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Abstract

Large Language Models (LLMs) demonstrate
robust capabilities across various fields, lead-
ing to a paradigm shift in LLM-enhanced Rec-
ommender System (RS). Research to date fo-
cuses on point-wise and pair-wise recommen-
dation paradigms, which are inefficient for
LLM-based recommenders due to high com-
putational costs. However, existing list-wise
approaches also fall short in ranking tasks due
to misalignment between ranking objectives
and next-token prediction. Moreover, these
LLM-based methods struggle to effectively ad-
dress the order relation among candidates, par-
ticularly given the scale of ratings. To address
these challenges, this paper introduces the large
language model framework with Aligned List-
wise Ranking Objectives (ALRO). ALRO is
designed to bridge the gap between the capabil-
ities of LLMs and the nuanced requirements of
ranking tasks. Specifically, ALRO employs ex-
plicit feedback in a listwise manner by introduc-
ing soft lambda loss, a customized adaptation
of lambda loss designed for optimizing order
relations. This mechanism provides more ac-
curate optimization goals, enhancing the rank-
ing process. Additionally, ALRO incorporates
a permutation-sensitive learning mechanism
that addresses position bias, a prevalent issue
in generative models, without imposing addi-
tional computational burdens during inference.
Our evaluative studies reveal that ALRO out-
performs both existing embedding-based rec-
ommendation methods and LLM-based recom-
mendation baselines.

1 Introduction

The rapid advancement in Large Language Models
(LLMs), known by GPT-4 (OpenAI, 2023), has
marked a significant milestone in demonstrating
their versatility in zero-shot and few-shot learn-
ing across various domains. These models, effec-
tively employed in domains like Question Answer-
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Figure 1: The comparison of point-wise, pair-wise, and
list-wise ranking in LLM-based recommendation.

ing and Information Retrieval, have shown remark-
able adaptability and reliability. Their ability to
efficiently handle tasks usually requiring extensive
domain-specific training has sparked a surge in re-
search aimed at exploring their potential across
diverse applications, e.g. Recommender System.

In the context of recommender systems, the ap-
plication of LLMs has attracted considerable at-
tention. Wu et al. (2023) demonstrates a novel
paradigm in using Large Language Models as rec-
ommender systems. This approach leverages the
natural language processing strengths for context-
sensitive recommendations. Concurrently, investi-
gations conducted in Bao et al. (2023) and Li et al.
(2023) explore the capability of LLM in point-wise
recommendation, revealing how language models
can be adapted for suggesting products. Qin et al.
(2023) investigate pairwise ranking prompts to en-
hance recommendation systems. Despite these ad-
vancements, as depicted in Figure 1, a significant
limitation of these methods is their high compu-
tational cost, stemming from the iterative call of
LLMs to evaluate each candidate item. Moreover,
existing approaches focus on implicit feedback,
filtering rating signals with predefined thresholds.
This practice fails to effectively address partial or-
der relations inherent in the magnitude of ratings.

In leveraging LLMs for recommendation sys-
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tems, the list-wise ranking method stands out for
its computational efficiency (Yue et al., 2023; Chen,
2023). However, executing list-wise ranking with
explicit feedback effectively is fraught with chal-
lenges (Dai et al., 2023). The core issue lies in the
objective misalignment between LLMs’ natural lan-
guage generation and ranking tasks. Specifically,
ranking demands a sophisticated reasoning process
to understand partial order relation within the se-
quence of candidates based on the ratings, which
cannot be addressed by supervised fine-tuning with
cross-entropy (Dai et al., 2023; Xu et al., 2024). Op-
timizing Large Language Models to interpret the
magnitude of these ratings and the order relation
among candidates remains a critical challenge in
enhancing the ranking performance. Additionally,
the inherent position bias in LLM-generated lists
further complicates the matter. This bias indicates
that the initial input ordering of the candidates sig-
nificantly influences the final ranking of potential
outputs. Although techniques like bootstrapping,
suggested by Hou et al. (2023), offer a solution by
iteratively querying the LLM with permuted can-
didate sequences to obtain unbiased arrangements,
this method significantly increases computational
demands. Such an increase is particularly prob-
lematic given the substantial resources required by
Large Language Model operation, thereby high-
lighting a crucial trade-off between the precision
and practicality of employing LLMs as recom-
mender systems.

To overcome the aforementioned challenges,
we propose the Large Language Model learning
Framework with Aligned Listwise Ranking Objec-
tives (ALRO), which integrates explicit feedback
and soft lambda loss and permutation-sensitive
learning into the training process to enhance the
ranking capabilities of Large Language Models
(LLMs). This enhancement is achieved through
supervised fine-tuning and Low-Rank Adaptation
(LoRA) (Hu et al., 2022). Specifically, ALRO em-
ploys a soft lambda loss that effectively bridges
the gap between the objectives of ranking and
language generation. This transformation empha-
sizes the significance of item orders within the pre-
dicted list, augmenting their impact during the lan-
guage generation task. Furthermore, we introduce a
permutation-sensitive learning framework designed
to enhance ranking consistency by evaluating the
distance between outputs from permuted candidate
lists, thereby ensuring stable ranking outcomes re-
gardless of candidates’ input order. This strategy

boosts the permutation invariance capability of the
model, which is essential for reducing position bias.
Through aligning distance metrics across original
and permuted lists, our model effectively identifies
and mitigates bias, enhancing the robustness and
efficacy of the ranking process. The contributions
of this paper are:

• We harmonize the goals of language genera-
tion and ranking tasks within a listwise frame-
work using a novel soft lambda rank approach
that incorporates explicit feedback, ensuring
seamless integration of these objectives.

• We introduce a permutation-sensitive learning
methodology that addresses position bias ef-
ficiently, without adding extra computational
load during inference.

• We assess the performance of our model
across four extensively used datasets, demon-
strating its effectiveness.

