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Abstract

Parameter-Efficient Fine-Tuning (PEFT) on
small Pre-trained Language Models (PLMs)
has emerged as a promising approach to en-
hance their multi-tasking capabilities. Preva-
lent methods simultaneously train additional
modules (i.e., one task-shared module and mul-
tiple task-specific modules) for adapting PLMs
to downstream tasks. However, their adapt-
ability to new tasks is constrained, as the task-
specific modules independently adapt to each
task, overlooking the potential for knowledge
transfer across tasks. In this paper, we propose
a novel multi-task learning framework, Inspi-
rational Pointer (IP), that enables the transfer
of prior knowledge across tasks through hu-
man language intervention. Specifically, we
attach task descriptions to the input samples,
which are then mapped to corresponding task
embeddings. Based on those embeddings, we
adapt PLMs for downstream tasks. Similar
tasks share akin descriptions, allowing new task
samples close to similar trained tasks in the task
embedding space, hitting the memory about
trained tasks of the model. Our experiments
on the T5 model demonstrate performance im-
provements of our method in multi-task learn-
ing and few-shot transfer learning. Further,
we implemented the IP in decoder-only mod-
els including GPT2 and large language models
(LLMs), and the results show that IP enhances
the capabilities of decoder-only models.

1 Introduction

The goal of multi-task learning is to equip a sin-
gle model with the capability to address multiple
tasks simultaneously. Recent large language mod-
els (LLMs) have demonstrated outstanding perfor-
mance in the field. However, deploying LLMs
necessitates significant computational resources,
which is inefficient for scenarios requiring rapid
processing of massive amounts of data. Conse-
quently, enhancing the multitasking abilities of

Figure 1: Inspirational Pointer (IP) initially modifies all
input samples by appending task descriptions. Then, it
generates the alterations to the hidden states of PLM
based on the task embeddings of these samples.

smaller Pre-trained Language Models (PLMs), es-
pecially those operating on one consumer-grade
GPU, is essential. Recent studies indicate that
Parameter-Efficient Fine-Tuning (PEFT) on small
PLMs significantly improves their multitasking ca-
pabilities [Asai et al., 2022; Mahabadi et al., 2021].
The PEFT method freezes all parameters of PLM
and trains additional compact modules per task,
allowing PLM to adapt to multiple downstream
tasks [Houlsby et al., 2019; Li and Liang, 2021].

Recent developments in PEFT on samll PLMs
for multi-task learning focus on a crucial challenge:
effectively capturing both task-specific and shared
information across tasks. A potential solution is the
integration of PEFT modules, typically involving
two training phases [Wang et al., 2023; Asai et al.,
2022]. Initially, individual task-specific PEFT mod-
ules are trained separately. Subsequently, an in-
tegration module is trained to consolidate those
task-specific modules for downstream tasks. Prior
works show the effectiveness of this approach in
multi-task learning and few-shot transfer learning.
However, the additional integration training con-
sumes more resources, which limits its practicality.

An alternative solution provides a more stream-
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lined training process, which is called the
hypernetwork-based method [Zhao et al., 2023; Ivi-
son and Peters, 2022; Mahabadi et al., 2021]. It op-
timizes a hypernetwork and multiple task-specific
embeddings from multi-task tuning. Guided by
distinct task embeddings, this hypernetwork gener-
ates parameters for various task-specific adapters,
a kind of PEFT module. During training, the
hypernetwork captures shared information across
tasks, while each task embedding learns the
task-specific information. This one-time train-
ing method achieves a better balance between re-
source consumption and performance. However,
this method often shows limited transfer learning
effectiveness, particularly in few-shot scenarios.
This is due to two main reasons: (1) Adapting to
a new task requires training a task-specific embed-
ding independently, without leveraging previously
trained task embeddings. (2) The limited number
of samples fails to provide enough task-specific
information for task embedding.

This paper primarily aims to improve the few-
shot transfer learning in one-time training meth-
ods. We introduce the Inspirational Pointer (IP), a
multi-task learning framework that leverages hu-
man language intervention as a knowledge transfer
bridge between various tasks. As shown in Figure
1, it first incorporates task descriptions into input
samples and then projects the modified data into
the task embedding space. Finally, these task em-
beddings are transformed into modification vectors,
which are used to adapt the hidden states of PLMs
for downstream tasks. Due to similar tasks hav-
ing comparable descriptions, this approach enables
new samples to align closely with trained tasks
in the task embedding space, thereby leveraging
the existing knowledge of the model. Addition-
ally, task descriptions also offer task-specific prior
knowledge to PLMs [Weller et al., 2020]. Further-
more, we moved away from the ’hypernetwork-
adapter’ structure and explored more parameter-
efficient methods. Specifically, we infuse task-
specific knowledge into the PLM by directly per-
forming a Hadamard product between the modifi-
cation vectors and the hidden states of the PLM.
Previous work [He et al., 2021] has demonstrated
that the Hadamard product can convey more infor-
mation with fewer parameters, which leads to the
parameter efficiency of IP (Shown in Figure 2).

