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Abstract

Foundation Language Models (FLMs) such as
BERT and its variants have achieved remark-
able success in natural language processing.
To date, the interpretability of FLMs has pri-
marily relied on the attention weights in their
self-attention layers. However, these atten-
tion weights only provide word-level interpreta-
tions, failing to capture higher-level structures,
and are therefore lacking in readability and
intuitiveness. To address this challenge, we
first provide a formal definition of conceptual
interpretation and then propose a variational
Bayesian framework, dubbed VAriational Lan-
guage Concept (VALC), to go beyond word-
level interpretations and provide concept-level
interpretations. Our theoretical analysis shows
that our VALC finds the optimal language con-
cepts to interpret FLM predictions. Empirical
results on several real-world datasets show that
our method can successfully provide concep-
tual interpretation for FLMs1.

1 Introduction

Foundation language models (FLMs) such as
BERT (Devlin et al., 2018) and its variants (Lan
et al., 2019; Liu et al., 2019; He et al., 2021; Portes
et al., 2023) have achieved remarkable success in
natural language processing. These FLMs are usu-
ally large attention-based neural networks that fol-
low a pretrain-finetune paradigm, where models are
first pretrained on large datasets and then finetuned
for a specific task. As with any machine learn-
ing models, interpretability in FLMs has always
been a desideratum, especially in decision-critical
applications (e.g., healthcare).

To date, FLMs’ interpretability has primarily
relied on the attention weights in self-attention lay-
ers. However, these attention weights only provide
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1Code will soon be available at https://github.com/Wang-
ML-Lab/interpretable-foundation-models
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Figure 1: Visualization of VALC’s learned concepts.
A document consists of two sentences. The task is
to decide whether ‘Sentence 1’ paraphrases ‘Sentence
2’. Left: Dataset-level concepts for MRPC dataset
with 3 concepts and their nearest word embeddings.
Middle: Document-level concept strength, showing
that this document is mostly related to Concept 20 and
Concept 24. Right: Word-level concepts, where the
FLM correctly predicts the label to be ‘True’, and VALC
interprets that this is because the both sentences consist
of words with Concept 24, i.e., Politics.

raw word-level importance scores as interpreta-
tions. Such low-level interpretations fail to capture
higher-level semantic structures, and hence lack
readability and intuitiveness. For example, low-
level interpretations often fail to capture influence
of similar words to predictions, leading to unstable
or even unreasonable explanations (see Sec. 5.4 for
details).

In this paper, we aim to go beyond word-level
attention and interpret FLM predictions at the con-
cept level. Such higher-level semantic interpreta-
tions are complementary to word-level importance
scores and often more readable and intuitive. For
example, as shown in Fig. 1, VALC interprets the
FLM with the following multi-level concepts (de-
tails in Appendix F):

• Dataset-level concepts are highlighted by the
top words and the distribution of their embed-
dings in the PLM (Fig. 1(left)). For example,
Concept 20 (Government) corresponds to the
red ellipse, encompassing words relevant to
government entities and activities, as shown
in Fig. 1(left).
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• Document-level concepts are demonstrated
by each document’s topics; for instance, in
the 3 bars representing probability distribu-
tion over 3 concepts for the document in Fig.
1(middle), VALC identifies Concept 24, i.e.,
‘politics’, and Concept 20, i.e., ‘government’,
as considerably more relevant concepts com-
pared to Concept 27, i.e. ‘names’.

• Word-level concepts are identified by words
in documents. For example, in the box dis-
playing the document in Fig. 1(right), VALC
highlights the words ‘chided’ and ‘tax’ be-
cause they are highly related to Concept 20,
i.e., ‘government’. Terms like ‘Senate’ and
‘bitty’ are associated with Concept 24, i.e.
‘politics’, aligning with the document-level
concepts.

We start by developing a comprehensive and for-
mal definition of conceptual interpretation with
four desirable properties: (1) multi-level structure,
(2) normalization, (3) additivity, and (4) mutual
information maximization. With this definition,
we then propose a variational Bayesian framework,
dubbed VAriational Language Concept (VALC), to
provide dataset-level, document-level, and word-
level (the first property) conceptual interpretation
for FLM predictions. Our theoretical analysis
shows that maximizing our VALC’s evidence lower
bound is equivalent to inferring the optimal con-
ceptual interpretation with Properties (1-3) while
maximizing the mutual information between the in-
ferred concepts and the observed embeddings from
FLMs, i.e., Property (4).

Drawing inspiration from hierarchical Bayesian
deep learning (Wang and Yeung, 2016, 2020; Wang
et al., 2016), the core of our idea is to treat a FLM’s
contextual word embeddings (and their correspond-
ing attention weights) as observed variables and
build a probabilistic generative model to automati-
cally infer the higher-level semantic structures (e.g.,
concepts or topics) from these embeddings and at-
tention weights, thereby interpreting the FLM’s
predictions at the concept level. Our VALC is com-
patible with any attention-based FLMs and can
work as an conceptual interpreter, which explains
the FLM predictions at multiple levels with theoret-
ical guarantees. Our contributions are as follows:

• We identify the problem of multi-level inter-
pretations for FLM predictions, develop a for-
mal definition of conceptual interpretation,
and propose VALC as the first general method
to infer such conceptual interpretation.

• Theoretical analysis shows that learning
VALC is equivalent to inferring the optimal
conceptual interpretation according to our def-
inition.

• Quantitative and qualitative analysis on real-
world datasets show that VALC can infer
meaningful language concepts to effectively
and intuitively interpret FLM predictions.

2 Related Work

Foundation Language Models. Foundation lan-
guage models are large attention-based neural net-
works that follow a pretrain-finetune paradigm.
Usually they are first pretrained on large datasets
in a self-supervised manner and then finetuned for
a specific downstream task. BERT (Devlin et al.,
2018) is a pioneering FLM that has shown impres-
sive performance across multiple downstream tasks.
Following BERT, there have been variants (He
et al., 2021; Clark et al., 2020; Yang et al., 2019;
Liu et al., 2019; Lewis et al., 2019) that design dif-
ferent self-supervised learning objectives or train-
ing schemes to achieve better performance. While
FLMs offer attention weights for interpreting pre-
dictions at the word level, these interpretations lack
readability and intuitiveness because they fail to
capture higher-level semantic structures.

Interpretation Methods for FLMs. Existing
conceptual interpretation methods for FLMs typi-
cally rely on topic models (Blei et al., 2003; Blei
and Lafferty, 2006; Blei, 2012; Wang et al., 2012;
Chang and Blei, 2009; Mcauliffe and Blei, 2007;
Hoffman et al., 2010) and prototypical part net-
works (Chen et al., 2019). There has been re-
cent work that employs deep neural networks to
learn topic models more efficiently (Card et al.,
2017; Xing et al., 2017; Peinelt et al., 2020), using
techniques such as amortized variational inference.
There is also work that improves upon traditional
topic models by either leveraging word similarity as
a regularizer for topic-word distributions (Das et al.,
2015; Batmanghelich et al., 2016) or including
word embeddings into the generative process (Hu
et al., 2012; Dieng et al., 2020; Bunk and Kres-
tel, 2018; Duan et al., 2021). There is also work
that builds topic models upon embeddings from
FLMs (Grootendorst, 2020; Zhang et al., 2022;
Wang et al., 2022; Zhao et al., 2020; Meng et al.,
2022). However, these methods often rely on a
pipeline involving dimensionality reduction and ba-
sic clustering, which is not end-to-end, leading to
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potential information loss between FLM embed-
dings and clustering outcomes. This can result in
unfaithful interpretations for the underlying FLM.
Additionally, they typically generate interpretations
at a single level (e.g., document level), lacking a
multi-level conceptual structure.

Beyond topic models, attribution-based ap-
proaches such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) assign impor-
tance to input features to explain predictions. Con-
cept bottleneck models (CBMs) (Koh et al., 2020;
Yuksekgonul et al., 2023; Yang et al., 2023; Kim
et al., 2018; Schulz et al., 2020; Paranjape et al.,
2020; Schrouff et al., 2021) offer interpretations by
learning conceptual activation and then performing
classifications on these concepts, while inherent
models (Xie et al., 2023; Ren et al., 2023; Shi et al.,
2021) focus on model redesign/re-training for in-
terpretability. However, these approaches often re-
quire extra supervision or re-training, making them
unsuitable for our setting. In contrast, our method
is inherently multi-level and end-to-end, models
concepts across dataset, document, and word lev-
els, and produces faithful post-hoc interpretations
for any models based on FLMs with theoretical
guarantees.

3 Methods

In this section, we formalize the definition of con-
ceptual interpretation, and describe our proposed
VALC for conceptual interpretation of FLMs.

3.1 Problem Setting and Notation

We consider a corpus of M documents, where the
m’th document contains Jm words, and a FLM
f(Dm), which takes as input the document m (de-
noted as Dm) with Jm words and outputs (1) a
CLS embedding cm ∈ Rd, (2) Jm contextual word
embeddings em ≜ [emj ]

Jm
j=1, and (3) the attention

weights a(h)m ≜ [a
(h)
mj ]

Jm
j=1 between each word and

the last-layer CLS token, where h denotes the h’th
attention head. We denote the average attention
weight over H heads as amj = 1

H

∑H
h=1 a

(h)
mj and

correspondingly am ≜ [amj ]
Jm
j=1 (see the FLM

at the bottom of Fig. 2). In FLMs, these last-
layer CLS embeddings are used as document-level
representations for downstream tasks (e.g., docu-
ment classification). Furthermore, our VALC as-
sumes K concepts (topics) for the corpus. For
document m, our VALC interpreter tries to in-
fer a concept distribution vector θm ∈ RK (also

𝑪𝒎 𝒆𝐦𝟏 𝒆mn 𝒆mJ
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Figure 2: Overview of VALC framework.

known as the topic proportion in topic models)
for the whole document and a concept distribu-
tion vector ϕmj = [ϕmjk]

K
k=1 ∈ RK for word

j in document m. In our continuous embedding
space, the k’th concept is represented by a Gaus-
sian distribution, N (µk,Σk), of contextual word
embeddings; we use shorthand Ωk = (µk,Σk) for
brevity. The goal is to interpret FLMs’ predictions
at the concept level using the inferred document-
level concept vector θm, word-level concept vec-
tor ϕmj , and the learned embedding distributions
{N (µk,Σk)}Kk=1 for each concept (see Sec. 5.4
for detailed descriptions and visualizations).

3.2 Formal Definition of Language Concepts

Below we formally define ‘conceptual inter-
pretation’ for FLM predictions (see notations
in Sec. 3.1):

Definition 3.1 (Conceptual Interpretation). As-
sume K concepts and a dataset D containing M
documents, each with Jm words (1 ≤ m ≤ M ).
Conceptual interpretation for a document m con-
sists of K dataset-level variables {Ωk}Kk=1, a
document-level variable θm, and Jm word-level
variables {ϕmj}Jmj=1 with the following properties:
(1) Multi-Level Structure. Conceptual interpreta-

tion has a three-level structure:
(a) Each dataset-level variable Ωk = (µk,Σk)

describes the k’th concept; µk ∈ Rd and
Σk ∈ Rd×d denote the mean and covariance
of the k’th concept in the embedding space
(i.e., emj ∈ Rd), respectively.