2 Related Works

2.1 Large Language Model for
Recommendation

Recent advancements in Large Language Models
have showcased their formidable capabilities across
a spectrum of tasks, drawing interest towards their
potential in recommender systems (Qiu et al., 2021;
Bao et al., 2023; Dai et al., 2023; Zheng et al., 2024;
Wu et al., 2024; Zheng et al., 2023a; Chen et al.,
2021; Zheng et al., 2023c; Wang et al., 2022). A
comprehensive survey by Wu et al. (2023) listed the
existing works on LLM-based Recommendations,
particularly focusing on LLMs as agents that di-
rectly generate predictive outcomes. We delineated
them into three paradigms, point-wise, pair-wise,
and list-wise approaches.

The point-wise paradigm is characterized by
the LLM processing each historical and candidate
item pair individually. (Liu et al., 2021; Sachan
et al., 2022; Zheng et al., 2023b, 2024) For ex-
ample, Bao et al. (2023) adapted the recommen-
dation template to frame it as a yes-no question,
requiring the LLM to evaluate each candidate se-
quentially. Another significant contribution is by
Li et al. (2023) and Yue et al. (2023), who lever-
aged LLMs to recommend items through an adapter
module that computes the probability of each item
for recommendation. In the pair-wise paradigm,
the LLM determines the preferable option between
two candidate items. Qin et al. (2023) introduced a
pair-wise prompting strategy employing a sliding
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window technique to identify the recommended
items. Nonetheless, the point-wise and pair-wise
approaches are notably inefficient due to the ne-
cessity of repeatedly calling the LLM, escalat-
ing the time cost as the number of candidates in-
creases (Kang et al., 2023). In contrast, the listwise
approach offers a more efficient solution by rank-
ing the entire list of candidates in a single inference
phase. Although some studies propose a listwise
approach (Sun et al., 2023; Dai et al., 2023; Chen,
2023; Ma et al., 2023; Drozdov et al., 2023; Yue
et al., 2023), they often address the problem with
supervised fine-tuning, while falling short in han-
dling the rating magnitude with metric-oriented
LLM-based recommendation.

2.2 Learning to Rank

Learning to Rank (LTR) constitutes a fundamental
component in information retrieval systems, aimed
at ordering entities by their relevance. This do-
main is categorized into three main methodologies
according to the design of the loss function: point-
wise, pairwise, and listwise approaches. Pointwise
methods focus on predicting the absolute relevance
of individual items, typically framed as classifica-
tion or regression tasks (Li et al., 2007; Crammer
and Singer, 2001). Pairwise strategies, in contrast,
emphasize the relative importance between item
pairs, to accurately determine the more relevant
item in a pair (Freund et al., 2003; Burges et al.,
2005; Chapelle and Keerthi, 2010). The listwise
approaches extend this concept by considering the
entire item list as the training unit, aiming to di-
rectly optimize the overall item ordering to align
with ranking objectives (Xu and Li, 2007; Cao
et al., 2007; Taylor et al., 2008; Xia et al., 2008;
Burges, 2010; Wang et al., 2024). In this paper,
we present an innovative adaptation of the lambda
loss function (Wang et al., 2018) tailored for nat-
ural language generation, leveraging the pairwise
approach to enhance the coherence of generated
texts. This adaptation underscores the potential of
LTR methodologies to extend beyond traditional
retrieval tasks.

3 Problem Statement

We define the sequential recommendation ranking
problem as follows. Let U represent the set of
users and I denote the set of items. For any given
user u ∈ U , their historical interactions with items
are represented by Hu = {h1, h2, . . . , hk}, where

each hi ∈ I signifies an item that user u has previ-
ously interacted with. With this notation in place,
the ranking problem is formalized as follows:

Definition 1 For a user u, consider Cu =
{c1, c2, . . . , cm} as the set of candidate items for
recommendation, where each ci ∈ I and m ≤
|I|. The goal is to devise a ranking function
F : Hu × Cu → Sm that accurately predicts the
permutation τ ∈ Sm that best orders the items
in Cu. The set Sm is the symmetric group of all
m-element permutations, encapsulating every pos-
sible arrangement of the candidate items.

4 Methodology

In this section, we elucidate the constraints in-
herent in prevailing prompting paradigms when
addressing list-wise recommendation tasks. Our
learning framework is developed with four dis-
tinct components: Template Design, Supervised
Fine-Tuning, Soft Lambda Loss, and Permutation-
Sensitive Learning.

4.1 Template Design

Before delving into the specifics of our learning
module, we delineate the process of transforming
the ranking task into a language generation prob-
lem. Drawing inspiration from Instruction Tuning
(Taori et al., 2023), we employ a natural language
prompt template, denoted as Tsrc(Hu, Cu), which
transmutes the input user history Hu and context
Cu, inclusive of item attributes such as names, cat-
egories, and descriptions and their explicit rating
from user, into a structured format. This trans-
formation additionally aids in creating target text
templates Ttgt(τ), representing the permutation that
arranges candidate items according to user prefer-
ences. The detailed template design and example
are provided in Appendix A.1.

4.2 Supervised Fine-Tuning

With the language generation problem that given
Tsrc(Hu, Cu) that aims to predict Ttgt(τ), we imple-
ment a supervised fine-tuning paradigm that lever-
ages the Low-Rank Adaptation (LoRA) approach,
as introduced by Hu et al. (2022). The core idea
behind LoRA is to adapt pre-trained models in a
parameter-efficient manner, enabling effective fine-
tuning on downstream tasks with minimal modi-
fications to the original model parameters. The
fine-tuning process is formulated by the following
loss function:
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Lsft = −
|y|∑

t=1

log (Pθ(yt|x, y<t)) , (1)

where Lsft denotes the supervised fine-tuning loss,
and Pθ(yt|x, y<t) represents the conditional prob-
ability of predicting the token yt given the input
tokens x and the preceding tokens y<t. In this
context, x and y correspond to the tokenized repre-
sentations of Tsrc(Hu, Cu) and Ttgt(τ), respectively.
This supervised fine-tuning process utilizes target
tokens that correspond to the correctly ranked list
of candidate answers, which are subsequently ad-
justed to reflect user preferences.