Following previous works, we evaluated the per-
formance of IP on T5 model [Raffel et al., 2019]
with 13 NLP datasets. The results show that IP re-

Figure 2: Parameter efficiency on GLUE. The IP demon-
strates exceptional precision (depicted on the y-axis)
while requiring minimal parameter adjustments for each
specific task (shown on the x-axis).

quires only a small number of samples to adapt to
new tasks, and it also has considerable advantages
in traditional multi-task learning performance. Fur-
ther, we implemented the IP in decoder-only mod-
els, and the results showed that IP enhances their
capabilities (in Appendix A.5).

Contributions can be listed as follows:

• This paper finds the limitations of existing
methods in adapting to new tasks: the inability
to transfer knowledge from trained tasks to
new ones.

• We propose a multi-task learning frame-
work Inspirational Pointer (IP), that facilitates
knowledge transfer between tasks through hu-
man language intervention.

• We evaluated IP performance under various
settings, including different tasks, model sizes,
and architectures (in appendix A.5), demon-
strating its wide applicability.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) on Pre-
trained Language Models (PLMs) has become an
active research area. This approach trains addi-
tional small-scale parameter modules to enhance
the adaptability of PLMs to downstream tasks.
Some PEFT methods inject trainable modules into
the architecture of PLMs. Adapter [Houlsby et al.,
2019] and its derivative works [J. et al., 2021;
Karimi Mahabadi et al., 2021] insert the train-
able modules between each transformer layer of
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PLMs. Another choice is prompt tuning [Lester
et al., 2021], which attaches the learnable modules
(i.e., soft prompts) to the input. The prefix-tuning
method [Li and Liang, 2021] tries to optimize
the soft prompts for natural language generation
tasks. PEFT requires only the training of compact
modules for each downstream task, eliminating the
need to adjust the parameters of the entire PLM.
This has brought significant advancements in the
field of multi-task learning.

2.2 Multi-task Learning with PEFT

In implementing PEFT methods in multi-task sce-
narios, a key challenge is efficiently harnessing
information unique to each task while leveraging
common elements across tasks. A potential so-
lution is the integration of PEFT modules, gener-
ally entailing a dual-phase training process. First,
PEFT modules for individual tasks are trained in-
dependently. This is succeeded by the training of
a unifying integration module that amalgamates
these task-specific PEFT modules for downstream
tasks. Previous integration methods were based on
the attention modules to integrate PEFT modules
(e.g., [Pfeiffer et al., 2020], prompts [Asai et al.,
2022]) or the knowledge distillation for PEFT mod-
ules [Wang et al., 2023]. Yet, this extra step of train-
ing demands more resources, posing a constraint on
its real-world applicability. An alternative solution
is hypernetwork-based method [Zhao et al., 2023;
Ivison and Peters, 2022; Mahabadi et al., 2021; Ye
and Ren, 2021], which uses hypernetwork to gen-
erate parameters for various task-specific adapters
via task embeddings. During training, the hypernet-
work captures the cross-task information, and the
task embeddings learn the specific information for
each task. However, this approach has limitations
in adapting to new tasks. Our approach mitigates
this issue by using task descriptions.

3 Method

3.1 Overview

IP is a universal framework suitable for both
encoder-decoder and decoder-only structured
PLMs. The core concept of IP is to enable knowl-
edge transfer between tasks via the human language
Intervention. As shown in Figure 3, IP includes
three main steps: (1)Sample modification: Com-
bining the input sample x with a manual task de-
scription s to form the modified sample m, i.e.,
m = s+ x. (2) Task embedding generation: The

modified sample m is processed through a form
module f , resulting in the task embedding t, i.e.,
t = f(s + x). (3) Model hidden state modifica-
tion: The task embedding t is utilized to modify
the model’s hidden states. For the encoder-decoder
model M , such as T5, the task embedding form
module f is the model’s encoder m1, and the hid-
den state of the model’s decoder m2 is modified.
For the decoder-only model L, such as GPT2 or
LLMs, the task embedding form module f is an
auxiliary fixed encoder e, and the hidden states of
L’s each layer are modified. During the training
process, the parameters of the PLM are fixed.

3.2 Details of Sample Modification
In this step, we manually construct and integrate
task descriptions with input samples. The task de-
scriptions consist of three parts: the dataset name,
task-specific sentence patterns, and dataset-specific
words. For task-specific sentence patterns, we have
crafted fixed structures tailored to various tasks,
such as text classification tasks (Tell me the _ of the
_ :), similarity assessment tasks (Evaluate the _ sim-
ilarity of _ :), and inference tasks (Determine the
_ between the _ from _ :). For the dataset-specific
words, we filled in the task-specific sentence pat-
terns with dataset-specific words, such as ({sen-
timent}) for SST2. For example, we constructed
the descriptive sentences for the Natural Language
Inference (NLI) datasets SciTail and MNLI and the
text classification dataset SST2, as follows:

• SciTail: Determine the relationship between the follow-
ing statements from science materials:

• MNLI: Determine the relationship between the follow-
ing sentences from a variety of genres:

• SST2: Tell me the sentiment of the film review:

Our task description construction adheres to hu-
man language characteristics, where similar tasks
have similar descriptive patterns and unrelated
tasks exhibit significant differences in their descrip-
tions. We also tried various ways to construct task
descriptions, which included automatic generation
by GPT, and intuitive manual construction. Please
refer to Appendix A.6 for ABLATION results on
different ways for constructing task descriptions.