(b) Each document-level variable θm ∈ RK
≥0

describes document m’s relation to the K
concepts.

(c) Each word-level variable ϕmj ∈ RK
≥0 de-

scribes word j’s relation to the K concepts.
(2) Normalization. The document- and word-
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FLM

Figure 3: Graphical model of our VALC. The striped
circle represents continuous word counts.

level interpretations, θm and ϕmj , are normal-
ized:

(a)
∑K

k=1 θmk = 1 for document m.
(b)

∑K
k=1 ϕmjk = 1 for word j in document m.

(3) Additivity. We can add/subtract the k’s con-
cept from the contextual embeddings emj of
word j in document m, i.e., emj ← emj ±
xkµk (xk is the editing weight of concept k).

(4) Mutual Information Maximization. The con-
ceptual interpretation achieves maximum mu-
tual information between the observed em-
beddings em in FLMs and the document-
level/word-level interpretation, θm and ϕmj .

In Definition 3.1, Property (1) provides compre-
hensive three-level conceptual interpretation for
FLM predictions, Property (2) ensures proper nor-
malization in concept assignment at the document
and word levels, Property (3) enables better concept
editing (more details in Sec. 5.3) to modify FLM
predictions, and Property (4) ensures minimal in-
formation loss when interpreting FLM predictions.

3.3 VAriational Language Concepts (VALC)

Method Overview. Drawing inspiration from hier-
archical Bayesian deep learning (Wang and Yeung,
2016, 2020; Wang et al., 2016; Mao et al., 2022;
Yan and Wang, 2023; Xu et al., 2023; Wang et al.,
2024), we propose our model, VAriational Lan-
guage Concepts (VALC), to infer the optimal con-
ceptual interpretation described in Definition 3.1.
Different from static word embeddings (Mikolov
et al., 2013) and topic models, FLMs produce con-
textual word embeddings with continuous-value en-
tries [emj ]

Jm
j=1 and more importantly, associate each

word embedding with a continuous-value attention
weight [amj ]

Jm
j=1; therefore this brings unique chal-

lenges.
To effectively discover latent concept structures

learned by FLMs at the dataset level and interpret
FLM predictions at the data-instance level, our

VALC treats both the contextual word embeddings
and their associated attention weights as observa-
tions to learn a probabilistic generative model of
these observations, as shown in Fig. 2. The key idea
is to use the attention weights from FLMs to com-
pute a virtual continuous count for each word, and
model the contextual word embedding distributions
with Gaussian mixtures. The generative process of
VALC is as follows (we mark key connection to
FLMs in blue and show the corresponding graphi-
cal model in Fig. 3):

For each document m, 1 ≤ m ≤M ,
1. Draw the document-level concept distribution

vector θm ∼ Dirichlet(α).
2. For each word j (1 ≤ j ≤ Jm),

(a) Draw the word-level concept index zmj ∼
Categorical(θm).

(b) With a continuous word count wmj ∈ R
from the FLM’s attention weights, draw
the contextual word embedding of the FLM
from the corresponding Gaussian component
emj ∼ N (µzmj

,Σzmj ).
Given the generative process above, discov-

ery of latent concept structures in FLMs at the
dataset level boils down to learning the parameters
{µk,Σk}Kk=1 for the K concepts. Intuitively the
global parameters {µk,Σk}Kk=1 are shared across
different documents, and they define a mixture of
K Gaussian distributions. Each Gaussian distribu-
tion describes a ‘cluster’ of words and their contex-
tual word embeddings.

Similarly, interpretations of FLM predictions at
the data-instance level is equivalent to inferring the
latent variables, i.e., document-level concept distri-
bution vectors θm and word-level concept indices
zmj . Below we highlight several important aspects
of our VALC designs.

Attention Weights as Continuous Word
Counts. Different from typical topic mod-
els (Blei et al., 2003; Blei, 2012) and word em-
beddings (Mikolov et al., 2013) that can only han-
dle discrete word counts, our VALC can handle
continuous (virtual) word counts; this better aligns
with continuous attention weights in FLMs. Specif-
ically, we denote as wmj ∈ R≥0 the (non-negative
real-valued) continuous word count for the j’th
word in document m. We explore three schemes of
computing wmj :

• Identical Weights: Use identical weights for
different words, i.e., wmj = 1,∀m, j. This is
equivalent to typical discrete word counts.

• Attention-Based Weights with Fixed Length:
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Use wmj = J ′amj , where J ′ is a fixed se-
quence length shared across all documents.

• Attention-Based Weights with Variable
Length: Use wmj = Jmamj/

∑Jm
i=1 ami, where

Jm is true sequence length without padding.
Note that in practice,

∑Jm
i=1 ami ̸= 1 due to

padding tokens in FLMs.
Contextual Continuous Word Representa-

tions. Note that different from topic models (Blei
et al., 2003) and typical word embeddings (Mikolov
et al., 2013; Dieng et al., 2020) where word repre-
sentations are static, word representations in FLMs
are contextual; specifically, the same word can have
different embeddings in different documents (con-
texts). For example, the word ‘soft’ can appear as
the j1’th word in document m1 and as the j2’th
word in document m2, and therefore have two dif-
ferent embeddings (i.e., em1j1 ̸= em2j2).

Correspondingly, in our VALC, we do not con-
strain the same word to have a static embedding;
instead we assume that a word embedding is drawn
from a Gaussian distribution corresponding to its
latent topic. Note that word representations in our
VALC is continuous, which is different from typi-
cal topic models (Blei et al., 2003) based on (dis-
crete) bag-of-words representations.

3.4 Objective Function

Below we discuss the inference and learning pro-
cedure for VALC. We start by introducing the in-
ference of document-level and word-level concepts
(i.e., zmj and θm) given the global concept param-
eters (i.e., {(µk,Σk)}Kk=1), and then introduce the
learning of these global concept parameters.

3.4.1 Inference
Inferring Document-Level and Word-Level Con-
cepts. We formulate the problem of interpret-
ing FLM predictions at the concept level as in-
ferring document-level and word-level concepts.
Specifically, given global concept parameters
{(µk,Σk)}Kk=1, the contextual word embeddings
em ≜ [emj ]

Jm
j=1, and the associated attention

weights am ≜ [amj ]
Jm
j=1, a FLM produces for each

document m, our VALC infers the posterior distri-
bution of the document-level concept vector θm,
i.e., p(θm|em,am, {(µk,Σk)}Kk=1), and the poste-
rior distribution of the word-level concept index
zmj , i.e., p(zmj |em,am, {(µk,Σk)}Kk=1).

Variational Distributions. These posterior dis-
tributions are intractable; we therefore resort to
variational inference (Jordan et al., 1998; Blei et al.,

2003) and use variational distributions q(θm|γm)
and q(zmj |ϕmj) to approximate them. Here γm ∈
RK and ϕmj ≜ [ϕmjk]

K
k=1 ∈ RK are variational

parameters to be estimated during inference. This
leads to the following joint variational distribution:

q(θm, {zmj}Jmj=1|γm, {ϕmj}Jmj=1)

= q(θm|γm) ·
∏Jm

j=1
q(zmj |ϕmj). (1)

Evidence Lower Bound. For each document m,
finding the optimal variational distributions is then
equivalent to maximizing the following evidence
lower bound (ELBO):

L(γm, {ϕmj}Jm
j=1;α, {(µk,Σk)}Kk=1)

= Eq[log p(θm|α)] +
∑Jm

j=1
Eq[log p(zmj |θm)]

+
∑Jm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj )]

− Eq[log q(θm)]−
∑Jm

j=1
Eq[log q(zmj)], (2)

where the expectation is taken over the joint varia-
tional distribution in Eq. 1.

Likelihood with Continuous Word Counts.
One key difference between VALC and typical
topic models (Blei et al., 2003; Blei, 2012) is the
virtual continuous (real-valued) word counts (dis-
cussed in Sec. 3.3). Specifically, we define the
likelihood in the third term of Eq. 2 as:

p(emj |zmj ,µzmj
,Σzmj

) = [N (emj ;µmj ,Σmj)]
wmj . (3)

Note that Eq. 3 is the likelihood of wmj (virtual)
words, where wmj is a real value derived from
the FLM’s attention weights (details in Sec. 3.3).
Therefore, in the third item of Eq. 2, we have:

Eq [log p(emj |zmj ,µzmj
,Σzmj

)]

=
∑

k
ϕmjkwmj logN (emj |µk,Σk)

=
∑

k
ϕmjkwmj{−

1

2
(emj − µk)

T
Σ

−1
k (emj − µk)

− log[(2π)
d/2|Σk|1/2]}. (4)

Update Rules. Taking the derivative of the ELBO
in Eq. 2 w.r.t. ϕmjk (see Appendix A for details)
and setting it to 0 yields the update rule for ϕmjk:

ϕmjk ∝ wmj

|Σk|1/2
exp[Ψ(γmk) − Ψ(

∑
k′ γmk′ )

− 1

2
(emj − µk)

T
Σ

−1
k (emj − µk)], (5)

with the normalization constraint
∑K

k=1 ϕmjk = 1.

γmk = αk +
∑Jm

j=1
ϕmjkwmj , (6)
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where α ≜ [αk]
K
k=1 is the hyperparameter for the

Dirichlet prior distribution of θm. In summary, the
inference algorithm will alternate between updating
ϕmjk for all (m, j, k) tuples and updating γmk for
all (m, k) tuples.

3.4.2 Learning
Learning Dataset-Level Concept Parameters.
The inference algorithm in Sec. 3.4.1 assumes
availability of the dataset-level (global) concept
parameters {(µk,Σk)}Kk=1. To learn these pa-
rameters, one needs to iterate between (1) infer-
ring document-level variational parameters γm as
well as word-level variational parameters ϕmj in
Sec. 3.4.1 and (2) learning dataset-level concept
parameters {(µk,Σk)}Kk=1.

Update Rules. Similar to Sec. 3.4.1, we expand
the ELBO in Eq. 2 (see Appendix A for details) and
set its derivative w.r.t. µk and Σk to 0, yielding the
update rule for learning µk and Σk:

µk =

∑
m,j

ϕmjkwmjemj∑
m,j

ϕmjkwmj

,

Σk =

∑
m,j ϕmjkwmj(emj − µk)(emj − µk)

T

∑
m,j ϕmjkwmj

. (7)

Algorithm 1: Algorithm for VALC

Input: Initialized {γm}Mm=1, {ϕm}Mm=1,
and {Ωk}Kk=1, documents {Dm}Mm=1,
number of epochs T.

for t = 1 : T do
for m = 1 : M do

Update ϕm and γm using Eq. 5 and
Eq. 6, respectively.
Update {Ωk}Kk=1 using Eq. 7.