4.3 Soft Lambda Loss (SLL)
The widely adopted cross-entropy loss in language
generation, derived from next-token prediction dur-
ing supervised fine-tuning, faces a fundamental
misalignment with the objectives of ranking. Such
a discrepancy undermines the efficacy of cross-
entropy loss when applied to the specific demands
of ranking, leading to suboptimal performance in
these contexts. To empower the Language Model
with the capability to identify partial order rela-
tions, learning to rank (LTR) objectives serves as
an effective supervised signal. Unlike the exist-
ing LTR framework (Wang et al., 2018), this is
not straightforward to directly optimize on Normal-
ized Discounted Cumulative Gain (NDCG) when
dealing with language models that generate ranked
token probabilities incrementally. Traditional rank-
ing losses, such as Lambda loss (Wang et al., 2018)
or SoftRank (Taylor et al., 2008), are not directly
applicable. The Lambda loss, is defined as:

Lrank =

|τ |∑

i=1

∑

j:τj<τi

δi,j |Gi −Gj |·

log2

(
1 + e−σ(si−sj)

)
,

(2)

where

δij =

∣∣∣∣
1

D|i−j|
− 1

D|i−j|+1

∣∣∣∣ , (3)

with Gi and Di following the definitions from
NDCG, and si representing the model-derived pre-
diction score. In large language models, the rank-
ing order is typically determined by using the
argmax function on the output probabilities of
tokens, which is non-differentiable and thus unsuit-
able for the training process.
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Figure 2: Demonstration of position bias. The figure
shows how the placement of candidate items in the in-
put sequence can significantly alter the ranking results
produced by a Language Model.

To overcome this, we propose a method that com-
bines the soft-argmax function with Lambda loss
to calculate the deviation of predicted probabilities
from the ideal ranking order. We define a differ-
entiable ranking score for the generative model by
substituting the traditional argmax function in si
with the soft-argmax, expressed as:

si = max
j

eγyj,i∑
k e

γyj,k
· j, (4)

where yi,j denotes the output probability of the lan-
guage model for the jth position and token i, and
γ represents the scaled value that adjusts the dis-
tribution of softmax. By making the computation
of si differentiable with the soft-argmax method,
we align the objectives of language generation with
those of the ranking task. Overall, Soft Lambda
Loss follows the Equation 2, which is derived from
Wang et al. (2018), by replacing si with Equation 4
to get a differentiable objective.

4.4 Permutation-Sensitive Loss (PSL)

In list-wise recommendation tasks with Large
Language Models, position bias emerges as a
formidable challenge, with the order of the can-
didate input sequence notably swaying the ranking
outcomes. As depicted in Figure 2, language mod-
els exhibit a propensity to assign higher rankings
to candidates positioned at the beginning of the
list. This tendency highlights the significant influ-
ence of candidate positioning on model evaluations,
underscoring the imperative of developing method-
ologies to counteract these biases.

It is worth noting that the observed phenomenon
depends exclusively on natural language generation
tasks with the sequence of input candidates. This
contrasts with embedding-based recommendation
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systems, where the order of inputs does not influ-
ence outcomes by calculating the score of the user
and item pair separately. The effect of permutation
on the output is described by the inequation:

F (T (Hu, Cu)) ̸= F (T (Hu, C′
u)), (5)

where F (·) denotes the logits output by large lan-
guage model, and C′

u = {cπ(0) cπ(1), · · · , cπ(m)}
represents a permuted candidate list from the origi-
nal candidate list Cu, with π(·) as the random per-
mutation function that rearranges the candidates.
This equation highlights the dependency of the
model on the sequence in which inputs are pro-
vided, distinguishing it from conventional recom-
mendation approaches which are order invariant.

Although Hou et al. (2023) proposed the boot-
strapping method, which shuffles the candidate
items multiple times and takes average scores as the
final ranking result, it is inefficient as it repetitively
calls language models in the inference stage to get
average ranking. To alleviate this issue without bur-
dening the inference in the recommendation, we
propose a permutation-sensitive loss that aims to
minimize the output distribution distance between
the original candidate list Cu and the random per-
mutated candidate list C′

u within the fine-tuning
stage. . By adopting Kullback–Leibler divergence
that minimizes the distance between two distribu-
tions, we empower the model with permutation
invariant capability. The loss function could be
formulated as:

Lperm =
∑

t

KL
(
Pθ(yt|x, y<t)∥Pθ(y

′
t|x′, y′<t)

)
,

(6)
where x and x′ are the prompt derived from
T (Hu, Cu) and T (Hu, C′

u) respectively, and y and
y′ are the labels for the given prompts. The de-
tails of C′

u, y′t and corresponding Pθ(y
′
t|x′, y′<t) are

provided in Appendix A.2.

4.5 Training Objective

Overall, we provide the soft lambda loss Lrank with
permutation-sensitive framework Lperm to address
the issues mentioned above, which goes beyond
the naive supervised fine-tuning. The objective
function is reformulated as:

L = Lsft + αLrank + βLperm, (7)

where α, β are hyperparameters that adjust the im-
portance of each loss.

5 Experiment

In our study, we conducted a comprehensive evalu-
ation of our model across two real-world datasets.
This was complemented by an ablation study, ro-
bustness tests, and efficiency evaluations. Our ex-
periment was directed by the following pivotal re-
search questions:

• (RQ1) Does the proposed framework surpass
existing baselines in both embedding-based
and LLM-based recommendation models?

• (RQ2) What extent does supervised fine-
tuning on recommendation-specific corpus en-
hance Large Language Model performance?

• (RQ3) How crucial is the involvement of our
proposed module for metrics improvement?

• (RQ4) How does permutation-sensitive learn-
ing compare to bootstrapping methods in
terms of performance and efficiency?

• (RQ5) How does the ALRO framework im-
prove performance across different parameter
sizes of the backbone language model com-
pared to traditional supervised fine-tuning?