Each input sample will be augmented with a cor-
responding task description before being fed into
the model. Due to the human language intervention,
the model relates samples from a new task to previ-
ously trained task samples using human language
as a bridge. Furthermore, the task descriptions con-
tain task-level semantic information, providing the
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(a) The process of IP in multi-task learning. (b) The process of IP in new task adapting.

Figure 3: Figures (a) and (b) illustrate the process of IP in multi-task learning and new task adaptation. During
multi-task learning, a suitable task embedding space is established. In adapting to new tasks, influenced by the task
descriptions, samples of the new task gravitate closer to similar trained tasks in the task embedding space, thereby
enabling PLM to generate suitable results. For the encoder-decoder PLM, the task embedding form module is the
encoder of PLM, and the hidden state of the model’s decoder is modified. For the decoder-only PLM, the task
embedding form module is an auxiliary encoder model, and the hidden states of the entire PLM are modified.

model with sufficient prior knowledge.

3.3 Task Embeddings Form module
After sample modification, we use the form module
to construct a task embedding τ ∈ Rt, guiding the
modification of the PLM’s hidden states in the next
step. For encoder-decoder models, the encoder acts
as the form module. For decoder-only models, we
use an additional parameter-fixed encoder model
to construct the task embeddings. We collected
the output vectors {V } = {v1, v2, . . . , vn1}, vn1 ∈
Rd1 , from each layer’s mean-pooled hidden state
of the form module f , where d1 is dimension of
f and n1 is the layer number of f . These vectors
are combined via a linear summation layer and a
projection network T to form a task embedding
τ , where T is a neural network consisting of a
feed-forward layer and a ReLU non-linearity. We
describe this process as:

τ = T (

n1∑

i=1

wivi) (1)

where wi are the weights of the linear composition.
Notably, the task embedding we construct is

the “sample-level task embedding,” meaning that
every sample generates its distinct task embed-
ding. Prior work [Ivison and Peters, 2022] demon-
strates that sample-level task embeddings enable
the model to leverage similarities between samples

across datasets while avoiding potential interfer-
ence within the same dataset. Our experiments
revealed that the similarity scores between task em-
beddings become more reasonable after introduc-
ing samples with task descriptions. This suggests
the transfer of knowledge across various tasks.

3.4 Hidden State Modification

In this step, we transform task embeddings into
modifications of the PLM. For encoder-decoder
PLMs, we modify the hidden states of its de-
coder. For decoder-only PLMs, we alter the hidden
states of the entire model. Distinct from the previ-
ous work, our method forgoes the ’hypernetwork-
adapter’ architecture, establishing more efficient
connections between PLM and task embeddings.
Inspired by prior work [He et al., 2021], we re-
frame the hypernetwork-based method as the mod-
ification of the PLM’s hidden states h under the
guidance of task embeddings.

h ∼ h+∆h; ∆h = Aτ (h) (2)

The main idea of the hypernetwork-based method
is to ensure that the ∆h contains task-specific in-
formation. To achieve this, the hypernetwork gen-
erates the parameters of adapters Aτ based on the
task embeddings τ . Consequently, the task embed-
ding τ can influence the ∆h through Aτ .
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Guided by such insights, we adopt a unique ap-
proach where task-specific information is effec-
tively transmitted to the modification vector of the
hidden state by computing the Hadamard product
with the hidden state h. The reason for using the
Hadamard product is that previous work [Hyeon-
Woo et al., 2021] has demonstrated that, with the in-
volvement of the Hadamard product, the model can
transmit more information while reducing the num-
ber of parameters. Compared to the hypernetwork-
based method, our method demonstrates superior
parameter efficiency, as shown in Figure 2.

Initially, to generate specific modification vec-
tors for the hidden state of each PLM layer and
reduce the number of training parameters, we intro-
duce the layer id embeddings inspired by previous
work [Mahabadi et al., 2021]. The layer id em-
beddings are denoted as L = {Lm}n2

m=1, where
n2 and m represents the layer number and the m-
th layer of the PLM. Each layer id embedding is
combined with the task embedding to generate the
corresponding modification vector for the PLM
layer’s hidden states. Specifically, we combine
the task embedding τ ∈ Rt with the layer embed-
ding Lm ∈ Rt into a mixed modification vector
Im ∈ Rt by feeding a concatenation of (τ, Lm) to
a multi-layer neural network C, consisting of two
feed-forward layers (i.e., projections c1 ∈ Rt×t and
c2 ∈ Rt×d2 , where d2 is dimension of the PLM)
and a ReLU non-linearity. Finally, we compute the
Hadamard product of these modification vectors
I = {Im}n2

m=1 with each hidden state, thus form-
ing the final modification for the hidden state of
PLM. This process can be described as follows:

∆h = {hm ◦ Im}n2
m=1; Im = C(τ, Lm) (3)

, where hm means the hidden state of the m-th PLM
layer. Ultimately, the model’s hidden state h will
be updated to h+∆h .