Effect of Attention Weights. From Eq. 7, we
can observe that the attention weight of the j’th
word in document m, i.e., amj , affects the virtual
continuous word count wmj (see Sec. 3.3), thereby
affecting the update of the dataset-level concept
center µk and covariance Σk. Specifically, if we
use attention-based weights with fixed length or
variable length in Sec. 3.3, the continuous word
count wmj will be proportional to the attention
weight amj . Therefore, when updating the concept
center µk as a weighted average of different word
embeddings emj , VALC naturally places more fo-
cus on words with higher attention weights amj

from FLMs, thereby making the interpretations
sharper (see Sec. 5.4 for detailed results and Ap-
pendix I for theoretical analysis).

Algorithm 2: Algorithm for VALC Con-
cept Editing

Input: FLM f(·), classifier g(·),
classification loss L, document Dm with
Jm words, labels y, constant factor ω.

for j = 1 : Jm do emj = f(Dmj)
x∗ = QP (emj , {µk}Kk=1)
k∗ = argminL(g(emj − ω · x∗kµk), ym)
emj ← emj − ω · x∗k∗µk∗

4 Theoretical Analysis

In this section, we provide theoretical guarantees
of VALC on the four properties in Definition 3.1.

Multi-Level Structure. As shown in Alg. 1,
VALC (1) learns the dataset-level interpretation
{Ωk}Kk=1 describing the K concepts, (2) infers the
distribution of document-level interpretation θm

for document m, i.e., q(θm|γm) (parameterized
by γm), and (3) infers the posterior distribution of
word-level concept index, i.e., q(zmj |ϕmj), param-
eterized by ϕmj . Such three-level interpretations
correspond to Property (1) in Definition 3.1.

Normalization. The learned variational distribu-
tion q(θm|γm) (described in Eq. 1) is a Dirichlet
distribution; therefore we have

∑K
k=1 θmk = 1.

The update of ϕmj (Eq. 5) is naturally constrained
by

∑K
k=1 ϕmjk = 1 since ϕmj parameterizes a

Categorical distribution (over zmj).
Additivity. VALC is able to perform Concept

Editing, i.e, add/subtract the learned concept acti-
vation µk from FLMs via the following Quadratic
Programming (QP) problem (x = [xk]

K
k=1):

minx∈RK ∥
∑K

k=1
xkµk − em∥2,

subject to x ≥ 0 and
∑K

k=1
xk = 1.

(8)

Given learned concepts {(µk,Σk)}Kk=1, VALC ob-
tains this QP’s optimal solution x∗ ∈ RK and
add/subtract any concept k from arbitrary FLM
embedding em by: em ← em ± x∗kµk. Alg. 2
summarizes this concept editing process; one can
also replace emj with the CLS embedding cm for
document-level editing (details in Appendix D).

Mutual Information Maximization. Theo-
rem 4.1 below shows that our inferred document-
level and word-level interpretation, θm and
{ϕmj}Jmj=1, satisfy Property (4), Mutual Informa-
tion Maximization, in Definition 3.1.
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Theorem 4.1 (Mutual Information
Maximization). In Eq. 2, the ELBO
L(γm, {ϕmj}Jmj=1;α, {(µk,Σk)}Kk=1) is up-
per bounded by the mutual information between
contextual embeddings em and multi-level
interpretation θm, {ϕmj}Jmj=1 in Definition 3.1.
Formally, with approximate posteriors q(θm|γm)
and q(zmj |ϕmj), we have

L(γm, {ϕmj}Jmj=1;α, {(µk,Σk)}Kk=1)

≤ I(em;θm, {zmj}Jmj=1)−H(em), (9)

where the entropy term H(em) is a constant.

From Theorem 4.1 we can see that maximiz-
ing the ELBO in Eq. 2 is equivalent to maximiz-
ing the mutual information between our document-
level/word-level concepts and the observed contex-
tual embeddings in FLMs (proof in Appendix H).

In summary, VALC enjoys all four properties
in Definition 3.1 and therefore generates the opti-
mal conceptual interpretation for FLMs. In con-
trast, state-of-the-art methods only satisfy a small
part of them (Table 1 and Sec. 5.2). In Appendix I,
we provide theoretical guarantees that (1) under
mild assumptions our VALC can learn better con-
ceptual interpretations for FLMs for in noisy data
and (2) attention-based schemes is superior to the
identical scheme (described in Sec. 3.3).

5 Experiments

5.1 Experiment Setup

Datasets. We use three datasets in our experiments,
namely 20 Newsgroups, M10 (Lim and Buntine,
2015), and BBC News (Greene and Cunningham,
2006). For preprocessing details, see Appendix C.

Baselines. We compare our method with the
following state-of-the-art baselines:

• SHAP and LIME (Lundberg and Lee, 2017;
Ribeiro et al., 2016) are interpretation meth-
ods that attribute importance scores to input
features. In this paper, we use embeddings of
‘CLS’ token as input to SHAP/LIME.

• BERTopic (Grootendorst, 2020) is a
clustering-based model that uses HDB-
SCAN (McInnes and Healy, 2017) to cluster
sentence embeddings from BERT, performs
Uniform Manifold Approximation Projection
(UMAP) (McInnes et al., 2018), and then
uses class-based TF-IDF (c-TF-IDF) to obtain
words for each cluster.

Table 1: Comparing methods on the properties in Defi-
nition 3.1 (MIM: Mutual Information Maximization).

Model Multi-Level Normalization Additivity MIM
SHAP/LIME No No Partial No
BERTopic No Hard Partial No
CETopic No Hard Partial No
VALC Yes Soft Full Yes

• CETopic (Zhang et al., 2022) is a clustering-
based model that first uses UMAP to per-
form dimensionality reduction on BERT sen-
tence embeddings, performs K-Means clus-
tering (Lloyd, 1982), and then uses weighted
word selection for each cluster.

Evaluation Metric. Inspired by Koh et al.
(2020), we perform concept editing experiments
to evaluate conceptual interpretation for FLMs;
higher accuracy gain after editing indicates better
interpretation performance. We leverage BERT-
base-uncased (Devlin et al., 2018) as the contextual
embedding model, and use accuracy on the test set
as our metric. For a fair comparison, we adhered
to the baseline methodologies (e.g., BERTopic and
CETopic) by setting the number of concepts (top-
ics) K to 100 across all datasets. This number was
chosen as it strikes an effective balance between
capturing adequate detail and avoiding model over-
fitting. See Appendix D for more details.

We can perform concept editing on either input
tokens or contextual embeddings of FLMs. Specif-
ically, we can perform hard concept editing for
concept k by directly removing tokens that belong
concept k (applicable for hard clustering methods
such as our baselines); we could also perform soft
concept editing for concept k by removing concept
subspace vectors from contextual embeddings em
(applicable for VALC using Alg. 2).

Following (Lyu et al., 2024), we conducted ad-
ditional experiments to evaluate the faithfulness
metric. The faithfulness metric is implemented as
the accuracy score of predictions using logistic re-
gression, with the inferred conceptual explanations
as inputs.

5.2 Comparison on Four Properties
in Definition 3.1

In Sec. 4 we show that VALC satisfies the four
properties of conceptual interpretation in Defini-
tion 3.1. In contrast, baseline models do not neces-
sarily learn concepts that meet these requirements.
Table 1 summarizes the comparison between VALC
and the baselines. We can see that VALC is superior
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Table 2: Accuracy gain on 20 Newsgroups (20NG),
M10, and BBC News (BBC) (%). We mark the best re-
sults with bold face and the second best with underline.

Dataset Unedited SHAP BERTopic CETopic VALC Finetune
/LIME (Oracle)

20NG Acc. 51.26 61.74 60.76 61.93 62.54 64.38
Gain - 10.48 9.50 10.67 11.28 13.12

M10 Acc. 69.74 75.60 76.79 79.18 80.74 82.54
Gain - 5.86 7.05 9.44 11.00 12.80

BBC Acc. 93.72 95.96 95.52 96.86 96.41 97.76
Gain - 2.24 1.80 3.14 2.69 4.04

to baselines in terms of the following four aspects:
(1) Multi-Level Structure. Baselines either apply

clustering algorithms directly on the document-
level embeddings from FLMs or assign impor-
tance scores to input features, and thus can
only provide single-level interpretation, ne-
cessitating complex post-processing to gener-
ate dataset-level concepts. In contrast, VALC
adopts an integrated approach, learning con-
cepts at the dataset, document, and word level
in a joint, end-to-end manner.

(2) Normalization. BERTopic and CETopic
assign each word to exactly one concept
and therefore satisfies hard-normalization.
SHAP/LIME produce importance scores that
are not normalized. In contrast, VALC learns
fractional concept interpretations γm and
ϕmj and therefore satisfies soft-normalization,
which is more flexible and intuitive.

(3) Additivity. Baselines perform addition or
subtraction of concepts only at a single level
(word/document), while our additivity and con-
cept editing (Alg. 2) work for both levels.

(4) Mutual Information Maximization. Base-
lines either use a multi-step pipeline or produce
importance scores; they are therefore prone to
lose information between FLM embeddings
and final clustering/scoring results. In contrast,
VALC is theoretically guaranteed to maximally
preserve information (Theorem 4.1).

5.3 Results
Accuracy Gain. We perform greedy concept edit-
ing (Koh et al., 2020) for BERTopic, CETopic, and
our VALC to evaluate the quality of their learned
concepts. Higher accuracy gain after pruning indi-
cates better performance.

Table 2 show the results for different methods
in three real-world datasets, where ‘Finetune (Or-
acle)’ refers to finetuning both the backbone and
the classifier of BERT. VALC’s concept editing can
improve the accuracy upon the unedited model by
more than 11% in 20 Newsgroups and M10, almost

Table 3: VALC Editing Accuracy (%). We mark the
best results with bold face, second best with underline.

Dataset Unedited Random Unweighted Weighted Finetune
(Oracle)

20 Newsgroups 51.26 51.13 54.63 62.54 64.38
M10 69.74 69.76 73.56 80.74 82.54
BBC News 93.72 93.72 95.52 96.41 97.76

on par with ‘Finetune (Oracle)’. Compared with
the baselines, VALC achieves the most accuracy
gain in 20 Newsgroups and M10 and the second
most accuracy gain in BBC News, demonstrating
the effectiveness of VALC’s four properties in Def-
inition 3.1. Note that SHAP and LIME both inter-
pret the CLS token’s embedding and therefore has
identical accuracy gain (details in Appendix D).

Ablation Study. Thanks to its full additivity
(Definition 3.1), VALC is capable of different con-
cept editing schemes, including ‘Random’, ‘Un-
weighted’, and ‘Weighted’. Specifically, weighted
pruning uses the concept editing algorithm in Alg. 2
with the optimal hyperparameter ω; unweighted
pruning runs Alg. 2 with ω = 1; random pruning
first randomly picks a concept k (k ∈ {1, ...,K}),
sets ω · xk = 1/K, and then runs Alg. 2. Table 3
shows accuracy for VALC’s different schemes. As
expected, random pruning barely improves upon
the unedited model. Unweighted pruning improves
upon the unedited model by 1.5 ∼ 3.5%. Weighted
pruning improves the accuracy by around 11%
upon the unedited model on 20 Newsgroups and
M10.