Through these explorations, we aim to elucidate
the contributions of domain-specific fine-tuning
with our novel modules to the advancements in
LLM-based recommendation systems.

5.1 Dataset

We selected four widely adopted open-source
datasets to evaluate the effectiveness of our frame-
work: Movie (MovieLens-1M1), Music (the "CDs
& Vinyl" subset), Books (the "Books" subset), and
Games (the "Toys and Games" subset) from the
Amazon product reviews dataset. The Amazon
product reviews datasets encompass reviews from
1996 to 2023 (Hou et al., 2024a) with 5-core. De-
tailed information about these datasets is presented
in Table 1. To evaluate the model’s capability of
ranking explicit feedback, we sampled the most
recent 25 user-interacted items as candidates Cu,
each with a rating rci ∈ [1 . . 5]. The output per-
mutation τ is sorted from the candidate ratings rci
provided by the user. The length of historical se-
quence |Hu| is set to 20. Followed by Kang and
McAuley (2018), we split the user interaction se-
quence into three-part, 1) the most recent 25 actions
for testing 2) the most recent 25 to 50 actions for
validation 3) all remaining actions for training.

1https://grouplens.org/datasets/movielens/1m/
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Table 1: Statistics of datasets.

Dataset Movie Books Games Music
Users 6040 54440 12182 9612
Items 3952 446987 114601 83937

Actions 1.0M 9.27M 1.53M 1.58M
Density (%) 4.19 0.0381 0.11 0.197
Tokens/Item 20.76 45.53 56.92 24.10

5.2 Baselines and Evaluation Metrices

To evaluate the effectiveness of our framework,
we select several state-of-the-art baselines, which
could be categorized into Non-Sequential Recom-
mendation, Sequential Recommendation, Rank-
ing Methods, and Large Language Model-based
Recommendation. We introduce the BERT-based
model as the backbone to extract the textual infor-
mation of items in both Non-Sequential Recom-
mendation and Sequential Recommendation.

• Non-Sequential Recommendation:
NCF (He et al., 2017) adopts a neural
network with collaborative filtering for recom-
mendations. DIN (Kang and McAuley, 2018)
involves user interest modeling based on user
behavior with an attention mechanism.

• Sequential Recommendation:
GRU4Rec (Hidasi et al., 2016) is a
session-based recommendation system
utilizing a GRU-based recurrent network.
SASRec (Hidasi et al., 2016) employs a self-
attention network with positional embeddings
to capture the user’s sequential behavior
information. CORE (Hou et al., 2022) uses
a representation-consistent framework to
unify the session and item representation
spaces. NARM (Li et al., 2017) decomposes
user behavior into global and local forms
using attention networks for sequential
recommendation.

• Ranking Methods: Seq2Slate (Bello et al.,
2018) adopts RNN modules with a pointer
network that maps candidate items to ranking
positions in an end-to-end manner. PRM (Pei
et al., 2019) utilizes a transformer-based net-
work to re-rank lists by assigning scores to
each candidate in a list-wise form.

• Large Language Model-based Recommen-
dation: For Zero-shot LLM and Few-shot
LLM, we follow list-wise setting in Hou et al.
(2024b), which provides instructions and ex-
amples. TallRec (Bao et al., 2023) fine-tunes
LLMs with instruction tuning for point-wise
recommendation. ES4Rec (Li et al., 2023)

introduces pre-trained item embeddings as
prompts with an adapter to fine-tune the LLM.
LlamaRec (Yue et al., 2023) employs a two-
stage re-ranking framework for recommenda-
tion. We adopted the LLM re-ranking mod-
ule in LlamaRec for ranking the candidates.
We use Llama2-7b as the base model for all
LLM-based baselines. It is worth noting that
ES4Rec and TallRec require negative sam-
pling data to maintain the performance of
learning user embeddings, which imposes an
additional burden on LLM training.

To assess the performance of various models in
ranking tasks for explicit feedback (value from 1 to
5), we employ Normalized Discounted Cumulative
Gain (NDCG) at different cutoffs as our evaluation
metric, specifically NDCG@k with k values of 3,
5, 10, and 25.

5.3 Implementation Details

Our experiments were conducted on a cluster of 12
Linux servers, each equipped with 8 A800 GPUs.
For the backbone model, we utilized the Llama2-
7b 2 with BF16 precision, available on Hugging-
face. The supervised fine-tuning step was imple-
mented using the PyTorch framework and peft li-
brary, applying the LoRA technique with a rank
setting of 16. We used the AdamW (Loshchilov
and Hutter, 2019) optimizer with a learning rate of
5e-5 and batch size as 128 for SFT, complemented
by 2 gradient accumulation steps with a total of
10 training epochs. We utilized DeepSpeed with
ZeRO stage 2 to facilitate distributed training. To
optimize our loss function, we performed hyperpa-
rameter tuning using a grid search across the values
of γ and β within the set 0.001,0.01,0.1,1,2,5. We
fixed α at 1, β at 2, and γ at 2 during this process.

5.4 Overall Performance (RQ1)

To validate the performance of our proposed frame-
work, ALRO, we executed comparative analyses
against established baseline methods, with the re-
sults presented in Table 2. The following observa-
tions were made:

• ALRO consistently outperformed the base-
lines across various metrics and datasets, un-
equivocally demonstrating its superiority in
ranking tasks within recommender systems.

• Large Language Models (LLMs) without fine-
tuning fell short against traditional methods,

2https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 2: Performance Comparison. Optimal outcomes across all models are emphasized in bold, while second-best
performances are distinguished by underlining. Evaluation metrics include NDCG at ranks 3, 10, and 25.