3.5 Loss Function

The training method for IP is consistent in
both multi-task learning and new task adapta-
tion. We consider a general multi-task learning
problem. Given a set of target tasks {D} =
{D1, D2, . . . , Dt}, where t is the total number of
tasks and {Di} = {xni , yni }Ni

n=1 shows the training
data of the i−th task with Ni samples. Also given
a PLM Mθ with parameters θ. We focus on a multi-
task setup, where a model is trained on multiple
tasks simultaneously. Standard multi-task loss on

the training set can be listed as follows:

L(θ, {Dτ}Ti=1) =
T∑

τ=1

∑

(xτ
i ,y

τ
i )∈Dτ

wτ l(Mθ(x
τ
i ), y

τ
i )

(4)
where l represents the loss function for each task,
typically the cross-entropy loss, and wτ is the
weight for the t-th task.

In our approach, we incorporate the task descrip-
tions into the input samples and transform the en-
coder output vectors into task embeddings. Guided
by task embeddings, we adjust the hidden states
of the PLM to adapt to downstream tasks. Let Sτ

denote the description of the t-th task and χ repre-
sent the PLM with IP. The final loss formula can
be articulated:

L(θ, {Sτ}Ti=1, {Dτ}Ti=1)

=
T∑

τ=1

∑

sτi ∈Sτ

(xτ
i ,y

τ
i )∈Dτ

wτ l(χθ(x
τ
i , s

τ
i ), y

τ
i ) (5)

3.6 Parameter-efficiency

For IP, we introduce a one-layer neural network
T , the weights of the linear composition W , a set
of learnable layer id embeddings L = {Lm}n2

m=1,
and a two-layer neural network C, resulting in
(d1× t)+n1+(t×n2)+ (t× t+ t× d2) parame-
ters, where n is the number of PLMs layers, d is the
PLM dimension and t is the task embedding dimen-
sion we set. Therefore, during the training process,
a total of (t× (d1 + d2 + t+ n2) + n1)parameters
need to be adjusted, which is significantly less than
the number of parameters required by traditional
fine-tuning and Adapter methods. We list and com-
pare various methods in terms of the number of the
trainable parameters in Table 1.

4 Experiment

4.1 Model Choice

Our primary PLM is the T5-Base (220M) [Raffel
et al., 2019]. That choice is based on the conven-
tions of prior multi-task works [Wang et al., 2023;
Zhao et al., 2023; Asai et al., 2022] and the need for
fair comparison. Moreover, enhancing the multi-
task capabilities of small-scale model T5, which
can operate on one consumer-grade GPU, holds
great practical value given the ubiquitous issue of
limited computational resources. Additionally, we
incorporate T5-Small (60M) and T5-Large (770M)
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Method
Tunable GLUE SuperGLUE

Params CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg BoolQ WiC CB WSC Avg

Fine-tuning 220M 61.8 94.6 89.7 90.2 91.6 86.8 93.0 71.9 84.9 81.1 70.2 85.7 59.6 74.2

Adapter 1.9M 64.0 93.2 90.7 85.3 90.2 86.5 93.2 71.9 84.5 82.5 67.1 85.7 67.3 75.7

Fine-tuning-m 220M 54.9 92.5 88.8 90.2 91.1 85.7 92.0 75.4 83.8 78.5 69.5 85.2 66.7 75.0

Adapter-m 1.9M 61.5 93.0 89.9 90.2 90.5 86.3 93.2 70.3 84.4 78.4 67.3 85.2 64.7 73.9

Prompt-tuning 76.8k∗n 10.6 90.9 89.5 68.1 89.7 81.3 92.8 54.7 72.2 61.7 48.9 67.9 51.9 57.6

ATTEMPT 96k∗n 57.4 93.2 89.7 85.7 90.3 84.3 93.0 73.4 83.4 78.8 66.8 78.6 53.8 69.5

MPT 76.8k∗n 62.9 93.1 90.1 89.6 89.9 85.5 93.2 77.8 85.2 79.4 69.1 79.3 67.5 73.8

PHA 616k 60.6 94.0 88.2 89.2 90.3 86.3 93.4 80.4 85.3 81.3 65.3 94.1 63.2 75.9

Hyperformer++ 638K 59.0 93.7 90.3 88.6 89.9 85.0 93.3 77.5 84.7 75.8 68.9 81.5 52.9 69.8

HyperDecoder 1.8M 55.9 94.0 90.5 87.7 90.5 86.0 93.4 71.7 83.7 77.8 66.0 92.6 66.7 75.8

Inspirational Pointer 347K 60.2 93.9 90.3 88.7 90.8 86.8 93.6 79.6 85.5 79.2 67.1 94.6 66.5 76.8

Table 1: The result of the multi-task learning. T5-base serves as the PLM backbone of all methods. We also report
Tunable Params, which represent the number of parameters that need to be fine-tuned for each task. The best result
on each block is in bold. It is noteworthy that due to prompt-tuning, ATTEMPT, and MPT, which require learning
prompt parameters separately for each task, their parameter number has to be multiplied by n, where n represents
the number of training tasks. Fine-tuning and adapter denote those methods individually adapt to each task with no
parameter sharing, while Fine-tuning/adapter-m denote these methods adapt to multiple tasks simultaneously.

models to investigate the influence of model scale
on IP performance A.3. To demonstrate the general-
ity of the IP, we have also applied it to decoder-only
models in appendix A.5. The results showed that IP
can also improve the performance of these models,
consistent with the trend of T5 experiments.