Faithfulness. Table 4 shows the faithfulness of
VALC and baselines on the 20 Newsgroups, M10,
and BBC News datasets. These results show that
our VALC significantly outperforms the baseline
models, achieving the highest faithfulness accu-
racy scores in the 20 Newsgroups (89.8%), M10
(99.5%), and BBC News (100.0%) datasets.

Note that the dataset size of 20 Newsgroups,
M10, and BBC News is 16,309, 8,355, and 2,225,
respectively. BBC News contains significantly less
data, making it easier to achieve a high faithfulness
score. This explains why both CETopic and our
VALC obtain a faithfulness score of 100.0%.

Baseline methods such as BERTopic and CE-
Topic represent language concepts as discrete bags
of words, which lack flexibility and accuracy. In
contrast, VALC infers continuous concepts for
datasets, documents, and words with theoretical
guarantees. Consequently, it provides optimal and
faithful conceptual explanations of high quality.

See Appendix G for more quantitative results.
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M10
Dimensionality Reduction of Embeddings with Topics

Concept (Topic) 5: sampling, sequence, similarity, mapping, reconstruction, shift
Concept (Topic) 84: analyze, explore, integrate, accept, incorporate, recover, explain
Concept (Topic) 62: environment, mix, farm, formation, life, origin, growth, source
Concept (Topic) 98: term, cycle, isotope, summer, heating, environment
Concept (Topic) 24: forthcoming, proceeding, prospect, overview, grow, profit
Concept (Topic) 74: peer, connect, collaborative, learning, transaction, change

Feature selection vs theory reformulation: A 
study of genetic refinement of knowledge-
based neural networks 

Document Topic: 5  

Prediction: 3 (computer science)

Label: 3 (computer science)  (a)

Deep learning with kernel regularization for 
visual recognition
Document Topic: 5  

Prediction: 3 (computer science)
Label: 3 (computer science)                     (b)

Mobile search for a black hole in an 
anonymous ring
Document Topic: 84  

Prediction: 8 (physics)
Label: 8 (physics)                                     (c)

Banks and markets: The changing character 
of European finance
Document Topic: 84  

Prediction: 4 (financial economics)
Label: 4 (financial economics)                     (d)

Bio-inspired computing tissues: towards 
machines that evolve, grow, and learn 
Document Topic: 62, 24

Prediction: 9 (social science)
Label: 2 (biology)                                         (e)

The influence of intermittency on air-water gas 
transfer measurements 
Document Topic: 5

Prediction: 0 (agriculture)
Label: 7 (petroleum chemistry)   (f)      

M10
Dimensionality Reduction of Embeddings with Topics

Figure 4: Visualization of VALC’s three-level conceptual interpretation. Left and Middle: Dataset-level interpreta-
tion with 6 concepts’ µk and Σk with nearest word embeddings (3 concepts per plot for clarity). Right: Top words
in each concept and 6 example documents with the associated document-level and word-level interpretations.

Table 4: Additional results for the faithfulness (in terms
of accuracy percentage (%)) of VALC and baselines on
the 20 Newsgroups, M10, and BBC News datasets. We
mark the best results with bold face.

Methods 20 NG M10 BBC Average
SHAP/LIME 5.8 13.9 22.9 14.2
BERTopic 17.2 87.6 64.6 56.5
CETopic 79.2 96.4 100.0 91.9

VALC 89.8 99.5 100.0 96.4

5.4 Conceptual Interpretation (More for
Different Tasks in Appendix F)

Dataset-Level Interpretations. As a case study,
we train VALC on M10, sample 6 concepts (topics)
from the dataset, and plot the word embeddings of
the top words (closest to the center µk) in these con-
cepts using PCA in Fig. 4(left and middle). We can
observe Concept 5 is mostly about data analysis,
including words such as ‘sampling’ and ‘similar-
ity’. Concept 84 is mostly about reasoning, with
words ‘explore’, ’accept’, ‘explain’, etc. Concept
62 is mostly about nature, with words ‘environ-
ment’, ‘formation’, ‘growth’, etc. Concept 98 is
mostly about farming, with words ‘term’, ‘sum-
mer’, ‘heating’, etc. Concept 24 is mostly about
economics, with words ‘forthcoming’, ‘prospect’,
‘grow’, etc. Concept 74 is mostly about social con-
tact, containing words such as ‘peer’, ‘connect’,
and ‘collaborative’. Interestingly, Concept 24 (eco-
nomics) and Concept 74 (social contact) are both
related to social science and are therefore closer
to each other in Fig. 4(middle), while Concept 98
(farming) is farther away, showing VALC’s cability
of capturing concept similarity.

Document-Level Interpretations. Fig. 4(right)
shows that VALC can provide conceptual interpre-
tations on why correct or incorrect FLM predic-
tions happen for specific documents. For exam-
ple, document (e) belongs to class 2 (biology), but
BERT misclassifies it as class 9 (social science);
our VALC interprets that this is because document
(e) involves Concept 24 (economics), which is re-
lated to social science. On the other hand, docu-
ment (b) is related to machine learning and BERT
correctly classifies it as class 3 (computer science);
VALC interprets that this is because document (b)
involves Concept 5 (data analysis).

Word-Level Interpretations. Fig. 4(right) also
shows that VALC can interpret which words and
what concepts of these words lead to specific FLM
predictions. For example, document (f) belongs to
class 7 (petroleum chemistry), but BERT misclas-
sifies it as class 0 (agriculture); VALC attributes
this to the word ‘air’, which belongs to Concept 98
(farming). For document (b), VALC interprets that
BERT correctly classifies it as class 3 (computer
science) because the document contains the word
‘kernel’ that belongs to Concept 5 (data analysis).

6 Conclusion

We address the challenge of multi-level interpre-
tations for FLM predictions by defining concep-
tual interpretation and introducing VALC, the first
method to infer such interpretations effectively.
Empirical results are promising, and theoretical
analysis confirms that VALC reliably produces op-
timal conceptual interpretations by our definition.
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7 Limitations

Our proposed method assumes access to the hidden
layers of Transformer-based models, and therefore
can be naturally extended to Transformer-based
models including RoBERTa (Liu et al., 2019), De-
BERTa (He et al., 2021), ALBERT (Lan et al.,
2019), Electra (Clark et al., 2020), and decoder-
only models, such as GPTs (Radford et al., 2019;
Brown, 2020). Although our VALC is initially
designed for Transformer-based models, it is also
generalizable to other architectures, such as Convo-
lutional Neural Networks (CNNs) (LeCun et al.,
2015) and Long Short-Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997), by
simply setting identical attention weights. Future
work may include extending VALC beyond Trans-
former variants and natural language applications.
However, many other foundation language models
provided by proprietary sources may not expose
their internal states, limiting the applicability of
our method in such cases.

8 Ethical Considerations

VALC, as the first to comprehensively interpret
FLMs at the concept level, holds significant
promise for advancing societal and technologi-
cal progress. By elucidating the inner workings
of these complex FLMs, we enable greater trans-
parency and trust in AI systems, which is crucial for
their widespread adoption. This transparency en-
sures that AI-driven decisions in critical areas such
as healthcare, law, and finance are more explain-
able and accountable, thus safeguarding against
biases and errors. Additionally, our VALC fosters
enhanced collaboration between AI and human ex-
perts, as interpretable models can provide insights
that are more easily understood and acted upon
by domain specialists. This symbiotic relationship
has the potential to accelerate innovation, improve
decision-making processes, and ultimately lead to
more ethical and equitable AI applications, thereby
benefiting society at large.
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A Details on Learning VALC

Update Rules. Similar to Sec. 3.4.1 of the main paper, we expand the ELBO in Eq. 2 of the main paper,
take its derivative w.r.t. µk and set it to 0:

∂L

∂µk

=
∑

m,j

ϕmjkwmjΣ
−1
k (emj − µk) = 0, (10)

yielding the update rule for learning µi:

µk =

∑
m,j ϕmjkwmjemj∑

m,j ϕmjkwmj
, (11)

where Σ−1
k is canceled out. Similarly, setting the derivatives w.r.t. Σ to 0, i.e.,

∂L

∂Σk
=

1

2

∑

m,j

ϕmjkwmj(−Σ−1
k +Σ−1

k (emj − µk)(emj − µk)
TΣ−1

k ), (12)

we have

Σk =

∑
m,j ϕmjkwmj(emj − µk)(emj − µk)

T

∑
m,j ϕmjkwmj

. (13)

! "! #mj $!"

M
Lm

%#$

&% '%
K

(0&& )&

BERT*& PLM

Figure 5: Probabilistic graphical model of smoothed VALC.
Smoothing with Prior Distributions on {(µk,Σk)}Kk=1. To alleviate overfitting and prevent singularity

in numerical computation, we impose priors distributions on µk and Σk to smooth the learning process
(Fig. 5). Specifically, we use a Normal-Inverse-Wishart prior on µi and Σi:

Σk ∼ IW(Λ0, ν0),

µk|Σk ∼ N (µ0,Σk/κ0),

where Λ0, ν0, µ0, and κ0 are hyperparameters for the prior distributions. Taking the expectations of µk

and Σk over the posterior distibution NIW(µk,Σk|µ(n)
k ,Λ

(n)
k , κ

(n)
k , ν

(n)
k ), we have the update rules as:

µk ← ENIW [µk] =
κ0µ0 + nkµ̃k

κ0 + nk
, (14)

Σk ← ENIW [Σk] =
Λ0 + Sk +

κ0nk
κ0+nk

(µ̃k − µ0)(µ̃k − µ0)
T

ν0 + nk −K − 1
, (15)

Sk =
∑

m,j
ϕmjkwmj(emj − µ̃k)(emj − µ̃k)

T . (16)

where nk =
∑

m,j ϕmjkwmj is the total virtual word counts used to estimate µk and Σk. Eq. 14 and Eq. 15
are the smoothed version of Eq. 7 of the main paper. From the Bayesian perfective, they correspond to the
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expectations of µk’s and Σk’s posterior distributions. Alg. 1 of the main paper summarizes the learning
of VALC.