Dataset Movie Books Games Music

NDCG @3 @10 @25 @3 @10 @25 @3 @10 @25 @3 @10 @25

NCF 0.5804 0.6452 0.8336 0.7482 0.7692 0.9040 0.8245 0.8346 0.9356 0.7733 0.7918 0.9140
DIN 0.6067 0.6674 0.8437 0.7495 0.7711 0.9048 0.8240 0.8337 0.9351 0.7804 0.7946 0.9153

GRU4Rec 0.5545 0.6268 0.8241 0.7461 0.7679 0.9034 0.8258 0.8344 0.9355 0.7705 0.7858 0.9117
DIEN 0.5890 0.6580 0.8385 0.7508 0.7716 0.9051 0.8331 0.8376 0.9372 0.7728 0.7919 0.9133
SASRec 0.6436 0.6891 0.8427 0.7796 0.7961 0.9153 0.8501 0.8533 0.9432 0.7979 0.8135 0.9229
COREave 0.6236 0.6455 0.8299 0.7740 0.7899 0.9128 0.8498 0.8503 0.9409 0.7876 0.7957 0.9146
NARM 0.5281 0.6059 0.8145 0.7285 0.7555 0.8979 0.8282 0.8373 0.9366 0.7679 0.7863 0.9118

Seq2Slate 0.5320 0.6034 0.8178 0.7850 0.7961 0.9160 0.8292 0.8345 0.9357 0.7850 0.7961 0.9160
PRM 0.6088 0.6496 0.8384 0.7668 0.7858 0.9116 0.8235 0.8315 0.9344 0.7668 0.7858 0.9116

Zero-shot 0.5118 0.5954 0.8089 0.7322 0.7576 0.8989 0.8190 0.8317 0.9339 0.7639 0.7841 0.9106
Few-shot 0.5149 0.5958 0.8097 0.7337 0.7595 0.8995 0.8288 0.8358 0.9362 0.7746 0.7874 0.9128
TALLRec 0.6512 0.6835 0.8494 0.7895 0.8153 0.9141 0.8492 0.8469 0.9397 0.8221 0.8269 0.9295
E4SRec 0.5697 0.6210 0.8373 0.7620 0.7878 0.9089 0.8477 0.8545 0.9354 0.7795 0.7951 0.9203
LlamaRec 0.5360 0.6164 0.8193 0.7439 0.7687 0.9092 0.8402 0.8458 0.9366 0.7831 0.7945 0.9154

ALRO 0.6584 0.6925 0.8590 0.7903 0.7981 0.9190 0.8555 0.8582 0.9472 0.8310 0.8411 0.9283

Table 3: Comparison of Zero-shot, Few-shot and Super-
vised Fine-Tuning with Llama2-7b backbone.

Dataset Movie

NDCG @3 @10 @25

Zero-shot 0.5118 0.5954 0.8089
Few-shot 0.5149 0.5958 0.8097
SFT 0.5712 0.6413 0.8258

highlighting the crucial role of supervised fine-
tuning for LLMs in recommendation contexts.

• TALLRec achieves comparable performance
but faces efficiency challenges.

These insights confirm the significance of our
ALRO framework in enhancing the efficacy of rank-
ing in recommendation systems and underscore the
necessity for appropriate fine-tuning of LLMs to
fully leverage their potential recommendation.

5.5 Effect of Supervised Fine-Tuning (RQ2)
Prompting techniques have showcased the pro-
found ability of language models to interpret and
execute tasks with remarkable precision. (Liu et al.,
2023) However, the efficacy of these techniques is
challenged when applied to specialized domains
such as recommendation systems, particularly due
to the potential misalignment between the pre-
training corpus and the intricate requirements of
ranking tasks. As depicted in Table 3, this discrep-
ancy is notably pronounced in medium-sized lan-
guage models like Llama-7b, where simple prompt-
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Figure 3: Ablation study on multiple datasets.

ing may not suffice to activate the model’s ranking
capabilities effectively.

To address this gap, our study delves into the im-
pact of supervised fine-tuning on the performance
of language models in recommendation-related
tasks. Through a comparative analysis encompass-
ing zero-shot, few-shot, and supervised fine-tuning
approaches, we unveil a substantial improvement
in model performance by supervised fine-tuning,
with metrics enhancing by over 10%. This im-
provement is attributed to the fine-tuning process,
which effectively adjusts the model’s outputs to
better align with specific task requirements. This
approach overcomes the shortcomings of conven-
tional prompting techniques that often yield non-
parsable outputs, thereby enhancing the model’s
ability to rank information more accurately.

5.6 Ablation Study (RQ3)

In our research, we conducted an ablation study
to distinguish the contributions of distinct compo-
nents within our proposed framework, systemati-
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Table 4: Comparative analysis of bootstrapping and
permutation-sensitive learning. ‘p@i’ denotes the num-
ber of permutations applied in bootstrapping. The origi-
nal permutation represented by p@1 is consistent with
the prompt in ALRO. TPD represents the average infer-
ence time per data sample, measured in seconds.

Dataset Movie

NDCG @3 @10 @25 TPD

p@1 0,6004 0.6203 0.8156 0.2546
p@3 0.6217 0.6842 0.8554 0.7654
p@5 0.6472 0.7032 0.8646 1.3756
ALRO 0.6584 0.6925 0.8590 0.2546

cally omitting each module for comparative analy-
sis against the complete model. This involved eval-
uating two key variants: Exclusion of soft lambda
loss (w/o SLL) and Exclusion of permutation-
sensitive learning (w/o PSL). Figure 3 shows that
both components significantly enhance the sys-
tem’s candidate ranking ability. The reduction in
NDCG is attributed to the exclusion of the soft
lambda loss, highlighting the importance of objec-
tive alignment in enhancing language models as
recommender systems. Additionally, the perfor-
mance drop from removing Permutation-Sensitive
Learning underscores the impact of position bias
on ranking performance.