4.2 Datasets

Following previous works in multi-task learning,
we evaluate IP using 8 datasets from the GLUE
benchmark [Wang et al., 2018] and 4 datasets from
the SuperGLUE benchmark [Wang et al., 2019].
For the few-shot transfer learning test, we train IP
on the GLUE tasks and then evaluate our method
using three datasets: CB, BoolQ from SuperGLUE,
and an additional dataset SciTail [Khot et al., 2022].
More details are seen in AA.1

4.3 Implementation Details

Our multi-task adaptation experiment involved con-
ducting multi-task learning across 8 datasets from
the GLUE benchmark and 4 datasets from the
SuperGLUE benchmark. Following prior work
[Zhang et al., 2020], we use the validation set as
the testing set in the absence of a dedicated testing
set. In our few-shot adaptation experiments, we
select k = 4, 16, and 32 examples from the training
dataset, while utilizing the full test set for evalua-
tion. The task embedding dimension size is 200.
T5 model is finetuned using the AdamW optimizer
[Loshchilov and Hutter, 2017], employing a 3e-4

learning rate with linear decay and a warmup of
500 steps. More details are seen in A.2.

4.4 Baselines
To evaluate the effectiveness of our method, we
compare IP with the following baselines: (1) Full
fine-tuning (FT). (2) Adapters [Houlsby et al.,
2019]. (3) Prompt tuning (PT) [Lester et al.,
2021], the prompt tuning introduces task-specific
embeddings to the input layer, initializing them by
randomly sampled top vocabularies. (4) Prompt
transfer method, which is the advanced method for
PEFT module integration. we select ATTEMPT
[Asai et al., 2022], MPT [Wang et al., 2023], which
adapts to the target tasks using shared prompts,
which are derived by distilling knowledge from the
source tasks. (5) Hypernetwork-based method, we
select state-of-the-art models: Hyperformer [Ma-
habadi et al., 2021], Hyperdecoder [Ivison and
Peters, 2022] and PHA [Zhao et al., 2023], which
use the hypernetwork to generate the parameters of
adapters and integrate them into PLM layers.

4.5 Result
4.5.1 Multi-task Learning
As shown in Table 1, the results demonstrate that IP
surpasses all other methods in terms of enhancing
performance, while also efficiently managing pa-
rameters. Note that ATTEMPT and MPT require it-
erative training. They rely on pre-training prompts
to retain knowledge from source tasks, and this
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k-shot FT Adapter PT HF ATP PHA MPT HD IP

4
BoolQ 50.5 53.4 61.6 48.0 61.8 66.7 62.2 54.4 67.8
SciTail 79.6 79.5 57.7 82.0 80.2 82.5 80.2 75.4 83.1

CB 57.7 51.1 53.5 60.7 82.1 76.5 73.6 69.1 73.2

16
BoolQ 56.5 51.4 61.9 50.6 60.0 71.3 63.3 64.6 69.3
SciTail 80.0 83.2 60.8 71.9 79.5 86.7 87.3 85.4 87.9

CB 77.0 74.8 63.5 64.3 78.5 79.6 78.6 75.3 77.8

32
BoolQ 58.4 54.5 61.7 58.3 65.3 71.3 68.9 68.3 72.2
SciTail 81.9 85.0 60.2 85.8 80.2 88.6 86.3 85.1 84.2

CB 80.0 74.8 67.8 81.4 85.7 82.7 82.1 79.6 86.1

Table 2: Result of few-shot transfer learning with shot counts k = 4, 16, 32, detailing the accuracy across all tasks
based on 10 random seeds. The best result on each block is in bold. All models are trained using the GLUE tasks,
with the T5-Base model serving as the backbone.

knowledge is transferred to target tasks through the
training of an integration module. Therefore, the
computation of their trainable parameters should
include the training of pre-training prompts for mul-
tiple source tasks.

Compared to the traditional adapter method, the
IP approach utilizes only one-sixth of the trainable
parameters while achieving approximately a 1%
improvement in performance. In comparison with
vanilla fine-tuning methods, our approach signifi-
cantly reduces the number of training parameters
from 220m to 347k while maintaining comparable
performance. When compared to the state-of-the-
art models of hypernetwork-based methods Hyper-
former++, Hyperdecoder, and PHA, IP shows supe-
rior accuracy improvements on both the GLUE and
SuperGLUE benchmarks, while utilizing the lower
number of trainable parameters. Similar observa-
tions were made when comparing IP with prompt
transfer methods, which require iterative training.