Online Learning of µk and Σk. Note that FLMs are deep neural networks trained using minibatches
of data, while Eq. 14 and Eq. 15 need to go through the whole dataset before each update. Inspired
by Hoffman et al. (2010); Oord et al. (2017), we using exponential moving average (EMA) to work with
minibatchs. Specifically, we update them as:

µk ← ρ ·N · µk + (1− ρ) ·B · µ̃k,

Σk ← ρ ·N ·Σk + (1− ρ) ·B · Σ̃k,

N ← ρ ·N + (1− ρ) ·B,

µk ←
µk

N
, Σk ←

Σk

N
,

where B is the minibatch size, N is a running count, and ρ ∈ (0, 1) is the momentum hyperparameter. µ̃k

and Σ̃k are the updated µk and Σk after applying Eq. 14 and Eq. 15 only on the current minibatch.
Effect of Attention Weights. Interestingly, we also observe that FLMs’ attention weights on stop words

such as ‘the’ and ‘a’ tend to be much lower; therefore VALC can naturally ignore these concept-irrelevant
stop words when learning and inferring concepts (as discussed in Sec. 3.4.2). This is in contrast to typical
topic models (Blei et al., 2003; Blei, 2012) that require preprocessing to remove stop words.

Phrase-Level Interpretations. We can easily infer phrase-level concepts from word-level concepts by
treating phrases as sub-documents and adapting Eq. 6 (which provides document-level concepts) in the
paper. Specifically, suppose for a given phrase spanning from the r-th word to the s-th word in document
m, we can adapt Eq. 6 to provide phrase-level conceptual explanations as γ(r,s)mk = αk +

∑s
j=r ϕmjkwmj .

Here γ
(r,s)
mk is the strength of concept k for the given phrase in document m. In this way, γ(r,s)mk can serve

as the phrase-level concept explanation of the phrase spanning from r-th word to the s-th word; this is
another interesting complementary sub-document-level concept explanation between the word level and
the document level.

B Interpretation of the ELBO

VALC’s evidence lower bound (ELBO), i.e., Eq. 2 in the paper, is

L(γm, {ϕm[1:Jm]};α, {(µ[1:K],Σ[1:K])}) = Eq[log p(θm|α)] +
∑Jm

j=1
Eq[log p(zmj |θm)]

+
∑Jm

j=1
Eq[log p(emj |zmj , µzmj ,Σzmj )]

− Eq[log q(θm)]−
∑Jm

j=1
Eq[log q(zmj)]. (17)

Derivation of the Evidence Lower Bound. We derive the evidence lower bound by com-
puting the log likelihood of each term. For example, by definition, p(emj |zmj , µzmj ,Σzmj ) =
[N (emj ;µmj ,Σmj)]

wmj , where N (·) is the Gaussian distribution. Then we derive the third term∑Jm
j=1 Eq[log p(emj |zmj , µzmj ,Σzmj )] in Eq. 17 as follows:

Eq[log p(emj |zmj , µzmj ,Σzmj )] =
∑

k

ϕmjkwmj logN (emj |µk,Σk)

=
∑

k

ϕmjkwmj{−
1

2
(emj − µk)

TΣ−1
k (emj − µk)

− log[(2π)d/2|Σk|1/2]}. (18)
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Table 5: Dataset statistics, including the number of documents (M ), vocabulary size (V ), the number of corpus
categories (L), and the average document length (J).

Dataset M V L J

20 Newsgroups 16,309 1,612 20 48
M10 8,355 1,696 10 5.9
BBC News 2,225 2,949 5 120

Expanding the ELBO to the Loss Function. We can expand the ELBO in Eq. 2 of the main paper as:

L(γ,ϕ;α, {µ}Kk=1, {Σ}Kk=1) = logΓ(
K∑

k=1

αk)−
K∑

k=1

logΓ(αk) +
K∑

k=1

(αk − 1)(Ψ(γk)−Ψ(
K∑

k′=1

γk′))

+

J∑

j=1

K∑

k=1

ϕjk(Ψ(γk)−Ψ(

K∑

k′=1

γk′))

+
∑

j,k

ϕjkwj{−
1

2
(ej − µk)

TΣ−1
k (ej − µk)− log[(2π)d/2|Σk|1/2]}

− logΓ(
K∑

k=1

γj) +
K∑

k=1

logΓ(γk)−
K∑

k=1

(γk − 1)(Ψ(γk)−Ψ(
K∑

k′=1

γk′))

−
J∑

j=1

K∑

k=1

ϕjk log ϕjk. (19)

Definition and Interpretation of the Loss Function. We can interpret the meaning of each term of
ELBO as follows:

• Regularization Term for Document-Level Explanations. The sum of the first and the fourth
terms, namely Eq[log p(θm|α)] − Eq[log q(θm)], is equal to −KL(q(θm)|p(θm|α)), which is
the negation of KL Divergence between the variational posterior probability q(θm) and the prior
probability p(θm|α) of the topic proportion θm for document m. Therefore maximizing the sum of
these two terms is equivalent to minimizing the KL Divergence KL(q(θm)|p(θm|α)); this serves as
a regularization term to make sure the inferred q(θm) is close to its prior distribution p(θm|α).

• Regularization Term for Word-Level Explanations. Similarly, the sum of the second and the last
terms (ignoring the summation over the word index j for simplicity), namely Eq[log p(zmj |θm)]−
Eq[log q(zmj)] is equal to −KL(q(zmj)|p(zmj |θm)), which is the negation of the KL Divergence
between the variational posterior probability q(zmj) and the prior probability p(zmj |θm) of the
word-level topic assignment zmj for word j of document m. Therefore maximizing the sum of these
two terms is equivalent to minimizing the KL Divergence KL(q(zmj)|p(zmj |θm)); this serves as a
regularization term to make sure the inferred q(zmj) is close to its ‘prior’ distribution p(zmj |θm).

• Likelihood Term to Indicate How Much FLM Information is Explained. The third term∑Jm
j=1 Eq[log p(emj |zmj ,µzmj

,Σzmj )] is to maximize the log likelihood p(emj |zmj ,µzmj
,Σzmj )

of every contextual embedding emj (for word j of document m) conditioned on the inferred zmj and
the parameters (µzmj

,Σzmj ).

In this way, we expand the ELBO to a concrete loss function. Each line of Eq. 19 corresponds to the
expansion of each of the five terms in the ELBO mentioned above (i.e., Eq. 2 in the paper).

C Experimental Settings and Implementation Details

We will release all code, models, and data. Below we provide more details on the experimental settings
and practical implementation.

Data Preprocessing and More Datasets. We follow Terragni et al. (2021) and Zhang et al. (2022)
to pre-process these datasets. The statistics of the datasets are summarized in Table 5. We use the
standard 8:1:1 train/validation/test set split. We also use the GLUE benchmark (Wang et al., 2018) to
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perform additional conceptual interpretation in this section and Sec. F. This benchmark includes multiple
sub-tasks of predictions, with the paired sentences as inputs. In this paper, we use 4 datasets from GLUE
(MRPC, RTE, STS-B, and QQP) to show contextual interpretations. Specifically, we apply VALC to
multiple complex natural language understanding (NLU) tasks in the GLUE benchmark. For example,
in Appendix F, we show the three-level conceptual explanations of four different tasks in the GLUE
benchmark using VALC, i.e.,

• Microsoft Research Paraphrase Corpus (MRPC), where the task is paraphrase identification and
semantic textual similarity,

• Recognizing Textual Entailment (RTE), where the task is to determine whether one sentence (the
premise) entails another sentence (the hypothesis),

• Semantic Textual Similarity Benchmark (STS-B), where the task is to measure the degree of
semantic similarity between pairs of sentences (from 0 to 5), and

• Quora Question Pairs (QQP), where the task is to classify whether one question is the duplicate of
the other.

Implementation. We implemented and trained the model using PyTorch (Paszke et al., 2019) on an
A5000 GPU with 24GB of memory. The training duration was kept under a few hours for all datasets.
We utilized the Adam optimizer (Kingma and Ba, 2014) with initial learning rates varying between
10−5 ∼ 10−3, tailored to the specific requirements of each dataset.

Visualization Postprocessing. For better showcase the dataset-level concepts as in Fig. 4 of the main
paper, we may employ simple linear transformations on the embedding of words after the aforementioned
PCA step, in order to scatter all the informative words on the same figures. However, for some datasets
such as STS-B, this is not necessary; therefore we do not use it for these datasets.

Topic (Concept) Identification. Inspired by Blei et al. (2003), we identify meaningful topics by listing
the top-5 topics for each word, computing the inverse document frequency (IDF), and filtering out topics
with the lowest IDF scores. Note that although GLUE benchmark are datasets that consists of documents
with small size, making it particularly challenging for traditional topic models (such as LDA) to learn
topics; interestingly our VALC can still perform well in learning the topics. We contribute this to the
following observations: (1) Compared to traditional LDA using discrete word representations, VALC
uses continuous word embeddings. In such a continuous space, topics learned for one word can also help
neighboring words; this alleviates the sparsity issue caused by short documents and therefore learns better
topics. (2) VALC’s attention-based continuous word counts further improves sample efficiency. In VALC,
important words have larger attention weights and therefore larger continuous word counts. In this case,
one important word in a sentence possesses statistical (sample) power equivalent to multiple words; this
leads to better sample efficiency in VALC.

Computational Complexity. Our VALC introduces minimal overhead in terms of model training cost.
Specifically, VALC’s computational complexity is O(TKd2), where T is the number of epochs (a small
number, such as 3, is sufficient for convergence), K is the number of concepts, and d is the dimension of
the embeddings (in hidden layers). This means that VALC’s computational cost scales linearly with the
number of concepts K (similar to existing methods).

More NLP Tasks. VALC can be naturally applied to other NLP tasks, such as named entity recognition
(NER), reading comprehension, or question answering. Specifically, these tasks involve transformer
predictions from multiple positions within the context, rather than relying solely on the ‘CLS’ token.
For example, NER predicts each token in the document as the beginning (‘B’) of an entity, the inside
(‘I’) of entities, etc. To accommodate this and use VALC to explain each token j in the context, we can
substitute the attention from the ‘CLS’ token with (1) the attention from the ‘CLS’ token to all tokens of
the previous layer with (2) the attention from token j to all tokens of the previous layer in transformers
(e.g., using the attention weights from the predicted label ‘B’ to all tokens of the previous layer as am in
VALC). This adaptation allows VALC to maintain its explanatory power across various NLP applications,
demonstrating its versatility and effectiveness in a wide range of tasks.
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D More Details on Concept Editing

We perform concept pruning to the CLS embeddings for VALC (details in Alg. 2). Since BERTopic and
CETopic can infer concepts (topics) only at the document level, their only choice is to prune a concept by
completely removing input tokens assigned to the concept (as mentioned in Sec. 5.1 and 5.2). To compare
our learned concepts with the baseline models, we first follow their configurations (Grootendorst, 2020;
Zhang et al., 2022) to fix BERT model parameters when learning the topics/concepts, train a classifier on
top of the fixed contextual embeddings, and then perform concept pruning (Koh et al., 2020) for different
evaluated models on the same classifier. Note that concept editing is deterministic; therefore, we conduct
our experiments with a single run.