5.7 Comparison of Bootstrapping and
Permutation-Sensitive Learning (RQ4)

Our research introduces a permutation-sensitive
learning approach designed to address position
bias, which affects the outcomes based on the or-
der of candidate lists. While the bootstrapping
method (Hou et al., 2023) , offers a solution to this
bias, it significantly increases inference time. We
evaluated the effectiveness of permutation-sensitive
learning compared to bootstrapping, aiming to re-
duce position bias without burdening the infer-
ence stage. Our comparisons included the orig-
inal model without modifications, and bootstrap-
ping with permutations executed 3 and 5 times. As
demonstrated in Table 4, our method achieves com-
parable outcomes to bootstrapping while reducing
inference times by approximately 5-fold. This in-
dicates that our approach effectively mitigates the
inference time issue through well-designed learn-
ing objectives.
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0.45
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Figure 4: Enhancements achieved by ALRO across var-
ious model sizes on Movie dataset, measured using
NDCG@10 metric.

5.8 Effect of Model parameter size (RQ5)

In this section of our research paper, we delve into
the adaptability and efficacy of our learning frame-
work across several LLM-based recommender sys-
tems, spanning various model sizes. Specifically,
we selected four distinct models for our analy-
sis: OPT-125M, Pythia 1.4B, Pythia-2.7B, Llama2-
7B, Llama3-8B. By applying our framework to
these models, we aim to showcase the consistent
and significant performance enhancements it offers
compared to traditional supervised fine-tuning ap-
proaches. As depicted in Figure 4, there is a clear
correlation between model parameter size and per-
formance, which serves to emphasize the capacity
of our learning framework to augment the effective-
ness of recommender systems across a spectrum of
language model sizes. Notably, the enhancements
provided by our framework are more significant
in larger models than in smaller ones, this may
be attributed to the innate reasoning capability of
language models. Overall, the experiment high-
lights the versatility and broad applicability of our
framework in improving system performance.

6 Conclusion

In this research, we tackled the intricacies of em-
ploying large language models as ranking agents
in recommender systems with explicit feedback,
focusing on refining list-wise ranking methods to
manage the order relation. We proposed a cutting-
edge framework that integrates soft lambda loss
and permutation-sensitive learning. The integra-
tion of soft lambda loss is important as it bridges
the objective between LLM’s natural language gen-
eration and the specific demands of ranking tasks.
It enhances the performance of ranking by optimiz-
ing the order relation within the magnitude of rat-
ings. Furthermore, permutation-sensitive learning
approaches effectively address the issue of posi-
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tion bias, providing an improvement over tradi-
tional bootstrapping methods without imposing
additional computational demands during infer-
ence. Our comprehensive evaluation across var-
ious datasets confirms the success of our method,
advancing LLMs as recommendation agents.

7 Limitation

While our framework adeptly aligns the objectives
of ranking and language generation, it falls short in
fully harnessing the explainability potential inher-
ent in language models. The supervised fine-tuning
process, augmented by joint loss optimization, ef-
fectively enhances the model’s performance in list-
wise ranking tasks, particularly in recommendation
systems. However, this process inadvertently un-
dermines the model’s proficiency in tasks beyond
recommendation, limiting its versatility. Further-
more, although our method demonstrates efficacy
in ranking a set of 25 items, scalability becomes
a concern as the number of candidates increases
significantly. This limitation arises due to con-
straints such as context limits or the propensity for
forgetting in Large Language Models, compromis-
ing the model’s ability to maintain performance
consistency across varying candidate sizes. Typi-
cally, when dealing with large candidate sets, meth-
ods such as sliding windows (Sun et al., 2023) or
retrieve-and-rank two-stage approaches (Yue et al.,
2023) are employed to address scalability issues.

8 Acknowledgement

This work was supported by the National
Natural Science Foundation of China (Grant
No.62102110, No.92370204), National Key R&D
Program of China (Grant No.2023YFF0725004),
Guangzhou-HKUST(GZ) Joint Funding Program
(Grant No.2023A03J0008), Education Bureau of
Guangzhou Municipality.

References

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-
fective and efficient tuning framework to align large
language model with recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender
Systems, RecSys 2023, Singapore, Singapore, Septem-
ber 18-22, 2023, pages 1007–1014. ACM.

Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig
Boutilier, Ed Huai-hsin Chi, Elad Eban, Xiyang Luo,

Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-
ranking and slate optimization with rnns. CoRR,
abs/1810.02019.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on
Machine learning, pages 89–96.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Olivier Chapelle and S. Sathiya Keerthi. 2010. Effi-
cient algorithms for ranking with svms. Inf. Retr.,
13(3):201–215.

Can Chen, Shuhao Zheng, Xi Chen, Erqun Dong,
Xue (Steve) Liu, Hao Liu, and Dejing Dou. 2021.
Generalized dataweighting via class-level gradient
manipulation. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 14097–
14109.

Zheng Chen. 2023. PALR: personalization aware llms
for recommendation. CoRR, abs/2305.07622.

Koby Crammer and Yoram Singer. 2001. Pranking with
ranking. pages 641–647.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu,
Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang,
and Jun Xu. 2023. Uncovering chatgpt’s capabilities
in recommender systems. In Proceedings of the 17th
ACM Conference on Recommender Systems, RecSys
2023, Singapore, Singapore, September 18-22, 2023,
pages 1126–1132. ACM.

Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen
Qin, Razieh Rahimi, Xuanhui Wang, Dana Alon,
Mohit Iyyer, Andrew McCallum, Donald Metzler,
and Kai Hui. 2023. Parade: Passage ranking us-
ing demonstrations with llms. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 14242–
14252. Association for Computational Linguistics.

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and
Yoram Singer. 2003. An efficient boosting algorithm
for combining preferences. J. Mach. Learn. Res.,
4:933–969.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo-
rative filtering. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW 2017,
Perth, Australia, April 3-7, 2017, pages 173–182.
ACM.