4.5.2 Few-shot Transfer Learning
In our research, we assess the effectiveness of our
proposed approach in adapting to new tasks. Fol-
lowed by [Wang et al., 2023], we conduct few-shot
transfer experiments on datasets BoolQ, CB, and
SciTail. Initially, we randomly selected k=4, 16,
and 32 samples from three datasets to construct few-
shot training sets. Subsequently, all models were
first trained on the Glue tasks, followed by adapta-
tion training for new tasks on the few-shot datasets.
Finally, the adapted models were evaluated on the
complete test set to obtain the final results. Our
comparison includes several established baselines
such as Fine-tuning, Adapter, Prompt tuning, Hy-
performer, ATTEMPT, HyperDecoder, MPT, and
PHA. The findings presented in Table 2 stem from
training an 8-task adaptation model for GLUE, fol-

lowed by fine-tuning using a limited number of
samples from BoolQ, CB, and SciTail.

Table 2 summarizes the results of the few-shot
transfer learning experiments. Our method demon-
strates significant improvements over the tradi-
tional adapter approach across various few-shot
datasets. Compared to hypernetwork-based meth-
ods, our approach benefits from effectively facil-
itating knowledge transfer between tasks, and IP
achieves significant improvements. Additionally,
despite the multiple training iterations involved in
prompt transfer methods, the performance of IP
is on par with them. These results indicate that
despite the limited number of training samples, our
method effectively adapts to new tasks. Comparing
with the prompt transfer approach, the IP method
demonstrated superior performance, despite the
prompt transfer method requiring multiple training
iterations. After a comprehensive comparative anal-
ysis, we found that the IP method achieved superior
performance with fewer trainable parameters.

4.6 Ablation Study

4.6.1 Components Remove

We conduct an ablation study using the GLUE
benchmark to assess the impact and efficacy of the
introduced components. The task description and
the Hadamard Product are removed independently
for this purpose. Specifically, to assess the impact
of task descriptions on the model, we eliminated
modifications to the input samples. Then, instead
of using the Hadamard product, we evaluated its
impact on the model by employing the traditional
hypernetwork approach to generate adapter param-
eters for task embedding processing. As shown
in Table 3, we observed a significant decrease in
the final performance of the model when the task
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(a) Training model without task description (b) Training model with task description

Figure 4: Visualization of the similarity scores, which are calculated by task embeddings. Darker colors indicate
higher scores.

descriptions were removed. This indicates that the
original samples, when used as inputs, had limited
capacity for information transfer between tasks.
Our method addresses this shortcoming by directly
incorporating task-specific prior knowledge into
the model through the task descriptions. More-
over, as similar tasks have similar descriptions, this
facilitates knowledge transfer between tasks. Addi-
tionally, we noted that the performance of methods
modifying the pre-trained language models (PLM)
with task embedding, using either the Hadamard
product or hypernetworks, was comparable. Given
that our method requires fewer parameters than the
hypernetwork-based approach, this demonstrates
the advantages of our method in terms of parameter
efficiency.

Task Description GLUE Avg

Hadamard Product
✓ 85.5
× 84.9

Hypernetwork
✓ 85.2
× 84.3

Table 3: Result of ablation study on task description
and Hadamard Product. "GLUE Avg" means average
performance in GLUE.

4.6.2 Effect of Task Description
We conducted a qualitative analysis of IP to study
whether cross-task knowledge is indeed captured
by task embeddings after adding task descriptions
to the samples. We measured the average task em-
beddings produced by the model for eight datasets
in the GLUE benchmark and calculated their sim-
ilarities. The same procedure was applied to a
few-shot transfer learning dataset. Specifically, we
first fully trained IP on the GLUE benchmark, then

randomly sampled 200 input examples from the
test sets of various tasks, extracted the task em-
bedding generated by the model for each task, and
calculated their averages. Finally, we recorded the
similarities between the average task embeddings.
We experiment on both scenarios, IP with and with-
out task descriptions, to reveal the important role
of task descriptions.

The results are shown in Figure 4. Panel B indi-
cates that under the influence of task descriptions,
tasks that are similar (e.g., MNLI and RTE) have
higher task embedding similarities. This demon-
strates that IP effectively clusters similar tasks to-
gether. In terms of adapting to new tasks, we ob-
served that IP effectively links trained tasks with
similar tasks, as evidenced by the relationships be-
tween CB and RTE, MNLI. Comparing Panels A
and B, t is observed that, guided by task descrip-
tions, embeddings of similar tasks are more con-
centrated. Moreover, this alignment results in new
tasks deriving enhanced benefits from previously
trained tasks.