Specifically, we assume each BERT model contains a backbone and a classifier. To perform concept
editing:
(1) We first train a classifier on top of the fixed BERT embeddings generated by the fixed backbone to get

the original accuracy in the ‘Unedited’ column (in Table 2 and Table 3 of the main paper).
(2) We then apply the same embedding cluster methods to these BERT embeddings to infer the con-

cepts/topics for each dataset.
(3) Finally, with the inferred concepts/topics from the baselines (SHAP/LIME, BERTopic and CETopic

in Table 2 of the main paper) and our VALC variants (Unweighted and Weighted in Table 3 of the
main paper), we perform concept editing and feed the concept-edited embeddings into the trained
classifier from Step (1) to compute the editing accuracy for different methods.

Since here one does not fully finetune the BERT model (i.e., keeping the backbone fixed), the editing
accuracy is expected to be lower than the ‘Finetune’ column (in Table 2 and Table 3 of the main paper),
which serves as the oracle. Table 2 of the main paper shows that our VALC learns better concepts than
the baselines, and Table 3 of the main paper shows that the weighted variant of VALC performs better.

Algorithm 3: Algorithm for VALC Document-Level Concept Editing

Input: FLM f(·), classifier g(·), classification loss L, dataset {Dm}Mm=1, labels y, constant factor
ω.

for m = 1 : M do
cm = f(Dm)
x∗ = QP (cm, {µk}Kk=1)
k∗ = argminKk=1 L(g(cm − ω · x∗kµk), ym)
cm ← cm − ω · x∗k∗µk∗

Note that SHAP and LIME both interpret the CLS token’s embedding, and hence their concept vectors
have the same dimension as the FLM embedding vector (768 in our case). When we conduct concept
editing on the k’th dimension/concept, we simply subtract the CLS embedding’s dimension k with the
average value in the batch on dimension k (which means that we know little about the concept/dimension
k on this document), and keep values of the other dimensions unchanged. Note that the pruning process
is exactly the same for SHAP and LIME. Therefore SHAP and LIME have identical test accuracy and
accuracy gain.

Document-Level Concept Editing. We describe the document-level concept editing algorithm of
VALC in Alg. 3. cm denotes the ‘CLS’ embedding of document m (see Fig. 2 of the main paper).

E Connections Between the Defined Properties and Empirical Results

VALC is able to show which words or embeddings contributed to the document-level concept k. Specifi-
cally, our variational parameter (a vector) ϕmj ∈ RK describes how much word j contributes to document
m. For example, the k-th entry of ϕmj , denoted as ϕmjk in the paper, describes how much word j
contributes to document m in terms of concept k. Therefore, one could use argmaxj ϕmjk to find the
word that contributes most to document m’s concept k. Below, we will explain these four properties
using Fig. 4 as a running example.

(1) Multi-Level Structure ensures that VALC learns the dataset-, document-, and word-level concepts
jointly. In Fig. 4:
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– Dataset-level concepts are highlighted by the top words of each concept (the top right box of
Fig. 4) and the distribution of their embeddings in the FLM (left and middle figures of Fig. 4);
for example, Concept 5 (data analysis) is marked in red.

– Document-level concepts are demonstrated by each document’s topic; for instance, in the box
for document (a) in Fig. 4 (right), VALC identifies Topic (Concept) 5 as key to the FLM’s
prediction of the label 3 (computer science).

– Word-level concepts are identified by words in documents. For example, in the box for
document (a) in Fig. 4, VALC highlights the words ‘genetic’ and ‘neural’ because they are
highly related to Concept 5 (data analysis). Terms like ‘genetic algorithms’ and ‘neural
networks’ are related to data analysis, aligning with the document-level concept.

(2) Normalization ensures that concept learning is regulated and smoothed, with inferred concepts
appearing reasonable. Specifically, in the document-level explanation θm and word-level explanation
ϕmj , all concepts are assigned a value within the range of 0 ∼ 1, and all entries sum up to 1, i.e.,∑K

k=1 ϕmijk = 1 and
∑K

k=1 θmk = 1. This introduces ‘competition’ among different concepts; a
larger strength for one concept means smaller strength for other concepts. Therefore, together with
the help of the Dirichlet prior, it implicitly encourages sparser concept-level explanations θm, which
are more aligned with humans’ cognitive processes and more human-understandable (humans tend
to make decisions with a small set of concepts).

(3) Additivity enables FLMs to incorporate relevant concepts and exclude irrelevant ones, thereby
enhancing prediction accuracy (as shown in Table 2 and Table 3). For example, in document (a) of
Fig. 4, VALC identifies Concept 5 as a highly related concept, distinguishing it from less related
concepts. In practice, this may help practitioners identify key concepts in model prediction and more
effectively intervene to improve model prediction accuracy (e.g., an expert may find that a concept is
relevant and manually down-weight the concept to enhance the model’s prediction).

(4) Mutual Information Maximization ensures a strong correlation between (1) VALC’s generated
concept explanations and (2) the explained model’s representation and predictions. In other words,
it ensures that VALC is explaining the target FLM, rather than generating concept explanations
irrelevant to the target FLM. For instance, in document (a) of Fig. 4, the inferred document-level
Concept 5 (data analysis) effectively explains the FLM prediction, i.e., label 3 (computer science),
by highlighting the intrinsic link between the data analysis concept and the class label computer
science. This connection is evidenced by the words in dataset-level Concept 5 (top right box). The
mutual information between the inferred Concept 5 (data analysis) and label 3 (computer science)
contributes to generating high-quality explanations.

F More Conceptual Interpretation Results in Different Downstream Tasks

Dataset-Level Interpretations. As in the main paper, we leverage VALC as an interpreter on MRPC,
RTE, STS-B and QQP, respectively, sample 3, 3, 4, 4 concepts (topics) for each dataset respectively,
and plot the word embeddings of the top words (closest to the center µi) in these concepts using PCA.
Fig. 6(left) shows the concepts from MRPC. We can observe Concept 20 is mostly about policing,
including words such as ‘suspect’, ‘police’, and ‘house’. Concept 24 is mostly about politics, including
words such as ‘capital’, ‘Congress’, and ‘Senate’. Concept 27 contains mostly names such as ‘Margaret’
and ‘Mary’. Similarly, Fig. 6(right) shows the concepts from RTE. We can observe Concept 67 is related to
West Asia and includes words such as ‘Quran’ and ‘Pasha’. Concept 13 is related to Europe and includes
European countries/names such as ‘Prussia’ and ‘Salzburg’. Concept 91 is mostly about healthcare and
includes words such as ‘physiology’ and ‘insulin’. Fig. 7 shows the concepts from STS-B. We can observe
Concept 63 is mostly about household and daily life, including words such as ‘trash’, ‘flowers’, ‘airs’,
and ‘garden’. Concept 60 is mostly about tools, including words such as ‘stations’, ‘rope’, ‘parachute’,
and ‘hose’. Concept 84 is mostly about national security, including words such as ‘guerilla’, ‘NSA’,
‘espionage’, and ‘raided’. Concept 55 contains mostly countries and cities such as ‘Kiev’, ‘Moscow’,
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Dimensionality Reduction of Embeddings with Topics
He playfully chided the Senate’s little
bitty tax relief plan. [SEP] We don’t
need a little bitty tax relief plan.

Concept (Topic) 24: capital,
Congress, John, Clinton, Senate, gov,
fort, secretary

Concept (Topic) 20: delegation, prep,
speaker, suspect, mono, seat, police,
house, right, chair, oversee, ask

Document Topic: 24    Prediction: True

“Close cooperation between law 
enforcement agencies and 
intelligence services lie at the heart 
of the ongoing fight against terrorism,” 
Mr. Howard said. [SEP] Close 
cooperation between regional law 
enforcement agencies and 
intelligence services was at the heart

Concept (Topic) 27: Margaret, Mary,
lieu, Scott, Sue, Congress, Shelley

Concept (Topic) 83: your, replace,
county, hill,

Document Topic: 83   Prediction: True

Green tea consumption is associated with 
decreased risk of breast , pancreatic , colon , 
oesophageal , and lung cancers in humans . 
[SEP] Tea protects from some diseases . 

Concept (Topic) 91: physiology, chemical, 
insulin, diabetes, fry, weigh
Document Topic: 91    Prediction: False

The united states told Polish leaders it wants 
to open formal negotiations on the possibility 
of locating ground-based interceptor missiles 
in their country as part of a larger missile 
defense system [SEP] United states wants 
to enlarge their missile defense system.

Concept (Topic) 13: Prussia, Hell, Salzburg, 
Magnet, Juan, Berlin, Raleigh, hood, 
Hanover, shopping, Hui, Torino
Document Topic: 13    Prediction: True

It said it carried out both the Taba and 
Sharm El - Sheikh attacks in obedience to 
the leaders of Jihad [SEP] Sheikh Osama 
Bin Laden and Sheikh Ayman Al - Zawahri
are the leaders of Al Qaeda .

Concept (Topic) 67: Quran, shah, Pasha, 
Shiva, mir, Kuwait, mosque, Iran 
Document Topic: 67 Prediction: False

Dimensionality Reduction of Embeddings with Topics
MRPC RTE

Figure 6: Visualization of VALC’s learned topics of contextual word embeddings. Left: MRPC’s dataset-level inter-
pretation with two example documents. Concept 83 is relatively far from the other three concepts in the embedding
space; therefore we omit it on the left panel for better readability. Right: RTE’s dataset-level interpretation with
three example documents.

Dimensionality Reduction of Embeddings with Topics
STS-B

Concept (Topic) 63: trash, flowers, airs, garden, wild, closet, sofa, vase, carrot, seeds, 
turf, playground, floors

Concept (Topic) 60: stations, rope, parachute, hose, clarinet, sink, axe, rifle

Concept (Topic) 84: guerrilla, NSA, espionage, raided, Canadian, Croatia, historic

Concept (Topic) 55: Kiev, Moscow, resistance, Algeria, agrees, Ukrainian, emerge, 
Qaeda, final

A man and a woman watch two
dogs. [SEP] A man in a 
maroon bathing suit swings on 
a rope on a lake.

Document Topic: 63, 60

Prediction: 0.118 (a)   

A woman is pouring egg into a 
frying pan. [SEP] A man is 
petting two dogs.

Document Topic: 63

Prediction: 0.115                    (b)

A cat is playing on the floor. 
[SEP] A man is slicing garlic.

Document Topic: 63

Prediction: 0.100   (c)

South Korean soldier reportedly flees after killing 5 
comrades at border with North Korea [SEP] South 
Korean soldier kills comrades and flees

Document Topic: 84, 55

Prediction: 3.905 (e)

Syria agrees to surrender chemical weapons [SEP] 
UK’s Cameron: Syria, Russia must show chemical
arms proposal is genuine.

Document Topic: 84

Prediction: 1.975 (d)

Russian opposition leader under house arrest [SEP] 
Russian opposition leader placed under house 
arrest

Document Topic: 84

Prediction: 4.672 (f)

Figure 7: Visualization of VALC’s learned topics of contextual word embeddings. We show STS-B’s dataset-level
interpretation with six example documents. The prediction of VALC is between the range of [0, 5].