926

https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
http://arxiv.org/abs/1810.02019
http://arxiv.org/abs/1810.02019
https://doi.org/10.1007/S10791-009-9109-9
https://doi.org/10.1007/S10791-009-9109-9
https://proceedings.neurips.cc/paper/2021/hash/75ebb02f92fc30a8040bbd625af999f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/75ebb02f92fc30a8040bbd625af999f1-Abstract.html
https://doi.org/10.48550/ARXIV.2305.07622
https://doi.org/10.48550/ARXIV.2305.07622
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.950
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.950
http://jmlr.org/papers/v4/freund03a.html
http://jmlr.org/papers/v4/freund03a.html
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569


Balázs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2016. Session-based
recommendations with recurrent neural networks. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and
Wayne Xin Zhao. 2022. CORE: simple and effec-
tive session-based recommendation within consistent
representation space. In SIGIR ’22: The 45th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Madrid, Spain,
July 11 - 15, 2022, pages 1796–1801. ACM.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi
Chen, and Julian J. McAuley. 2024a. Bridging lan-
guage and items for retrieval and recommendation.
CoRR, abs/2403.03952.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian J. McAuley, and Wayne Xin
Zhao. 2023. Large language models are zero-
shot rankers for recommender systems. CoRR,
abs/2305.08845.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian J. McAuley, and Wayne Xin
Zhao. 2024b. Large language models are zero-shot
rankers for recommender systems. In Advances in
Information Retrieval - 46th European Conference
on Information Retrieval, ECIR 2024, Glasgow, UK,
March 24-28, 2024, Proceedings, Part II, volume
14609 of Lecture Notes in Computer Science, pages
364–381. Springer.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
attentive sequential recommendation. In IEEE Inter-
national Conference on Data Mining, ICDM 2018,
Singapore, November 17-20, 2018, pages 197–206.
IEEE Computer Society.

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Mah-
eswaran Sathiamoorthy, Lichan Hong, Ed H. Chi,
and Derek Zhiyuan Cheng. 2023. Do llms under-
stand user preferences? evaluating llms on user rating
prediction. CoRR, abs/2305.06474.

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao
Lian, and Jun Ma. 2017. Neural attentive session-
based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge
Management, CIKM 2017, Singapore, November 06 -
10, 2017, pages 1419–1428. ACM.

Ping Li, Christopher J. C. Burges, and Qiang Wu. 2007.
Mcrank: Learning to rank using multiple classifica-
tion and gradient boosting. In Advances in Neural
Information Processing Systems 20, Proceedings of

the Twenty-First Annual Conference on Neural In-
formation Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007, pages 897–
904. Curran Associates, Inc.

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang,
and Chunxiao Xing. 2023. E4srec: An elegant
effective efficient extensible solution of large lan-
guage models for sequential recommendation. CoRR,
abs/2312.02443.

Hao Liu, Qian Gao, Jiang Li, Xiaochao Liao, Hao
Xiong, Guangxing Chen, Wenlin Wang, Guobao
Yang, Zhiwei Zha, Daxiang Dong, Dejing Dou, and
Haoyi Xiong. 2021. JIZHI: A fast and cost-effective
model-as-a-service system for web-scale online infer-
ence at baidu. In KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, Virtual Event, Singapore, August 14-18, 2021,
pages 3289–3298. ACM.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023. Zero-shot listwise document
reranking with a large language model. CoRR,
abs/2305.02156.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun,
Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Junfeng
Ge, Wenwu Ou, and Dan Pei. 2019. Personalized
re-ranking for recommendation. In Proceedings of
the 13th ACM Conference on Recommender Systems,
RecSys 2019, Copenhagen, Denmark, September 16-
20, 2019, pages 3–11. ACM.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bender-
sky. 2023. Large language models are effective text
rankers with pairwise ranking prompting. CoRR,
abs/2306.17563.

Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan.
2021. U-BERT: pre-training user representations for
improved recommendation. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 4320–4327. AAAI Press.

927

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2305.08845
https://doi.org/10.48550/ARXIV.2305.08845
https://doi.org/10.1007/978-3-031-56060-6_24
https://doi.org/10.1007/978-3-031-56060-6_24
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.1145/3447548.3467146
https://doi.org/10.1145/3447548.3467146
https://doi.org/10.1145/3447548.3467146
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.1609/AAAI.V35I5.16557
https://doi.org/10.1609/AAAI.V35I5.16557


Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 3781–3797. Association for Computational
Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 14918–14937. Association for Computational
Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Michael Taylor, John Guiver, Stephen Robertson, and
Tom Minka. 2008. Softrank: optimizing non-smooth
rank metrics. In Proceedings of the 2008 Interna-
tional Conference on Web Search and Data Mining,
pages 77–86.

Chao Wang, Hengshu Zhu, Peng Wang, Chen Zhu,
Xi Zhang, Enhong Chen, and Hui Xiong. 2022. Per-
sonalized and explainable employee training course
recommendations: A bayesian variational approach.
ACM Trans. Inf. Syst., 40(4):70:1–70:32.

Chao Wang, Hengshu Zhu, Chen Zhu, Chuan Qin, En-
hong Chen, and Hui Xiong. 2024. Setrank: A setwise
bayesian approach for collaborative ranking in rec-
ommender system. ACM Trans. Inf. Syst., 42(2):56:1–
56:32.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael
Bendersky, and Marc Najork. 2018. The lambdaloss
framework for ranking metric optimization. In Pro-
ceedings of the 27th ACM international conference
on information and knowledge management, pages
1313–1322.

Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu,
and Enhong Chen. 2024. Exploring large language
model for graph data understanding in online job rec-
ommendations. In Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada,
pages 9178–9186. AAAI Press.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. 2023. A survey on

large language models for recommendation. arXiv
preprint arXiv:2305.19860.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and
Hang Li. 2008. Listwise approach to learning to
rank: theory and algorithm. In Proceedings of the
25th international conference on Machine learning,
pages 1192–1199.

Cong Xu, Zhangchi Zhu, Jun Wang, Jianyong Wang,
and Wei Zhang. 2024. Understanding the role
of cross-entropy loss in fairly evaluating large
language model-based recommendation. CoRR,
abs/2402.06216.

Jun Xu and Hang Li. 2007. Adarank: a boosting al-
gorithm for information retrieval. In SIGIR 2007:
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Amsterdam, The Netherlands,
July 23-27, 2007, pages 391–398. ACM.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Mor-
eira, Dong Wang, and Even Oldridge. 2023. Lla-
marec: Two-stage recommendation using large lan-
guage models for ranking. CoRR, abs/2311.02089.