5 Conclusion

This paper introduces the Inspirational Pointer (IP),
a multi-task learning framework. IP modifies in-
put samples by attaching task descriptions, then
influences the PLM hidden states based on the ask
embeddings of these samples. The experimental
results show that our method achieves superior per-
formance, applicable in multi-task and few-shot
transfer learning scenarios, and IP with various
sizes PLMs also perform well. Finally, the ablation
study highlights the significance of task descrip-
tions. For future work, we aim to explore more ef-
fective methods for constructing task descriptions.
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Limitation

This paper proposes a multi-task learning frame-
work applicable to various models. Although it
performs well across multiple tasks and models, it
still has limitations when applying it to decoder-
only models: an additional form module is required.
Although the parameters of the form module are
fixed, thus maintaining parameter efficiency, the ad-
ditional module reduces the overall computational
efficiency. In future work, we will attempt to di-
rectly extract certain states from the decoder-only
model itself to construct task embeddings, thereby
improving computational efficiency.
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A Appendix

A.1 Details in Dataset

we evaluate IP using 8 datasets from the GLUE
benchmark [Wang et al., 2018] and 4 datasets from
the SuperGLUE benchmark [Wang et al., 2019].
Specifically, those benchmarks comprise a range of
text classification tasks, including CoLA [Warstadt
et al., 2018] for testing sentence acceptability, SST-
2 [Socher et al., 2013] focused on sentiment anal-
ysis, and various natural language inference tasks
(NLI) like MNLI [Williams et al., 2017], QNLI
[Demszky et al., 2018], CB [Marneffe et al., 2019],
and RTE [Dagan et al., 2006]. It also includes
STS-B [Cer et al., 2017] for assessing sentence
similarity, and tasks like MRPC [Dolan and Brock-
ett, 2005] and QQP [Wang et al., 2018] for evaluat-
ing paraphrasing similarity. Coreference resolution
is tested through WSC [Levesque et al., 2012],
BoolQ [Clark et al., 2019] for question answering,
and WiC [Pilehvar and Camacho-Collados, 2018]
for word sense disambiguation.

A.2 Implementation Details

Following prior work [Zhang et al., 2020], we use
the validation set as the testing set in the absence
of a dedicated testing set. For datasets with fewer
than 100,000 entries, the validation set is split into
half: one for validation and the other for testing. In
contrast, for larger datasets, 1000 samples from the
training set are repurposed for validation purposes,
and the existing validation set is used for testing.
The task embedding dimension size is 200. T5
model is finetuned using the AdamW optimizer
[Loshchilov and Hutter, 2017], employing a 3e-4
learning rate with linear decay and a warmup of
500 steps. Unless specified, we train for 65k steps
with an effective batch size of 128, and evaluations
are conducted at every 1000-step interval on the
development set. All tests are conducted five times
using distinct random seeds, and the average of
each result is reported.

A.3 Model scaling

To investigate the impact of scaling pre-trained
model sizes on the performance of IP, we replicate
the experiments of [Wang et al., 2023] on GLUE
tasks. The result illustrated in Figure 5, compares
IP against full fine-tuning (FT), prompt-tuning(PT),
ATTEMPT, MTP, Hyperformer++ (HF), and Hy-
perdecoder(HD). using three sizes of the T5
model: T5-Small(60m), T5-Base(220m), and T5-

Figure 5: Performance comparison of different baseline
models ranging from T5-Small to T5-Large, illustrated
as a function of model size.

Large(770m). In three different scales of T5 mod-
els, we observe that IP achieves superior and com-
petitive performances. The result reveals its ef-
fectiveness across a spectrum of models, from 60
million to 770 million parameters.

A.4 Samples of Task Descriptions

Table 6 shows an example of a set of task descrip-
tions we constructed. Our principle for construct-
ing task descriptions adheres to the characteristics
of human language: (1) similar tasks have compa-
rable descriptive sentences; (2) unrelated tasks ex-
hibit low similarity in their descriptions. Whether
multi-task learning or adapting to new tasks, we
only use a set of task descriptions to train IP.

A.5 Decoder-Only Models

A.5.1 Overview

This section introduces how to apply IP to decoder-
only PLMs. As shown in Figure 6, we utilize an
additional encoder model, serving as the form mod-
ule, to construct task embeddings from the modi-
fied samples. We then leverage these embeddings
to modify the hidden states of the PLM. The spe-
cific procedure is given in Chapter 3. Notably, after
modifying the hidden states of the PLM, we in-
put the combination of {task description + sample}
into the modified PLM to obtain the final results.
To demonstrate the generality of IP, we verified
its effectiveness on both the classical small model
GPT-2 and the widely-used LLM Llama2[Touvron
et al., 2023].
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Figure 6: Apply IP to decoder-only models. We in-
troduce an additional parameter-fixed encoder model,
serving as the form module.

A.5.2 GPT2
We adopted GPT-2 Medium (355M) as the back-
bone model for IP. The details of data processing
and parameter settings have been elaborated in the
previous sections. We selected the Roberta-base
model as the form module and fixed its parame-
ters. Similar to previous works[Edalati et al., 2021;
Mihaila, 2021; Sun et al., 2023], we conducted ex-
periments on the GPT-2 model using the GLUE
dataset. It is worth noting that since the afore-
mentioned PEFT method does not natively support
decoder-only models, it is not included in the com-
parative experiments.

As shown in Table 4, although our method ex-
hibited some disadvantages on certain datasets, it
still achieved the best average performance. This
indicates that IP can improve the multi-task ca-
pability of decoder-only architectures, while also
demonstrating the generality of our approach.

A.5.3 Llama2
In this section, we choose the popular open-source
language model Llama2-7b as our backbone model.
We use RoBERTa-base and RoBERTa-large as the
form module respectively, to observe the impact of
different-sized form modules on IP performance.