‘Algeria’, and ‘Ukrainian’. Similarly, Fig. 8 shows the concepts from QQP. We can observe that Concept
12 is mostly about negative attitude, including words such as ‘boring’, ‘criticism’, and ’blame’. Concept
73 is mostly about Psychology, including words such as ‘adrenaline’, ‘haunting’, and ’paranoia’. Concept
34 is mostly about prevention and conservatives, including words such as ‘destroys’, ‘unacceptable’, and
’prohibits’. Concept 64 is mostly about strategies, including words such as ‘rumours’, ‘boycott’, and
’deportation’.

Document-Level Interpretations. For document-level conceptual interpretations, we sample two
example documents from MRPC (Fig. 6(left)), three from RTE (Fig. 6(right)), six from STS-B (Fig. 7)
and eight from QQP (Fig. 8), respectively, where each document contains a pair of sentences. The MRPC
task is to predict whether one sentence paraphrases the other. For example, in the first document of MRPC,
we can see that our VALC correctly interprets the model prediction ‘True’ with Concept 24 (politics). The
RTE task is to predict whether one sentence entail the other. For example, in the second document of
RTE, VALC correctly interprets the model prediction ‘True’ with Concept 13 (countries). The STS-B task
is to predict the semantic similarity between two sentences with the score range of [0, 5]. For example,
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QQP
Dimensionality Reduction of Embeddings with Topics

Concept (Topic) 12: boring, criticism, poorer, blame, empathy, punishment, critic, destroys, cry

Concept (Topic) 73: adrenaline, predatory, haunting, paranoia, twitching

Concept (Topic) 34: destroys, unacceptable, prohibits, straining, ruined

Concept (Topic) 64: rumours, boycott, deportation, affiliation, arbitration, scandals, indicted, factions, 
competitors, bodyguards, competing

How can I turn my idea into a fundable business? 
[SEP] How do I turn my idea into a successful 
company?

Document Topic: 64

Prediction: True (f)

What are the different factions within the 
conservative party? [SEP] What are the organised 
factions of the conservative party?

Document Topic: 34

Prediction: True (g)

How can I start hacking from scratch? [SEP] 
Where/how do I start to learning hacking as a 
newbie?

Document Topic: 64

Prediction: True (h)

What are Hillary Clinton's plans for India? [SEP] 
What would be Hillary Clinton's policy on India?

Document Topic: 64

Prediction: True (e)

What is the best anime to watch when you are 
bored? [SEP] What is the most boring anime you 
have ever watched?

Document Topic: 73

Prediction: True (a)

Are there any famous cases of pronoia (the 
opposite of paranoia)? [SEP] What are some good 
examples of pronoia, the opposite of paranoia?

Document Topic: 73

Prediction: True (c)

Why do we cry while chopping an onion? [SEP] 
Why is assisted-suicide not legal for mentally ill 
people?

Document Topic: 73

Prediction: False (b)

Why is India trying to sabotage CPEC? [SEP] why 
does India oppose CPEC? 

Document Topic: 64

Prediction: True (d)

Figure 8: Visualization of VALC’s learned topics of contextual word embeddings. We show QQP’s dataset-level
interpretation with eight example documents.

Table 6: Example concepts on RTE dataset learned by VALC.

Concepts Top Words

bio-chem cigarette biological ozone cardiovascular chemist liver chemical toxin
citizenship indies bolivian fiji surrey jamaican dutch latino caribbean
names mozart spielberg einstein bush kurt liszt hilton lynn
conspiracy secretly corrupt disperse infected ill hidden illegally sniper
administration reagan interior ambassador prosecutor diplomat legislative spokesman embassy
crime fraud laundering sheriff prosecutor corruption fool robber greed

in Document (a) of Fig. 7, we can see that VALC correctly interpret the model’s predicted similarity
score ‘0.118’ (which is relatively low,) with Concept 63 (household and daily life) and Concept 60 (tools).
Similarly, in Document (f) of Fig. 7, we can see that VALC correctly interpret the model’s predicted
similarity score ‘4.672’ (which is relatively high) with Concept 84 (national security). The QQP task
is to predict whether the two questions are paraphrase of each other. For example, in Document (b) of
Fig. 8, we can see that VALC correctly interprets the model’s predicted label ‘False’ with Concept 73
(Psychology). Similarly, in Document (e) of Fig. 8, we can see that VALC correctly interprets the model’s
predicted label ‘True’ with Concept 64 (strategies).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that VALC
interpret the FLM’s prediction on MRPC’s first document (Fig. 6(left)) using words such as ‘senate’ and
‘bitty’ that are related to politics. Note that the word ‘bitty’ is commonly used (with ‘little’) by politicians
to refer to the small size of tax relief/cut plans. Similarly, for RTE’s first document (Fig. 6(right)), VALC
correctly identifies Concept 67 (West Asia) and interprets the model prediction ‘False’ by distinguishing
between keywords such as ‘Jihad’ and ‘Al Qaeda’. likewise, we can observe that VALC interprets FLM’s
prediction on Document (c) of Fig. 7 using words such as ‘cat’, ‘floor’, and ‘garlic’ that are related to
household and daily life. Also, VALC interprets FLM’s prediction on Document (e) of Fig. 7 using words
such as ‘soldier’ and ‘border’ that are related to national security. Similarly, for QQP’s Document (d)
(Fig. 8), VALC correctly interprets the model prediction ‘True’ by identifying keywords such as ‘sabotage’
and ‘oppose’ with similar meanings in the topic of strategies. For QQP’s Document (g), (Fig. 8), VALC
interprets the words in the both sentences with the same semantics, such as ‘conservative’ that is related to
prevention and conservatives (note that in politics, ‘conservative’ refers to parties that tend to prevent/block
new policies or legislation), and thereby predicting the correct label ‘True’.

Example Concepts. Following Blei et al. (2003), we show the learned concepts on the RTE dataset
in Table 6, which is complementary to aforementioned explanations. We select several different topics
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Table 7: Comparison of Unedited and Unedited+θ on 20 Newsgroups, M10, and BBC News. We mark the best
results with bold face.

Unedited Unedited+θ
20 Newsgroups 51.26 51.74
M10 69.74 70.76
BBC News 93.72 94.90

from Fig. 6. As in Sec. 5.4 of the main paper, we obtain top words from each concept via first calculating
the average of the each word’s corresponding contextual embeddings over the dataset, and then getting
the nearest words to each topic center (µk) in the embedding space. As we can see in Table 6, VALC can
capture various concepts with profound and accurate semantics. Therefore, although FLM embeddings
are contextual and continuous, our VALC can still find conceptual patterns of words on the dataset-level.

G More Quantitative Results.

Document Classification with VALC Concepts. We conducted additional experiments to perform docu-
ment classification using the ‘CLS’ token’s embedding and θ (inferred from VALC) as features. Table 7
shows the results on three datasets. The results show that our VALC can learn meaningful concept vector
θ, which can improve model predictions of document labels.

H Theory on the Mutual Information Maximization Property

We provide the following proof of Theorem 4.1 of the main paper.
For convenience, let Ω = (µK

k=1,Σ
K
k=1), and β = (θm, zm).

We then introduce a helper joint distribution of the variables em and β, s(em, β) = p(em)q(β|em).
According to the definition of ELBO of Section 3.4.1, in Eq. 9, we have

LHS = L(γm, ϕm;α,Ω) = Ep(em)[Eq(β)[log p(em|Ω, β)]] + Eq(β)[log q(β|Ω)]. (20)

Since Eq(β)[log q(β|Ω)] ≤ 0, we only need to prove that

Ep(em)[Eq(β)[log p(em|Ω, β)]] ≤ Is(em;β)−H(em) = RHS. (21)

Then we have that

Ep(em)[Eq [log p(em|β,Ω)]] ≤ Ep(em)[Eq [log p(em|β)]]

= Ep(em)[Eq [log
q(em|β)
p(em)

p(em)p(em|β)
q(em|β) ]]

= Ep(em)[Eq [log
q(em|β)
p(em)

]] + Ep(em)[Eq [log p(em)]] + Ep(em)[Eq [log
p(em|β)
q(em|β) ]]

= Is(em; β) − H(em) − Eq [KL(q(em|β)|p(em|β))]

≤ Is(em; β) − H(em) − 0 = RHS, (22)

which concludes the proof of Theorem 4.1.

I Theoretical Analysis on Continuous Word Counts

Before going to the claims and proofs, first we specify some basic problem settings and assumptions.
Suppose there are K + 1 topic groups, each of which is regarded to be sampled from a parameterized
multivariate Gaussian distribution. In specific, the K + 1 ’th distribution of topic has a much larger
covariance, and in the same time, closed to the center of embedding space. The prementioned properties
can be measured by a series of inequalities:
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The approximate marginal log-likelihood of word embeddings, i.e., the third term of the ELBO as
mentioned in Eqn. 2 of the main paper, is:

L(train) =
∑Jm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj )]

=
∑

m,j,k

ϕmjkwmj{−
1

2
(emj − µk)

TΣ−1
k (emj − µk)− log[(2π)d/2|Σk|1/2]}. (23)

The above equation is the training objective, yet for fair comparison of different training schemes, we
calculate the approximated likelihood with word count 1 for all words.

L(eval) =
∑Jm

j=1
Eq[log p

′(emj |zmj ,µzmj
,Σzmj )]

=
∑

m,j,k

ϕmjk{−
1

2
(emj − µk)

TΣ−1
k (emj − µk)− log[(2π)d/2|Σk|1/2]}. (24)

I.1 Gaussian Mixture Models
Suppose we have a ground truth GMM model with parameters π∗ ∈ RK and {µ∗

k,Σ
∗
k}Kk=1, with K

different Gaussian distributions. In the dataset, let N and Ns denote the numbers of non-stop-words and
stop-words, respectively. Then the marginal log likelihood of a learned GMM model on a given data
sample e can be written as

p(e|{µ,Σ},π) =
K∑

k=1

πkN (e;µk,Σk). (25)

Assuming a dataset of N +Ns words {ei}N+Ns
i=1 and taking the associated weights wi for each word into

account, the log-likelihood of the dataset can be written as

N+Ns∑

i=1

p(ei|{µk,Σk}Kk=1,π) =

N∑

i=1

log

K∑

k=1

wiπkN (ei;µk,Σk) +

N+Ns∑

i=N+1

log

K∑

k=1

wiπkN (ei;µk,Σk). (26)

Leveraging Jensen’s inequality, we obtain a lower bound of the above quantity (denoting as Θ the
collection of parameters {µk,Σk}Kk=1 and π):

LGMM(Θ, {wi}) =

N∑

i=1

wi log

K∑

k=1

πkN (ei;µk,Σk) +

N+Ns∑

i=N+1

wi log

K∑

k=1

πkN (ei;µk,Σk) + C, (27)

where C is a constant.
In the following theoretical analysis, we consider the following three different configurations of the

weights wi.