Zhi Zheng, Wenshuo Chao, Zhaopeng Qiu, Hengshu
Zhu, and Hui Xiong. 2024. Harnessing large lan-
guage model in text-rich sequential recommendation.
In Proceedings of the ACM Web Conference 2024,
WWW 2024. ACM.

Zhi Zheng, Zhaopeng Qiu, Xiao Hu, Likang Wu, Heng-
shu Zhu, and Hui Xiong. 2023a. Generative job
recommendations with large language model. CoRR,
abs/2307.02157.

Zhi Zheng, Ying Sun, Xin Song, Hengshu Zhu, and
Hui Xiong. 2023b. Generative learning plan rec-
ommendation for employees: A performance-aware
reinforcement learning approach. In Proceedings
of the 17th ACM Conference on Recommender Sys-
tems, RecSys 2023, Singapore, Singapore, September
18-22, 2023, pages 443–454. ACM.

Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Peng-
gang Qin, Xiangyu Zhao, Baoxing Huai, Xian Wu,
and Enhong Chen. 2023c. Interaction-aware drug
package recommendation via policy gradient. ACM
Trans. Inf. Syst., 41(1):3:1–3:32.

928

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.249
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.249
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.1145/3490476
https://doi.org/10.1145/3490476
https://doi.org/10.1145/3490476
https://doi.org/10.1145/3626194
https://doi.org/10.1145/3626194
https://doi.org/10.1145/3626194
https://doi.org/10.1609/AAAI.V38I8.28769
https://doi.org/10.1609/AAAI.V38I8.28769
https://doi.org/10.1609/AAAI.V38I8.28769
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2307.02157
https://doi.org/10.48550/ARXIV.2307.02157
https://doi.org/10.1145/3604915.3608795
https://doi.org/10.1145/3604915.3608795
https://doi.org/10.1145/3604915.3608795
https://doi.org/10.1145/3511020
https://doi.org/10.1145/3511020


A Appendix

A.1 Template Design
We followed the template design from existing
works (Bao et al., 2023; Yue et al., 2023) and re-
fined the prompt to rank the items in a list-wise
manner and alleviate position bias, as shown in Ta-
ble 5. Specifically, the ranking results are sorted
based on the rating rci ∈ [1 . . . 5]. For candidates
with equal ratings, we further sort them alphabeti-
cally. It is worth noting that while the equal rating
results affect the supervised fine-tuning loss, they
do not impact the soft lambda loss suggested in
our framework, as the cumulative gain assigned
in DCG for items with the same rating remains
consistent.

A.2 Permutation Sensitive Loss
We generate the candidate list C′

u =
{cπ(0), cπ(1), · · · , cπ(m)}, which represents a
permuted version of the original candidate list
Cu, where π(·) is a random permutation function.
When the order of the candidate list is permuted,
the corresponding target answer Ttgt(τ

′) also
noted as y′t is adjusted to match the new order.
For example, referring to Table 5, if we permute
the candidates "Starman" and "Jumanji," the
corresponding ranking result will change from "B
A C ..." to "A B C ...". This permutation ensures
that the model learns to rank based on the content
rather than the position of the items in the list.

Regarding the probability distribution
Pθ(y

′
t|x′, y′<t), our objective is to minimize

the distance of the output distribution after
permutation. Let kid represent the set of all token
IDs and kα represent the set of alphabetic tokens.
When the targeted alphabetic token ID kα changes
according to the permutation function π(·), we
apply the same permutation function to adjust
the token categories in the target distribution.
Mathematically, we aim to minimize the following
loss:

Lperm =
∑

t

KL
(
Pθ(yt|x, y<t)∥Pθ(y

′
t|x′, y′<t)

)
,

(8)
where KL(·∥·) denotes the Kullback-Leibler diver-
gence, measuring the difference between the orig-
inal output distribution and the permuted output
distribution.

After applying the permutation π(·) on the can-
didate, the output tokens ID k′α are changed. The

Table 5: Instruction Template and Example

Prompt Template

### Instruction:
Given the user’s interaction history, which reveals their
items preferences, generate a preference-based ranking of
the provided candidate items. Your task is to rank a list of
new candidate movies.
Your ranking should include all the candidate movies pro-
vided, and it should be based solely on the user’s prefer-
ences, without regard to the initial order of the candidates.
### Input:
[User Interaction History]:
<User Interaction History>
[Candidate Items]:
<Candidate Items>
### Response:
Given the historical interaction, the ranking result is:
<Ranking Result>

Example

### Instruction:
Given the user’s interaction history, which reveals their
items preferences, generate a preference-based ranking of
the provided candidate items. Your task is to rank a list of
new candidate movies.
Your ranking should include all the candidate movies pro-
vided, and it should be based solely on the user’s prefer-
ences, without regard to the initial order of the candidates.
### Input:
[User Interaction History]:
title: Independence Day genres: Action|SciFi|War rating: 3
title: Close Encounters of the Third Kind (1977) genres:
Drama|Sci-Fi rating: 4 . . .
[Candidate Items]:
(A) title: Starman genres: Adventure|Drama|Romance
(B) title: Jumanji (1995) genres: Adventure|Children’s
|Fantasy . . .
### Response:
Given the historical interaction, the ranking result is:
B A C . . .

permuted token ID set is k′α = π(kα). Conse-
quently, the target distribution must be adjusted to
reflect the new order:

Pθ(y
′
t,k′α

|x′, y′<t,k′α
)

= Pθ(y
′
t,π−1(kα)

|x′, y′<t,π−1(kα)
). (9)

This means that the output distribution should
accurately reflect the new order imposed by the
permutation. The objective is to ensure that
the output distribution of the permuted prompt
Pθ(y

′
t|x′, y′<t) closely matches the original distri-

bution Pθ(yt|x, y<t), thereby maintaining the in-
tegrity of the ranking despite the permutation.
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