We evaluate the effect of IP from the perspec-
tives of open-ended generation tasks, rather than
traditional natural language understanding tasks,
such as GLUE or SuperGlLUE. This is because
conventional NLU tasks are overly simplistic, con-
sisting of single-choice questions with extremely
short target lengths, typically requiring only a sin-

Figure 7: The GPT4 evaluation results between IP with
RoBERTa-large and baselines (IP with RoBERTa-base,
Lora, chatgpt).

gle token output. Such tasks are too easy for large
language models and can be readily solved even
under zero-shot conditions. Therefore, we focus
more on more complex tasks.

Considering that {task description + input sam-
ple} is a core step of the IP method, we select 5,500
samples containing {instruction + input} combina-
tions from the Alpaca dataset, with 5,000 for train-
ing and 500 for testing. This selection stems from
the characteristic of the Alpaca dataset that similar
inputs often have similar expressions, which aligns
well with the principle of IP. For example, instruc-
tions for mathematical formula inputs are typically
related to math problems, while instructions for
literary topic inputs often pertain to writing. We
perform instruction tuning on all methods using the
training set, then generate text on the test set, with
the text quality ultimately evaluated by GPT-4.

As shown in figure 7, compared to the Llama
with Lora, the output quality of IP (based on the
RoBERTa-large form module) is higher. Although
our model still lags behind ChatGPT, this is mainly
due to ChatGPT’s larger model scale and higher-
quality training data. Nevertheless, our model still
produces higher-quality outputs in some samples.
Overall, IP plays a positive role in LLM. In terms
of selecting the form module, we found that IP
based on RoBERTa-large provides higher answer
quality than models using RoBERTa-base, as larger-
scale form modules perform better in extracting
task embeddings.

A.5.4 Summary
The primary purpose of IP is to enhance the multi-
task learning capabilities of small-scale models.
Whether T5 or GPT-2, which can run on a single
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Method CoLA MNLI MRPC QNLI QQP RTE SST-2 Avg.

Fine-tuning 74.8 82.1 78.4 84.5 87.6 65.3 91.2 80.5
Adapter 75.4 83.2 75.2 83.1 86.7 64.2 92.3 79.9
Fine-tuning-m 72.1 82.8 78.6 81.8 83.2 61.2 89.8 78.5
Adapter-m 68.7 81.8 77.1 84.2 85.8 63.9 91.5 79.0
IP 75.2 81.9 80.2 84.1 88.2 62.2 92.7 80.6

Table 4: Performance comparison of different methods. Fine-tuning and adapter denote those methods individually
adapt to each task with no parameter sharing, while Fine-tuning/adapter-m denote these methods adapt to multiple
tasks simultaneously.

consumer-grade GPU, IP can effectively improve
its multi-task learning performance. This demon-
strates the powerful capabilities and broad applica-
bility of IP. Additionally, in experiments of LLM,
we have observed that IP also improves the output
quality of LLM models.

A.6 Construct Task Descriptions
To design IP, we tried various ways to construct
task descriptions, which included automatic gener-
ation by GPT, intuitive manual construction, and
the construction rules described in our paper. We
also attempted to modify task descriptions through
data augmentation (i.e., synonym replacement) dur-
ing training. The effects of IP on the construction
methods for these four task descriptions are shown
in the table 5. The first two approaches (GPT gen-
eration and human construction) exhibited slight
disadvantages. We speculate this is due to their
higher randomness in generating task descriptions.
Additionally, data augmentation didn’t statistically
improve the final results. To simplify the IP process,
we remove the data augmentation step. Moreover,
this also indicates that our rules for constructing
task descriptions are already effective.

Method GLUE Avg.

GPT Generation 84.9
Human construction 84.7
Based on rules (DA) 85.4
Based on rules 85.5

Table 5: The impact of different task description con-
struction methods. The method "based on rules" is the
one used in the main paper, and "DA" refers to the inclu-
sion of data augmentation techniques (such as synonym
substitution).

Dataset Task Description
GLUE

MNLI MNLI: Determine the relationship between the
following sentences from a variety of genres:

SST2 SST2: Tell me the sentiment of the film review:
CoLA CoLA: Tell me the grammatical acceptability

of the film statement:
STS-B STS-B: Evaluate the level of semantic similar-

ity for these sentences:
MRPC MRPC: Judge whether the following pair of

sentences are semantically equivalent:
QQP QQP: Assess if the following pair of questions

are semantically equivalent:
QNLI QNLI: Determine if the second statement pro-

vides an answer to the question statement:
RTE RTE: Determine the logical relationship be-

tween these two sentences, if the second logi-
cally follows from the first:

SuperGLUE
BoolQ BoolQ: Tell me whether the statement is true

or false:
WiC WiC: Check whether the word in focus has a

consistent meaning in the following contexts:
CB CB: Determine the relationship between these

two statements:
WSC WSC: Interpret the following sentence and de-

cide what the pronoun is referring to:
Other

SciTail SciTail: Determine the relationship between
the following statements from science materi-
als:

Table 6: Task description of IP for all datasets.
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