Definition I.1 (Weight Configurations). We define three different weight configurations as follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}

• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}

• Attention-Based Weights: wi =

{
λ1 ∈ [ 1

N+Ns
, 1
N ], i ∈ {1, 2, . . . , N}

λ2 ∈ [0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}

Definition I.2 (Advanced Weight Configurations). We define three different weight configurations as
follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}
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• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}

• Attention-Based Weights: wi ∈
{
[ 1
N+Ns

, 1
N ], i ∈ {1, 2, . . . , N}

[0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}

Definition I.3 (Optimal Parameters). With Definition I.1, the corresponding optimal parameters are
then defined as follows:

ΘI = argmax
Θ
L(Θ;w→ Identical), (28)

ΘG = argmax
Θ
L(Θ;w→ GT), (29)

ΘA = argmax
Θ
L(Θ;w→ Attention), (30)

where w→ Identical, w→ GT, and w→ Attention indicates that ‘Identical Weights’, ‘Ground-Truth
Weights’, and ‘Attention-Based Weights’ are used, respectively.

Lemma I.1. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two non-negative
weighting parameters λ1, λ2 satisfying Nλ1 +Nsλ2 = 1. We define the final objective function f(·) as:

f(x;λ1, λ2) = λ1

N∑

i=1

f1,i(x) + λ2

Ns∑

i=N+1

f2,i(x). (31)

We assume two pairs of parameters (λ1, λ2) and (λ′
1, λ

′
2), where

λ1 ≥ λ′
1, (32)

λ2 ≤ λ′
2. (33)

Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;λ1, λ2), (34)

x̂′ = argmax
x

f(x;λ′
1, λ

′
2), (35)

we then have that

f(x̂;
1

N
, 0) ≥ f(x̂′;

1

N
, 0). (36)

Proof. We prove this theorem by contradiction. Suppose that we have

f(x̂;
1

N
, 0) < f(x̂′;

1

N
, 0). (37)

According to Eq. 32, i.e., λ1 ≥ λ′
1, and the equation Nλ1 +Nsλ2 = 1, we have

λ1λ
′
2 = λ1

1−Nλ′
1

Ns
≥ λ′

1

1−Nλ1

Ns
= λ′

1λ2. (38)

According to Eq. 35, we have the following equality:

f(x̂;λ′
1, λ

′
2) ≤ f(x̂′;λ′

1, λ
′
2). (39)
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Combined with the aforementioned assumption in Eq. 37, we have that

λ′
2f(x̂;λ1, λ2) = λ1λ

′
2

N∑

i=1

f1,i(x̂) + λ2λ
′
2

Ns∑

i=N+1

f2,i(x̂) (40)

=(λ′
1λ2

N∑

i=1

f1,i(x̂) + λ′
2λ2

Ns∑

i=N+1

f2,i(x̂)) + (N(λ1λ
′
2 − λ′

1λ2) ·
1

N

N∑

i=1

f1,i(x̂)) (41)

=λ2f(x̂;λ
′
1, λ

′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂;
1

N
, 0) (42)

<λ2f(x̂
′;λ′

1, λ
′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂
′;

1

N
, 0) (43)

=(λ′
1λ2

N∑

i=1

f1,i(x̂
′) + λ′

2λ2

Ns∑

i=N+1

f2,i(x̂
′)) + (N(λ1λ

′
2 − λ′

1λ2) ·
1

N

N∑

i=1

f1,i(x̂
′)) (44)

=λ1λ
′
2

N∑

i=1

f1,i(x̂
′) + λ2λ

′
2

Ns∑

i=N+1

f2,i(x̂
′) (45)

=λ′
2f(x̂

′;λ1, λ2), (46)

which contradicts the definition of x̂ in Eq. 34 (i.e., x̂ maximizes f(x;λ1, λ2)), completing the proof.

Lemma I.2. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two series of non-
negative weighting parameters λ1 = [λ1,i]

N
i=1,λ2 = [λ2,i]

Ns
i=N+1 satisfying

∑N
i=1 λ1,i +

∑Ns
i=N+1 λ2,i =

1. We define the final objective function f(·) as:

f(x;λ1,λ2) =

N∑

i=1

λ1,if1,i(x) +

Ns∑

i=N+1

λ2,if2,i(x). (47)

We assume two pairs of parameters (λ1,λ2) and (λ′
1,λ

′
2), where

λ1,i ≥ λ′
1,i, i ∈ {1, 2, ..., N}, (48)

λ2,i ≤ λ′
2,i, i ∈ {N + 1, N + 2, ..., Ns}. (49)

Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;λ1,λ2), (50)

x̂′ = argmax
x

f(x;λ′
1,λ

′
2), (51)

x∗ = argmax f(x,
1

N
,0). (52)

Under the following Assumptions (with 1 and 0 denoting vectors with all entries equal to 1 and 0,
respectively):

1. f(x̂,0,λ2) ≤ f(x̂′,0,λ2).

2. f(x;λ,0) ≥ f(x′;λ,0), iff ∥x− x∗∥ ≤ ∥x′ − x∗∥, λ ≥ 0, ∥λ∥1 = 1.

we have that

f(x̂;
1

N
,0) ≥ f(x̂′;

1

N
,0). (53)

Proof. We start with proving the following equality by contradiction:

∥x̂− x∗∥ ≤ ∥x̂′ − x∗∥. (54)
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Specifically, if

∥x̂− x∗∥ > ∥x̂′ − x∗∥, (55)

leveraging the Assumption 1 and 2 above, we have that

f(x̂;λ1,λ2) = f(x̂;λ1,0) + f(x̂;0,λ2) < f(x̂′;λ1,0) + f(x̂′;0,λ2) = f(x̂′;λ1,λ2), (56)

which contradicts Eq. 50. Therefore, Eq. 54 holds.
Combining Eq. 54 and Assumption 2 above, we have that

f(x̂;
1

N
,0) ≥ f(x̂′;

1

N
,0), (57)

concluding the proof.

Based on the definitions and lemmas above, we have the following theorems:

Theorem I.3 (Advantage of ΘA in the Simplified Case). With Definition I.1 and Definition I.3, com-
paring ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(·, w → GT), we have that

LGMM(ΘI ;w→ GT) ≤ LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (58)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among the
three:

max[LGMM (ΘI ;w → GT),LGMM (ΘA;w → GT)] ≤ max
Θ

LGMM (Θ;w → GT) = LGMM (ΘG;w → GT). (59)

Next, we set {wi}Ni=1 to λ1 and {wi}N+Ns
i=N+1 to λ2, respectively; we rewrite log

∑K
k=1 πkN (ei;µk,Σk)

as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈ {N + 1, N + 1, . . . , N +Ns}, where x corresponds
to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma I.1, we have that

LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (60)

Combining Eq. 59 and Eq. 60 concludes the proof.

Theorem I.3 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving interpretability of FLMs.

Theorem I.4 (Advantage of ΘA in the General Case). With Definition I.2 and Definition I.3, com-
paring ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
LGMM (·, w → GT), we have that

LGMM(ΘI ;w→ GT) ≤ LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (61)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among the
three:

max[LGMM(ΘI ;w → GT),LGMM(ΘA;w → GT)] ≤ max
Θ

LGMM(Θ;w → GT) = LGMM(ΘG;w → GT). (62)

Next, we invoke Lemma I.2 by (1) setting {wi}Ni=1 to λ1 and {wi}N+Ns
i=N+1 to λ2, respectively, and (2)

rewriting log
∑K

k=1 πkN (ei;µk,Σk) as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈ {N + 1, N +
1, . . . , N +Ns}, where x corresponds to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma I.2, we then have that

LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (63)

Note that because f1,i(·) and f2,i(·) are Gaussian, therefore Assumption 1 and 2 in Lemma I.2 hold
naturally under mild regularity conditions.

Combining Eq. 62 and Eq. 63 concludes the proof.
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I.2 VALC as Interpreters
As mentioned in Eq. B , the ELBO of the marginal likelihood (denoting as Θ the collection of parameters
ϕ,γ and {µk,Σk}Kk=1) is as follows:

LVALC(Θ; {wi}) =
∑L′

j=1
Eq [log p(emj |zmj ,µzmj

,Σzmj
)]

=
∑

m,j

wmj

∑

k

ϕmjk{−
1

2
(emj − µk)

T
Σ

−1
k

(emj − µk) − log[(2π)
H/2|Σk|1/2]}. (64)

Based on the definitions and lemmas above, we have the following theorems:

Theorem I.5 (Advantage of ΘA in the Simplified Case). With Definition I.1 and Definition I.3, com-
paring ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(·, w → GT), we have that

LVALC(ΘI ;w→ GT) ≤ LVALC(ΘA;w→ GT) ≤ LVALC(ΘG;w→ GT). (65)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among the
three:

max[LVALC(ΘI ;w → GT),LVALC(ΘA;w → GT)] ≤ max
Θ

LVALC(Θ;w → GT) = LVALC(ΘG;w → GT). (66)

Next, we set ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}Nm+Nm,s

j=Nm+1 to λ2, respectively; we rewrite∑
i ϕmji{−1

2(emj −µi)
TΣ−1

i (emj −µi)− log[(2π)d/2|Σi|1/2]} as f1,j(x) for j ∈ ∪m{1, 2, . . . , Nm}
and f2,j(x) for j ∈ ∪m{Nm + 1, Nm + 1, . . . , Nm + Nm,s}, where x corresponds to Θ ≜
(ϕ,γ, {µk,Σk}Kk=1). By Lemma I.1, we have that

LVALC(ΘA;w→ GT) ≤ LVALC(ΘG;w→ GT). (67)

Combining Eq. 66 and Eq. 67 concludes the proof.

Theorem I.5 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving and interpretability of FLMs.

Theorem I.6 (Advantage of ΘA in the General Case). With Definition I.2 and Definition I.3, com-
paring ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
LV ALC(·, w → GT), we have that

LVALC(ΘI ;w→ GT) ≤ LVALC(ΘA;w→ GT) ≤ LVALC(ΘG;w→ GT). (68)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among the
three:

max[LVALC(ΘI ;w → GT),LVALC(ΘA;w → GT)] ≤ max
Θ

LVALC(Θ;w → GT) = LVALC(ΘG;w → GT). (69)

Next, we invoke Lemma I.2 by (1) setting ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}Nm+Nm,s

j=Nm+1 to λ2, respectively,
and (2) rewriting

∑
i ϕmji{−1

2(emj − µi)
TΣ−1

i (emj − µi) − log[(2π)d/2|Σi|1/2]} as f1,j(x) for j ∈
∪m{1, 2, . . . , Nm} and f2,j(x) for j ∈ ∪m{Nm +1, Nm +1, . . . , Nm +Nm,s}, where x corresponds to
Θ ≜ (ϕ,γ, {µk,Σk}Kk=1). By Lemma I.2, we then have that

LVALC(ΘA;w→ GT) ≤ LVALC(ΘG;w→ GT). (70)

Note that because f1,j(·) and f2,j(·) are very close to Gaussian, therefore Assumption 1 and 2 in Lemma I.2
hold naturally under mild regularity conditions.

Combining Eq. 69 and Eq. 70 concludes the proof.
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