liu, Kening Zheng, Sirui Huang, Hui Xiong


Anthology ID:
2024.findings-emnlp.500
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2024
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
8548–8572
Language:
URL:
https://aclanthology.org/2024.findings-emnlp.500
DOI:
Bibkey:
Cite (ACL):
Zhonghao Li, Xuming Hu, Aiwei Liu, Kening Zheng, Sirui Huang, and Hui Xiong. 2024. Refiner: Restructure Retrieved Content Efficiently to Advance Question-Answering Capabilities. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 8548–8572, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
Refiner: Restructure Retrieved Content Efficiently to Advance Question-Answering Capabilities (Li et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-emnlp.500.pdf
Software:
 2024.findings-emnlp.500.software.zip
Data:
 2024.findings-emnlp.500.data.zip